Significance of laboratory biomarkers in monitoring patients with COVID-19 pneumonia

Abstract views: 115 / PDF downloads: 110




Biochemical indexes, COVID-19, laboratory parameter, intensive care unit


Clinical and laboratory parameters are useful tools to improve success rates in the management of COVID-19 patients. Indices such as NLR, PLR, MHR, SII, AIP and CAR may indicate poor prognosis in predicting poor prognosis in COVID-19. It was aimed to identify such parameters of disease progression in COVID-19 patients by examining demographic data, comorbid conditions, some biochemical and hematological parameters. A retrospective analysis was performed for patients admitted to intensive care unit or pulmonary diseases department or treated on an outpatient basis due to a diagnosis of COVID-19. Patients with positive PCR test and thoracic CT compatible with COVID-19 pneumonia were included in the study. A control group was formed from volunteers of similar age and gender. The study population was divided into four groups as follows: patients admitted to intensive care unit (ICU group); patients admitted to chest diseases department (Inpatient Group); patients treated on an outpatient basis (Outpatient Group); and controls (Control Group). There were 61, 201, and 30 patients in the ICU, inpatient, and outpatient groups, respectively. A total of 96 subjects served as controls. Study groups were comparable with respect to gender distribution. ICU patients had higher NLR, PLR, AIP, SII, and CAR, and lower LMR as compared to other groups. NLR, SII, AIP, and CAR emerged as predictors of ICU admission, while MHR was predictive of inpatient treatment. Certain clinical and laboratory parameters may be useful tools for improving the success of COVID-19 management. High NLR, SII, AIP, CAR, and MHR values may indicate low prognosis in COVID-19 patients.


Download data is not yet available.


Lu R, Zhao X, Li J, Niu P, Yang B, et al. Genomic characterisation and epidemiology of 2019 novel coronavirus: implications for virus origins and receptor binding. Lancet. 2020;395(10224):565-74. doi: 10.1016/S0140-6736(20)30251-8.

Zhu N, Zhang D, Wang W, Li X, Yang B, et al. A novel coronavirus from patients with pneumonia in China, 2019. New England J Med. 2020;382(8):727-33. doi: 10.1056/NEJMoa2001017.

Hassan SA, Sheikh FN, Jamal S, Ezeh JK, Akhtar A. Coronavirus (COVID-19): A Review of clinical features, diagnosis, and treatment. Cureus. 2020;12(3):e7355. doi: 10.7759/cureus.7355.

ACR Recommendations for the use of Chest Radiography and Computed Tomography (CT) for Suspected COVID-19 Infection, American College of Radiology. Accessed May 25, 2020. ACR-Position-Statements/Recommendationsfor-Chest-Radiography-and-CT-for-SuspectedCOVID-19-Infection.

Sun P, Qie S, Liu Z, Ren J, Li K, et al. Clinical characteristics of hospitalized patients with SARS‐ CoV‐2 infection: a single arm meta‐analysis. J Med Virol. 2020;92 6):612-7. doi: 10.1002/jmv.25735.

Gao Y, Li T, Han M, Li X, Wu D, et al. Diagnostic utility of clinical laboratory data determinations for patients with the severe COVID-19. J Med Virol. 2020;92(7):791-6. doi: 10.1002/jmv.25770.

Fu J, Kong J, Wang W, Wu M, Yao L, et al. The clinical implication of dynamic neutrophil to lymphocyte ratio and D-dimer in COVID-19: A retrospective study in Suzhou China. Thrombosis Res. 2020;192:3-8. doi: 10.1016/j. thromres.2020.05.006.

Bi X, Su Z, Yan H, Du J, Wang J et al. Prediction of severe illness due to COVID-19 based on an analysis of initial Fibrinogen to Albumin Ratio and Platelet count. Platelets. 2020;31(5):674-9. doi: 10.1080/09537104.2020.1760230.

Liu F, Li L, Xu MD, Wu J, Luo D, et al. Prognostic value of interleukin-6, C-reactive protein, and procalcitonin in patients with COVID-19. J Clin Virol. 2020;127:104370. doi: 10.1016/j. jcv.2020.104370.

Aziz M, Fatima R, Lee-Smith W, Assaly R. The association of low serum albumin level with severe COVID-19: a systematic review and metaanalysis. Crit Care. 2020;24(1):255. doi: 10.1186/ s13054-020-02995-3.

Usul E, San I, Bekgoz B, Sahin A. Role of hematological parameters in COVID-19 patients in the emergency room. Biomark Med. 2020;14(13):1207-15. doi: 10.2217/bmm-2020-0317.

Peng J, Qi | Di, Yuan G, Deng X, Mei Y, et al. Diagnostic value of peripheral hematologic markers for coronavirus disease 2019 (COVID‐19): A multicenter, cross‐sectional study. J Clin Lab Analy. 2020;34(10):e23475. doi: 10.1002/jcla.23475.

Yang AP, Liu JP, Tao WQ, Li HM. The diagnostic and predictive role of NLR, d-NLR and PLR in COVID-19 patients. Int Immunopharmacol. 2020;84:106504 doi: 10.1016/j.intimp.2020.106504.

Gupta A, Madhavan MV, Sehgal K, Nair N, Mahajan S, et al. Extrapulmonary manifestations of COVID-19. Nat Med. 2020;26(7):1017-32. doi: 10.1038/s41591-020-0968-3.

Huertas A, Montani D, Savale L, Pichon J, Parent F et al. Endothelial cell dysfunction: a major player in SARS-CoV-2 infection (COVID-19)? Eur Resp J. 2020;56(1):2001634. doi: 10.1183/13993003.01634- 2020.

Huertas A, Guignabert C, Barberà JA, Bärtsch P, Bhattacharya S, et al. Pulmonary vascular endothelium: the orchestra conductor in respiratory diseases: Highlights from basic research to therapy. Eur Resp J. 2018;51(4):1700745. doi: 10.1183/13993003.00745-2017.

Canpolat U, Aytemir K, Yorgun H, Sahiner L, Kaya EB, et al. The role of preprocedural monocyte-to-high-density lipoprotein ratio in prediction of atrial fibrillation recurrence after cryoballoon-based catheter ablation. Europace. 2015;17(12):1807-15. doi: 10.1093/europace/ euu291.

Kanbay M, Solak Y, Unal HU, Kurt YG, Gok M, et al. Monocyte count/HDL cholesterol ratio and cardiovascular events in patients with chronic kidney disease. Int Urol Nephrol. 2014;46(8):1619- 25. doi: 10.1007/s11255-014-0730-1.

Cetin EHO, Cetin MS, Canpolat U, Aydin S, Topaloglu S, et al. Monocyte/HDL-cholesterol ratio predicts the definite stent thrombosis after primary percutaneous coronary intervention for ST-segment elevation myocardial infarction. Biomark Med. 2015;9(10):967-77. doi: 10.2217/ bmm.15.74.

Karatas MB, Canga Y, Ozcan KS, Ipek G, Gungor B, et al. Monocyte to high-density lipoprotein ratio as a new prognostic marker in patients with STEMI undergoing primary percutaneous coronary intervention. American J Emerg Med. 2016;34(2):240-4. doi: 10.1016/j.ajem.2015.10.049.

Dizman GT, Metan G, Ceylan CMA, Altunay H, Uzun M, et al. A COVID-19 First evaluation clinic at a university hospital in Turkey. Turkish J Med Sci. 2022;52:1-10. doi: 10.3906/sag-2104-152.

Sorokin AV, Karathanasis SK, Yang ZH, Freeman L, Kotani K, Remaley AT. COVID-19—Associated dyslipidemia: Implications for mechanism of impaired resolution and novel therapeutic approaches. FASEB J. 2020; 34(8):9843-53. doi: 10.1096/fj.202001451.

Li B, Li W, Li X, Zhou H. Inflammation: A novel therapeutic target/direction in atherosclerosis. Curr Pharm Design. 2017; 23 (8):1216-27. doi: 10.2 174/1381612822666161230142931.

Fois AG, Paliogiannis P, Scano V, Cau S, Babudieri S, et al. The systemic inflammation index on admission predicts in-hospital mortality in COVID-19 patients. Molecules. 2020;5(23):5725. doi: 10.3390/molecules25235725.

de Jager CP, van Wijk PT, Mathoera RB, de Jongh-Leuvenink J, van der Poll T, Wever PC. Lymphocytopenia and neutrophil-lymphocyte count ratio predict bacteremia better than conventional infection markers in an emergency care unit. Crit Care 2010;14(5):R192. doi: 10.1186/ cc9309.

Nalbant A, Kaya T, Varim C, Yaylaci S, Tamer A, et al. Can the neutrophil/lymphocyte ratio (NLR) have a role in the diagnosis of coronavirus 2019 disease (COVID-19)? Revis Assoc Méd Brasileira. 2020;66(6):746-51. doi: 10.1590/1806-9282.66.6.746.

Sun S, Cai X, Wang H, He G, Lin Y, et al. Abnormalities of peripheral blood system in patients with COVID-19 in Wenzhou, China. Clin Chim Acta. 2020; 507: 174-180. doi: 10.1016/j. cca.2020.04.024.

Ertem AG, Yayla C, Acar B, Kirbas O, Unal S, et al. Relation between lymphocyte to monocyte ratio and short-term mortality in patients with acute pulmonary embolism. Clin Resp J. 2018;12(2):580- 6. doi: 10.1111/crj.12565.

Yayla Ç, Akboğa MK, Yayla KG, Ertem AG, Efe TH, et al. A novel marker of inflammation in patients with slow coronary flow: lymphocyte-tomonocyte ratio. Biomark Med. 2016;10(5):485-93. doi: 10.2217/bmm-2016-0022.

Lattanzi S, Cagnetti C, Provinciali L, Silvestrini M. Neutrophil-to-lymphocyte ratio and neurological deterioration following acute cerebral hemorrhage. Oncotarget. 2017;8(34):57489-94. doi: 10.18632/oncotarget.15423.

Yu S, Arima H, Bertmar C, Clarke S, Herkes G, Krause M. Neutrophil to lymphocyte ratio and early clinical outcomes in patients with acute ischemic stroke. J Neurol Sci. 2018;387:115-8. doi: 10.1016/j.jns.2018.02.002.

Dotsenko O, Chaturvedi N, Thom SAM, Wright AR, Mayet J, et al. Platelet and leukocyte activation, atherosclerosis and inflammation in European and South Asian men. J Throm Haemost. 2007;5(10):2036-42. doi: 10.1111/j.1538- 7836.2007.02711.x.

Qu R, Ling Y, Zhang YHZ, Wei LY, Chen X, et al. Platelet‐to‐lymphocyte ratio is associated with prognosis in patients with coronavirus disease‐19. J Med Virol. 2020;92(9):1533-41. doi: 10.1002/ jmv.25767.

Giannis D, Ziogas IA, Gianni P. Coagulation disorders in coronavirus infected patients: COVID-19, SARS-CoV-1, MERS-CoV and lessons from the past. J Clin Virol. 2020;127:104362. doi: 10.1016/j.jcv.2020.104362.

Grillet F, Behr J, Calame P, Aubry S, Delabrousse E. Acute pulmonary embolism associated with COVID-19 pneumonia detected with pulmonary CT angiography. Radiology. 2020;296(3):E186-E188. doi: 10.1148/ radiol.2020201544.

Xu Z, Shi L, Wang Y, Zhang J, Huang L, et al. Pathological findings of COVID-19 associated with acute respiratory distress syndrome. Lancet Resp Med. 2020;8(4):420-2. doi: 10.1016/S2213- 2600(20)30076-X.

Wang D, Yin Y, Hu C, Liu X, Zhang X, et al. Clinical course and outcome of 107 patients infected with the novel coronavirus, SARS-CoV-2, discharge from two hospitals in Wuhan, China. Crit Care. 2020; 24 (1): 188. doi: 10.1186/s13054-020-02895-6.

Di Micco P, Russo V, Carannante N, Imparato M, Rodolfi S, et al. Clotting factors in COVID-19: Epidemiological association and prognostic values in different clinical presentations in an Italian cohort. J Clin Med. 2020;9(5):1371. doi: 10.3390/jcm9051371.

Pepys MB, Hirschfield GM. C-reactive protein: a critical update. J Clin Inves. 2003;111(12):1805-12.doi: 10.1172/jci18921

Tan C, Huang Y, Shi F, Tan K, Ma Q, et al. C‐ reactive protein correlates with computed tomographic findings and predicts severe COVID‐19 early. J Med Virol. 2020;92(7):856-62. doi: 10.1002/jmv.25871.

Wang L. C-reactive protein levels in the early stage of COVID-19. Méd Maladies Inf. 2020;50(4):332-4. doi: 10.1016/j.medmal.2020.03.007.

Yap FHY, Joynt GM, Buckley TA, Wong ELY. Association of serum albumin concentration and mortality risk in critically ill patients. Anaesth Intensive Care. 2002;30(2):202-7. doi: 10.1177/0310057X0203000213

Alves FC, Sun J, Qureshi AR, Dai L, Snaedal S, et al. The higher mortality associated with low serum albumin is dependent on systemic inflammation in end-stage kidney disease. PLoS One. 2018;13(1):e0190410. doi: 10.1371/journal. pone.0190410.

Li Y, Liu FY, Liu ZH, Huang YF, Li LS, et al. Effect of tacrolimus and cyclosporine A on suppression of albumin secretion induced by inflammatory cytokines in cultured human hepatocytes. Inflam Res. 2006;55(5):216-20. doi: 10.1007/S00011-006- 0074-0.

Huang W, Li C, Wang Z, Wang H, Zhou N, et al. Decreased serum albumin level indicates poor prognosis of COVID-19 patients: Hepatic injury analysis from 2,623 hospitalized cases. China Life Sci. 2020;63(11):1678-87. doi: 10.1007/S11427-020- 1733-4.

Huang J, Cheng A, Kumar R, Fang Y, Chen G, et al. Hypoalbuminemia predicts the outcome of COVID-19 independent of age and co-morbidity. J Med Virol. 2020;92(10):2152-8. doi: 10.1002/ jmv.26003.

Duman H, Cinier G, Bakirci EM, Duman H, Simsek Z, et al. Relationship between C-reactive protein to albumin ratio and thrombus burden in patients with acute coronary syndrome. Clin App Thrombosis/ hemostasis. 2019;25:1076029618824418. doi: 10.1177/1076029618824418.

Kaplan M, Duzenli T, Tanoglu A, Guney BC, Tastan YO, et al. Presepsin: albumin ratio and C-reactive protein: albumin ratio as novel sepsisbased prognostic scores: A retrospective study. Wiener Klinische Wochenschrift 2020;132(7- 8):182-7. doi: 10.1007/S00508-020-01618-9.

Ranzani OT, Zampieri FG, Forte DN, Azevedo LCP, Park M. C-reactive protein/albumin ratio predicts 90-day mortality of septic patients. PLoS One. 2013;8(3):e59321. doi: 10.1371/journal. pone.0059321.

Llop-Talaveron J, Badia-Tahull MB, Leiva-Badosa E. An inflammation-based prognostic score, the C-reactive protein/albumin ratio predicts the morbidity and mortality of patients on parenteral nutrition. Clin Nutr. 2018;37(5):1575-83. doi: 10.1016/j.clnu.2017.08.013.

Karakoyun I, Colak A, Turken M, Altin Z, Arslan FD, et al. Diagnostic utility of C-reactive protein to albumin ratio as an early warning sign in hospitalized severe COVID-19 patients. Int Immunopharmacol. 2021;91:107285. doi: 10.1016/j. intimp.2020.107285.

Ergenç Z, Ergenç H, Araç S, Usanmaz M, Alkılınç E, Kaya G, et al. Novel biochemical prognosticindicators in COVID-19: Can CRP/albumin, urea/ albumin, andLDH/albumin ratios be used to predict mortality and length of hospitalization? Med Sci Discover. 2022;9(6):310-8. doi: 10.36472/ msd.v9i6.741.

Wang C, Horby PW, Hayden FG, Gao GF. A novel coronavirus outbreak of global health concern. Lancet 2020;395(10223):470-3. doi:10.1016/S0140- 6736(20)30185-9.

Gualdoni GA, Mayer KA, Kapsch AM, Kreuzberg K, Puck A, et al. Rhinovirus induces an anabolic reprogramming in host cell metabolism essential for viral replication. Proceedings of the National Academy of Sciences of the United States of America 2018;115(30):E7158-E7165. doi: 10.1073/ pnas.1800525115.

Driggin E, Madhavan MV, Bikdeli B, et al. Cardiovascular considerations for patients, health care workers, and health systems during the COVID-19 pandemic. J Am Coll Cardiol. 2020;75(18):2352-71. doi: 10.1016/j.jacc.2020.03.031.

Turgay Yıldırım Ö, Kaya Ş. The atherogenic index of plasma as a predictor of mortality in patients with COVID-19. Heart Lung. 2021;50(2):329-33. doi: 10.1016/j.hrtlng.2021.01.016.

Onat A, Can G, Kaya H, Hergenç G. “Atherogenic index of plasma” (log10 triglyceride/highdensity lipoprotein-cholesterol) predicts high blood pressure, diabetes, and vascular events. J Clin Lipidol. 2010;4(2):89-98. doi: 10.1016/j. jacl.2010.02.005.

Yildiz G, Duman A, Aydin H, et al. Evaluation of association between atherogenic index of plasma and intima-media thickness of the carotid artery for subclinic atherosclerosis in patients on maintenance hemodialysis. Hemodial Int. 2013;17(3):397-405. doi: 10.1111/hdi.12041.

Dobiásová M, Frohlich J, Sedová M, Cheung MC, Brown BG. Cholesterol esterification and atherogenic index of plasma correlate with lipoprotein size and findings on coronary angiography. J Lipid Res. 2011;52(3):566-71. doi: 10.1194/jlr.P011668.,

Yan B, Zou Z, Chu H, Chan G, Tsang JOL, et al. Lipidomic profiling reveals significant perturbations of intracellular lipid homeostasis in enterovirus-infected cells. Int J Mol Sci. 2019;20(23):5952. doi: 10.3390/ijms20235952.

Huang JT, Ran RX, Lv ZH, Feng LN, Ran CY, et al. Chronological changes of viral shedding in adult ınpatients with COVID-19 in Wuhan, China. Clin Inf Dis. 2020;71(16):2158-66. doi: 10.1093/cid/ ciaa631.




How to Cite

Ölmez, H., & Tosun, M. (2023). Significance of laboratory biomarkers in monitoring patients with COVID-19 pneumonia. HEALTH SCIENCES QUARTERLY, 3(1), 13–25.



Original Article

Most read articles by the same author(s)