The evaluation of giant-cell arteritis (temporal arteritis) cases with optical coherence tomography angiography (OCT-A)


Abstract views: 63 / PDF downloads: 41

Authors

DOI:

https://doi.org/10.26900/hsq.2337

Keywords:

Deep capillary plexus, giant cell arteritis, microvascular structures, optical coherence tomography angiography, superficial capillary plexus

Abstract

To make measurements using optical coherence tomography angiography (OCT-A) in inactive giant cell arteritis (GCA) cases who have previously had GCA and have been treated and to compare the obtained data with healthy volunteers. In this observational case-control study, 18 eyes of 18 GCA cases previously diagnosed, treated with anterior arteritic ischemic optic neuropathy (AAION). 22 eyes of 22 ophthalmically healthy volunteers were included in the study. After external ophthalmic examinations of all participants were performed, their measurements were made with serial OCT-A. Superficial capillary plexus (SCP), deep capillary plexus (DCP), foveal avascular zone (FAZ), area covering 300 degrees around the fovea (FD-300), choriocapillaris (CC), retinal nerve fiber layer (RNFL), cup/disc (C/D) ratio and optic disc vessel densities (OD-VD) were evaluated. p<0.05 was considered significant. There was no difference between the two groups in terms of age, gender and shooting quality. Whole-SCP, SCP-foveal, SCP-parafoveal and SCP-perifoveal VD values were lower in the patient group. Whole-DCP, DCPparafoveal and DCP-perifoveal VD values were also low in the patient group. FAZ areas were similar between groups, but the FD-300 VD was different. Whole-OD VD and inside-OD VD were significantly lower in the patient group. Peripapillary-OD VD and RNFL values were similar. The C/D ratio was higher in the patient group. The effect on the microvascular process was significant in OCT-A. This suggested that even if the ischemic process still continues and there is no active inflammation, microvascular structures may continue to be affected.

Downloads

Download data is not yet available.

References

Akagi T, Fujita S, Mukai T, Morita Y. Complete resolution of giant cell arteritis after tocilizumab monotherapy determined by positron emission tomography-CT. BMJ Case Rep. 2019;12(1):bcr-2018-228697. doi: 10.1136/bcr-2018-228697.

Chandran AK, Udayakumar PD, Crowson CS, Warrington KJ, Matteson EL. The incidence of giant cell arteritis in Olmsted County, Minnesota, over a 60-year period 1950-2009. Scand J Rheumatol. 2015;44:215-8. doi: 10.3109/03009742.2014.982701.

Hormel TT, Jia Y, Jian Y, Hwang TS, Bailey ST, Pennesi ME, et al. Plexus-specific retinal vascular anatomy and pathologies as seen by projectionresolved optical coherence tomographic angiography. Prog Retin Eye Res. 2021;80:100878. doi: 10.1016/j.preteyeres.2020.100878.

Feucht N, Maier M, Lohmann CP, Reznicek L. OCT angiography findings in acute central serous chorioretinopathy. Ophthalmic Surg Lasers Imaging Retina 2016;47:322-7. doi: 10.3928/23258160-20160324-03.

Spaide RF, Klancnik JM, Cooney MJ. Retinal vascular layers in macular telangiectasia type 2 imaged by optical coherence tomographic angiography. JAMA Ophthalmol 2015;133:66-73. doi: 10.1001/jamaophthalmol.2014.3950.

Cheung CMG, Lai TYY, Teo K, Ruamviboonsuk P, Chen SJ, Kim JE, et al. Polypoidal choroidal vasculopathy: consensus nomenclature and nonindocyanine green angiograph diagnostic criteria from the Asia-Pacific Ocular Imaging Society PCV Workgroup. Ophthalmology. 2021;128(3):443-52. doi: 10.1016/j.ophtha.2020.08.006.

Gaier ED, Gittinger JW, Cestari DM, Miller JB. Peripapillary capillary dilation in leber hereditary optic neuropathy revealed by optical coherence tomographic angiography. JAMA Ophthalmol. 2016;134:1332-4. doi: 10.1001/jamaophthalmol.2016.3593.

Takayama K, Ito Y, Kaneko H, Kataoka K, Ra Eİ Terasaki H. Optical coherence tomography angiography in Leber hereditary optic neuropathy. Acta Ophthalmol 2017;95:e344-e345. doi: 10.1111/aos.13244.

Gilden D, White T, Khmeleva N, Heintzman A, Choe A, Boyer PJ, et al. Prevalence and distribution of VZV in temporal arteries of patients with giant cell arteritis. Neurology. 2015;84:1948-55. doi: 10.1212/WNL.0000000000001409.

Nagel MA, White T, Khmeleva N, Rempel A, Boyer PJ, Bennett JL, et al. Analysis of varicellazoster virus in temporal arteries biopsy positive and negative for giant cell arteritis. JAMA Neurol. 2015;72:1281-7. doi: 10.1001/jamaneurol.2015.2101.

Martin-Gutierrez MP, Petzold A, Saihan Z. NAION or not NAION? A literature review of pathogenesis and differential diagnosis of anterior ischaemic optic neuropathies. Eye (Lond). 2024;38(3):418-25. doi: 10.1038/s41433-023-02716-4.

Rougier MB, Delyfer MN, Korobelnik JF. OCT angiography of acute non-arteritic anterior ischemic optic neuropathy. J Fr Ophtalmol. 2017;40:102-9. doi: 10.1016/j.jfo.2016.09.020.

Dhiman R, Chawla R, Azad SV, Kumar P, Gupta V, Kumar A, et al. Peripapillary retinal and choroidal perfusion in nonarteritic ischemic optic neuropathy using optical coherence tomography angiography. Optom Vis Sci. 2020;97(8):583-90. doi: 10.1097/OPX.0000000000001550.

Tran AQ, Yannuzzi NA, Motulsky EH, Zhou XY, Galor A, Dubovy SR, et al. Swept-source optical coherence tomography angiography of an amalric choroidal infarction in a rare presentation of giant cell arteritis with bilateral corneal edema. Ophthalmic Surg Lasers Imaging Retina. 2018;49:e157-e160. doi: 10.3928/23258160-20181002-21.

Wang M, Garg I, Miller JB. Wide Field swept source optical coherence tomography angiography for the evaluation of proliferative diabetic retinopathy and associated lesions: A review. Semin Ophthalmol. 2021;36(4):162-7. doi: 10.1080/08820538.2021.1887901.

Durbin MK, An L, Shemonski ND, Soares M, Santos T, Lopes M, et al. Quantification of retinal microvascular density in optical coherence tomographic angiography images in diabetic retinopathy. JAMA Ophthalmol. 2017;135(4):370-6. doi: 10.1001/jamaophthalmol.2017.0080.

Suciu CI, Suciu VI, Nicoara SD. Optical coherence tomography (angiography) biomarkers in the assessment and monitoring of diabetic macular edema. J Diabetes Res. 2020;2020:6655021. doi: 10.1155/2020/6655021.

Maz M, Chung SA, Abril A, Langford CA, Gorelik M, Guyatt G, et al. 2021 American College of Rheumatology/Vasculitis Foundation Guideline for the Management of Giant Cell Arteritis and Takayasu Arteritis. Arthritis Rheumatol. 2021:1-17. doi 10.1002/art.41774.

Donaldson L, Margolin E. Vision loss in giant cell arteritis. Pract Neurol. 2022;22(2):138-140. doi: 10.1136/practneurol-2021-002972.

Pichi F, Fragiotta S, Freund KB, Au A, Lembo A, Nucci P, et al. Cilioretinal artery hypoperfusion and its association with paracentral acute middle maculopathy. Br J Ophthalmol. 2019;103:1137-45. doi: 10.1136/bjophthalmol-2018-312774.

Kadayicilar S, Aygün FB. Ophtalmologic assessment in giant cell arteritis. Acta Medica. 2022;53(Supplement 1-Invited Review):12-16.

Chen X, Rahimy E, Sergott RC, Nunes RP, Souza EC, Choudhry N, et al. Spectrum of retinal vascular diseases associated with paracentral acute middle maculopathy. Am J Ophthalmol. 2015;160(1):26-34. doi: 10.1016/j.ajo.2015.04.004.

Lavin P, Patrylo M, Hollar M, Espaillat KB, Kirshner H, Schrag M. Stroke risk and risk factors in patients with central retinal artery occlusion. Am J Ophthalmol. 2018;196:96-100. doi: 10.1016/j.ajo.2018.08.027.

Cheong KX, Lee SY, Ang M, Teo KYC. Vessel density changes on optical coherence tomography angiography after vascular endothelial growth factor inhibitor treatment for diabetic macular edema. Turk J Ophthalmol. 2020;50(6):343-50. doi: 10.4274/tjo.galenos.2020.81592.

Erayman GG, Urfalıoglu S, Ozdemir G. Evaluation of posterior ocular blood flow in diabetic retinopathy patients without macular edema using optical coherence tomography angiography. Photodiagnosis Photodyn Ther. 2023;44:103777. doi: 10.1016/j.pdpdt.2023.103777.

Linderman RE, Muthiah MN, Omoba SB, Litts K, Tarima S, Visotcky A, et al. Variability of foveal avascular zone metrics derived from optical coherence tomography angiography images. Transl Vis Sci Technol. 2018;7(5):20. doi: 10.1167/tvst.7.5.20.

Siedlecki J, Hattenbach LO, Feltgen N, Priglinger SG. Biomarker in der Therapie venöser retinaler Gefäßverschlüsse [Biomarkers in the treatment of retinal vein occlusion]. Ophthalmologie. 2022;119(11):1111-1120. German. doi: 10.1007/s00347-022-01732-1.

Chen L, Yuan M, Sun L, Wang Y, Chen Y. Evaluation of microvascular network with optical coherence tomography angiography (OCTA) in branch retinal vein occlusion (BRVO). BMC Ophthalmol. 2020;20(1):154. doi: 10.1186/s12886-020-01405-0.

Waheed NK, Rosen RB, Jia Y, Munk MR, Huang D, Fawzi A, et al. Optical coherence tomography angiography in diabetic retinopathy. Prog Retin Eye Res. 2023;97:101206. doi: 10.1016/j.preteyeres.2023.101206.

Ahn SJ, Woo SJ, Park KH, Jung C, Hong JH, Han MK. Retinal and choroidal changes and visual outcome in central retinal artery occlusion: An optical coherence tomography study. Am J Ophthalmol. 2015;159(4):667-76. doi: 10.1016/j.ajo.2015.01.001.

Bonini Filho MA, Adhi M, de Carlo TE, Ferrara D, Baumal CR, Witkin AJ, et al. Optical coherence tomography angiography in retinal artery occlusion. Retina. 2015;35(11):2339-46. doi: 10.1097/IAE.0000000000000850.

Yu PK, Balaratnasingam C, Xu J, Morgan WH, Mammo Z, Han S, et al. Label-free density measurements of radial peripapillary capillaries in the human retina. PLoS One. 2015;10(8):e0135151. doi: 10.1371/journal.pone.0135151.

Downloads

Published

2025-01-25

How to Cite

Kaşıkcı, M., Ertürk, A., & Eroğul, Özgür. (2025). The evaluation of giant-cell arteritis (temporal arteritis) cases with optical coherence tomography angiography (OCT-A). HEALTH SCIENCES QUARTERLY, 5(1), 5–14. https://doi.org/10.26900/hsq.2337

Issue

Section

Original Article