Thoracic computed tomography measures have predictive value in the diagnosis of chronic obstructive pulmonary disease
PDF

Keywords

Chronic obstructive pulmonary disease
diagnosis
thorax computed tomography measurements
emphysema

How to Cite

Tosun, M., Ünver, E., Küpeli, A., Karavaş, E., & Aydın, S. (2022). Thoracic computed tomography measures have predictive value in the diagnosis of chronic obstructive pulmonary disease. HEALTH SCIENCES QUARTERLY, 2(4), 187–196. https://doi.org/10.26900/hsq.2.4.03

Abstract

Chronic Obstructive Pulmonary Disease (COPD) is diagnosed with pulmonary function tests (PFTs). However, since not all patients can be diagnosed with PFTs, some are diagnosed with radiological or clinical findings. The purpose of this study was to define the properties of obstructive airway disease through thoracic computed tomography (CT) and to identify the diagnostic efficacy of CT findings. A total of 160 patients who underwent PFT and thoracic CT assessment July 2018 - January 2019, were retrospectively analyzed. Based on PFT findings, patients were categorized into three groups as having normal, restrictive or obstructive airways. Age, height, weight, and body mass indexes of the groups were recorded. Pulmonary height, width, right-left hemi-diaphragm height, sterno-diaphragmatic angle and retrosternal transparent area length in axial sections were also recorded. Diagnostic efficacies of these parameters in the detection of obstructive airway disease were measured. Of the 160 patients (109 males, 51 females; mean age = 59.5), 91 (56.9) had normal PFT, 58 (36.2%) had obstructive and 11 (6.9%) had restrictive airway disease. Pulmonary height, width, sterno-diaphragmatic angle, and retrosternal transparent area length were significantly higher in patients with obstructive airway disease while the right-left hemi-diaphragm height was significantly lower (p<0.001). About 60-75% sensitivity and specificity were obtained when identifying the obstructive airway disease with these parameters. These values obtained from the axial and sagittal sections could contribute to the diagnosis of obstructive airway disease.

https://doi.org/10.26900/hsq.2.4.03
PDF

References

Patel AR, Patel AR, Singh S, Singh S, Khawaja I. Global Initiative for Chronic Obstructive Lung Disease: The Changes Made. Cureus. 2019;11(6):e4985. 2019-06-24. doi: 10.7759/cureus.4985

Rosenberg SR, Kalhan R, Mannino DM. Epidemiology of Chronic Obstructive Pulmonary Disease: Prevalence, Morbidity, Mortality, and Risk Factors. Semin Respir Crit Care Med. 2015;36(4):457–469. 2015-08-05. doi:10.1055/s-0035-1555607.

2021 GOLD Reports - Global Initiative for Chronic Obstructive Lung Disease - GOLD. Accessed September 28, 2021. https://goldcopd.org/2021-gold-reports/

Messerli M, Ottilinger T, Warschkow R, Leschka S, Alkadhi H, Wildermuth S, et al. Emphysema quantification and lung volumetry in chest X-ray equivalent ultralow dose CT - Intra-individual comparison with standard dose CT. Eur J Radiol. 2017;91:1-9. doi: 10.1016/j.ejrad.2017.03.003.

Richard Webb W. Radiology of obstructive pulmonary disease. Am J Roentgenol. 1997;169(3):637–647. doi:10.2214/ajr.169.3.9275869.

Arakawa H, Kurihara Y, Nakajima Y, Niimi H, Ishikawa T, Tokuda M. Computed Tomography Measurements of Overinflation in Chronic Obstructive Pulmonary Disease: Evaluation of Various Radiographic Signs. J Thorac Imaging. 1998;13(3):188-92. doi: 10.1097/00005382-199807000-00005.

Takasugi JE, Godwin JD. Radiology of chronic obstructive pulmonary disease. Radiol Clin North Am. 1998;36(1):29–55. doi:10.1016/S0033-8389(05)70006-3.

Kasai T, Yamada M, Narushima M, Suzuki H. [Relationship between thoracic cross-sectional area measured on CT and pulmonary function or dyspnea in patients with COPD]. Nihon Kokyuki Gakkai Zasshi. 2003;41(8):526–530.

Rizzo A, Mulshine JL. Thoracic CT screening: using routinely detectable COPD information. Clin Imaging. 2021;78:310-312. doi: 10.1016/j.clinimag.2021.04.019.

Viegi G, Pedreschi M, Pistelli F, Di Pede F, Baldacci S, Carrozzi L, et al. Prevalence of airways obstruction in a general population: European Respiratory Society vs American Thoracic Society definition. Chest. 2000 ;117(5 Suppl 2):339-345. doi: 10.1378/chest.117.5_suppl_2.339s

den Harder AM, Snoek AM, Leiner T, Suyker WJ, de Heer LM, Budde RPJ, et al. Can routine chest radiography be used to diagnose mild COPD? A nested case-control study. Eur J Radiol Eur J Radiol. 2017;92:159-165. doi: 10.1016/j.ejrad.2017.05.007.

Lakadamyalı H, Alpar S, Lakadamyalı H, Ertürk H, Kurt B. Kronik Obstrüktif Akciğer Hastalığında Yüksek Rezolüsyonlu Bilgisayarlı Tomografi Bulguları İle Solunum Fonksiyon Testleri Arasındaki Korelasyon. Türk Toraks Dergisi. 2006;7(1):17-22.

Nicklaus TM, Stowell DW, Christiansen WR, Renzetti AD. The accuracy of the roentgenologic diagnosis of chronic pulmonary emphysema. Am Rev Respir Dis. 1966;93(6):889–899. doi:10.1097/00004424-196711000-00004.

Reich SB, Weinshelbaum A, Yee J. Correlation of radiographic measurements and pulmonary function tests in chronic obstructive pulmonary disease. Am J Roentgenol. 1985;144(4):695–699. doi:10.2214/ajr.144.4.695.

Greene R. “Saber sheath” trachea: relation to chronic obstructive pulmonary disease. Am J Roentgenol. 1978;130(3):441–445. doi:10.2214/ajr.130.3.441.

Pauwels R, Buist S, Calverley P, Jenkins C, Hurd S. Global strategy for the diagnosis, management and prevention of Chronic Obstructive Pulmonary Disease. NHBLI/WHO global initiative for Chronic Obstructive Lung Disease (GOLD) workshop summary. Rev Port Pneumol. 2001;7(4–5):398–400. doi:10.1016/S0873-2159(15)30846-1.

De Torres JP, Bastarrika G, Wisnivesky JP, Alcaide AB, Campo A, Seijo LM, et al. Assessing the relationship between lung cancer risk and emphysema detected on low-dose CT of the chest. Chest. 2007;132(6):1932–1938. doi:10.1378/chest.07-1490.

Mets OM, Schmidt M, Buckens CF, Gondrie MJ, Isgum I, Oudkerk M, et al. Diagnosis of chronic obstructive pulmonary disease in lung cancer screening Computed Tomography scans: independent contribution of emphysema, air trapping and bronchial wall thickening. Respir Res. 2013;14(1):59. doi: 10.1186/1465-9921-14-59.

Bergin C, Muller N, Nichols DM. The diagnosis of emphysema. A computer tomographic-pathologic correlation. Am Rev Respir Dis. 1986;133(4):541–546. doi:10.1164/arrd.1986.133.4.541.

Hruban RH, Meziane MA, Zerhouni EA, Khouri NF, Fishman EK, Wheeler PS, et al. High resolution computed tomography of inflation-fixed lungs. Pathologic-radiologic correlation of centrilobular emphysema. Am Rev Respir Dis. 1987;136(4):935–940. doi:10.1164/ajrccm/136.4.935.

Kuwano K, Matsuba K, Ikeda T, Murakami J, Araki A, Nishitani H, et al. The diagnosis of mild emphysema. Correlation of computed tomography and pathology scores. Am Rev Respir Dis. 1990;141(1):169–178. doi:10.1164/ajrccm/141.1.169.

Konietzke P, Wielpütz MO, Wagner WL, Wuennemann F, Kauczor HU, Heussel CP, et al. Quantitative CT detects progression in COPD patients with severe emphysema in a 3-month interval. Eur Radiol. 2020;30(5):2502-2512. doi: 10.1007/s00330-019-06577-y.

Schroeder JD, McKenzie AS, Zach JA, Wilson CG, Curran-Everett D, Stinson DS, et al. Relationships between airflow obstruction and quantitative CT measurements of emphysema, air trapping, and airways in subjects with and without chronic obstructive pulmonary disease. AJR Am J Roentgenol. 2013;201(3):W460-70. doi: 10.2214/AJR.12.10102.

Sakai F, Gamsu G, Im JG, Ray CS. Pulmonary function abnormalities in patients with CT-determined emphysema. J Comput Assist Tomogr. 1987;11(6):963–968. doi:10.1097/00004728-198711000-00007.

Morgan MDL. Detection and quantification of pulmonary emphysema by computed tomography: A window of opportunity. Thorax. 1992;47(12):1001–1004. doi:10.1136/thx.47.12.1001.

Nakano Y, Muro S, Sakai H, Hirai T, Chin K, Tsukino M, et al. Computed tomographic measurements of airway dimensions and emphysema in smokers correlation with lung function. Am J Respir Crit Care Med. 2000;162(3 I):1102–1108. doi:10.1164/ajrccm.162.3.9907120.

Hightower JS, Amadi C, Den E, Schmitt JE, Shah RM, Miller WT. Back to the future: sagittal CT in the evaluation of COPD. Eur Radiol. 2016;26(8):2730–2739. doi:10.1007/s00330-015-4094-4.

Han M, Steenrod A, Bacci E, Leidy N, Mannino D, Thomashow B, et al. Identifying Patients with Undiagnosed COPD in Primary Care Settings: Insight from Screening Tools and Epidemiologic Studies. Chronic Obstr Pulm Dis. 2015;2(2):103-121. doi: 10.15326/jcopdf.2.2.2014.0152.

Lange P, Ahmed E, Lahmar ZM, Martinez FJ, Bourdin A. Natural history and mechanisms of COPD. Respirology. 2021;26(4):298-321. doi: 10.1111/resp.14007.

Gurney JW, Jones KK, Robbins RA, Gossman GL, Nelson KJ, Daughton D, et al. Regional distribution of emphysema: Correlation of high-resolution CT with pulmonary function tests in unselected smokers. Radiology. 1992;183(2):457–463. doi:10.1148/radiology.183.2.1561350.

Mohamed Hoesein FAA, de Jong PA, Lammers JWJ, Mali WPTM, Mets OM, Schmidt M, et al. Contribution of CT quantified emphysema, air trapping and airway wall thickness on pulmonary function in male smokers with and without COPD. COPD. 2014;11(5):503-9. doi: 10.3109/15412555.2014.933952.

Hackx M, Bankier AA, Gevenois PA. Chronic obstructive pulmonary disease: CT quantification of airways disease. Radiology. 2012;265(1):34-48. doi: 10.1148/radiol.12111270.

Nambu A, Zach J, Schroeder J, Jin G, Kim SS, Kim Y IL, et al. Quantitative computed tomography measurements to evaluate airway disease in chronic obstructive pulmonary disease: Relationship to physiological measurements, clinical index and visual assessment of airway disease. Eur J Radiol. 2016;85(11):2144-2151. doi: 10.1016/j.ejrad.2016.09.010.

Creative Commons License

This work is licensed under a Creative Commons Attribution 4.0 International License.

Copyright (c) 2022 Holistence Publications

Downloads

Download data is not yet available.