The link between cord blood IL-1β, TLR4, PGE2 and TAC values with neonatal diseases


Abstract views: 255 / PDF downloads: 233

Authors

DOI:

https://doi.org/10.26900/hsq.1.3.03

Keywords:

Neonatal, umbilical cord blood, IL-1β, TLR4, PGE2, TAC

Abstract

Premature birth is an important cause of neonatal mortality and neonatal morbidity. Most premature births are known to be induced by cytokines released for different reasons. Inadequate congenital immune response in premature infants may contribute to increased susceptibility to infection. The aim of the study is to determine the IL-1β, TLR4, PGE2, and TAC profiles in cord blood with characteristics specific to pregnancy and the correlation with neonatal complications caused by premature birth. The study included 26 neonates, 11 girls and 15 boys, born from 24-42 weeks of gestation. Of these, 13 were term and 13 were preterm . For IL-β, PG-E2, TLR4 and TAC levels, 1 mL of cord blood sample was taken from preterm and term neonates. Data related to demographic data, clinical status of patients and outcomes were obtained from electronic medical records and files. Cytokine values obtained from premature neonates were statistically high in terms of TLR4, IL1 and PGE2 compared to term infants. The TRL4 and IL1 values for premature infants with necrotizing enterocolitis and retinopathy of prematurity were lower compared to those without NEC and ROP. In spite of negative correlations between TAC and the other three cytokines, a statistically significant correlation was not identified. TLR4, IL1 and PGE2 were negatively correlated with weight and gestational week, contrarily TAC measurements were positively correlated with weight and gestational week. Measurements of cytokine concentrations in cord blood are among important biomarkers showing degree of inflammation and may assist in predicting neonatal complications and play an effective role in development of specific treatments.

Downloads

Download data is not yet available.

Author Biography

Aynur Karadag Gurel, Usak Universty/Turkey

Assist. Prof. Dr. 

References

Janeway CA, Medzhitov R. Innate immune recognition. Annu Rev Immunol. 2002;20:197-216. doi: 10.1146/annurev.immunol.20.083001.084359.

Kucukgul S, Ozkan ZS, Yavuzkir S, Ilhan N. Investigation of the maternal and cord plasma levels of IL-1 beta, TNF-alpha and VEGF in early membrane rupture. J Matern Fetal Neonatal Med. 2016;29(13): 2157-60. doi: 10.3109/14767058.2015.1077511.

Condò V, Cipriani S, Colnaghi M, Bellù R, Zanini R, Bulfoni C, et al. Neonatal respiratory distress syndrome: Are risk factors the same in preterm and term infants? J Matern Fetal Neonatal Med. 2017;30(11):1267-72. doi: 10.1080/14767058.2016.1210597.

Siljehav V, Hofstetter AM, Leifsdottir K, Herlenius EJ. Prostaglandin E2 mediates cardiorespiratory disturbances during infection in neonates. Pediatr. 2015;167(6):1207-13. doi: 10.1016/j.jpeds.2015.08.053.

Dinarello CA. IL-1: Discoveries, controversies and future directions. Eur J Immunol. 2010;40(3):599-606. doi: 10.1002/eji.201040319.

Dinarello CA. Biologic basis for interleukin-1 in disease. Blood.1996;87(6):2095-147. doi: 10.1182/blood.V87.6.2095.

Ucar B, Yildiz B, Aksit MA, Yarar C, Colak O, Akbay Y, et al. Serum amyloid A, procalcitonin, tumor necrosis factor-alpha, and interleukin-1beta levels in neonatal late-onset sepsis. Mediators Inflamm. 2008;2008:737141. doi: 10.1155/2008/737141.

Gurel S, Erel O. The relevant relationship between umbilical cord blood gas and acid base analysis and dynamic thiol(Sh)/disulphide (S-S) balance in neonatal babies with different perinatal risks and newborn diseases. Iran J Pediatr. 2020;30(4):102793. doi: 10.5812/ijp.102793.

Ozsurekci Y, Aykac K. Oxidative stress related diseases in newborns. Oxid Med Cell Longev. 2016:2768365. doi: 10.1155/2016/2768365.

Deniz A, Aydemir O, Saglik AC, Sekili Z, Kiraz ZK, Kar E, et al. Evaluation of total antioxidant capacity and total oxidant status of preterm and term breast milk during the course of lactation and within a nursing session. Am J Perinatol. 2021;38(3):258-64. doi:10.1055/s-0039-1696715.

Yan H, Li H, Zhu L, Gao J, Li P, Zhang Z. Increased TLR4 and TREM-1 expression on monocytes and neutrophils in preterm birth: Further evidence of a proinflammatory state. J Matern Fetal Neonatal Med. 2019;32(18):2961-9. doi: 10.1080/14767058.2018.1452903.

Kollmann TR, Crabtree J, Rein-Weston A, Blimkie D, Thommai F, Wang XY, et al. Neonatal innate TLR-mediated responses are distinct from those of adults. J Immunol. 2009;183(11):7150-60. doi: 10.4049/jimmunol.0901481.

Takahashi N, Uehara R, Kobayashi M, Yada Y, Koike Y, Kawamata R, et al. Cytokine profiles of seventeen cytokines, growth factors and chemokines in cord blood and its relation to perinatal clinical findings. Cytokine. 2010;49(3):331-7. doi: 10.1016/j.cyto.2009.11.024.

Erel O. A novel automated direct measurement method for total antioxidant capacity using a new generation, more stable ABTS radical cation. Clin Biochem. 2004;37(4):277-85. doi:10.1016/j. clinbiochem.2003.11.015.

American Academy of Pediatrics Committee on Fetus and Newborn. American College of Obstetricians and Gynecologists Committee on Obstetric Practice. The apgar score. Pediatr. 2015;136(4):819-22. doi:10.1542/peds.2015-2651.

Bell MJ, Ternberg JL, Feigin RD, Keating JP, Marshall R, Barton L, et al. Neonatal necrotizing enterocolitis. Therapeutic decisions based upon clinical staging. Ann Surg. 1978;187(1):1-7. doi:10.1097/00000658-197801000-00001.

International Committee for the Classification of Retinopathy of Prematurity. The international classification of retinopathy of prematurity revisited. Arch Ophthalmol. 2005;123(7):991-9. doi: 10.1001/archopht.123.7.991.

Kliegman RM, Schor NF, Game JW, Stanton BF. Reference intervals. Nelson Textbook of Pediatrics. P:2466.e6 Philedelphia, PA, USA: Elsevier. 2016.

Huang HC, Wang CL, Huang LT, Chuang H, Liu CA, Hsu TY, et al. Association of cord blood cytokines with prematurity and cerebral palsy. Early Hum Dev. 2004;77(1-2):29-36. doi: 10.1016/j.earlhumdev.2004.01.001.

Otsubo Y, Hashimoto K, Kanbe T, Sumi M, Moriuchi H. Association of cord blood chemokines and other biomarkers with neonatal complications following intrauterine inflammation. PLoS ONE. 2017;12(5):0175082. doi: 10.1371/journal.pone.0175082.

Robertson SA, Wahid HH, Chin PY, Hutchinson MR, Moldenhauer LM, Keelan JA. Toll-like receptor-4: A new target for preterm labour pharmacotherapies? Curr Pharm Des. 2018;24(9):960-73. doi: 10.2174/1381612824666180130122450.

Shen CM, Lin SC, Niu DM, Kou YR. Development of monocyte Toll-like receptor 2 and Toll-like receptor 4 in preterm newborns during the first few months of life. Pediatr Res. 2013;73(5):685-91. doi: 10.1038/pr.2013.36.

Mathias B, Mira JC, Rehfuss JP, Rincon JC, Ungaro R, Nacionales DC, et al. LPS stimulation of cord blood reveals a newborn-specific neutrophil transcriptomic response and cytokine production. Shock. 2017;47(5):606-14. doi: 10.1097/SHK.0000000000000800.

Agostiniani R, Mariotti P, Cataldi L, Fanos V, Sani S, Zaccaron A, et al. Role of renal PGE2 in the adaptation from foetal to extrauterine life in term and preterm infants. Prostaglandins Leukot Essent Fatty Acids. 2002;67(6):373-7. doi: 10.1054/plef.2002.0444.

Yoon BH, Romero R, Jun JK, Park KH, Park JD, Ghezzi F, et al. Amniotic fluid cytokines (interleukin-6, tumor necrosis factoralpha, interleukin-1 beta, and interleukin-8) and the risk for the development of bronchopulmonary dysplasia. Am J Obstet Gynecol. 1997;177(4):825-30. doi: 10.1016/s0002-9378(97)70276-x.

Narendran V, Visscher MO, Abril I, Hendrix SW, Hoath SB. Biomarkers of epidermal innate immunity in premature and full-term infants. Pediatr Res. 2010;67(4):382-6. doi: 10.1203/PDR.0b013e3181d00b73.

Huertas JR, Palomino N, Ochoa JJ, Quiles JL, Ramírez-Tortosa MC, Battino M, et al. Lipid peroxidation and antioxidants in erythrocyte membranes of full-term and preterm newborns. Biofactors. 1998;8(1-2):133-7. doi:10.1002/biof.5520080122.

Dizdar EA, Uras N, Oguz S, Erdeve O, Sari FN, Aydemir C, et al. Total antioxidant capacity and total oxidant status after surfactant treatment in preterm infants with respiratory distress syndrome. Ann Clin Biochem. 2011;48(5):462-7. doi:10.1258/acb.2011.010285.

Georgeson GD, Szony BJ, Streitman K, Varga IS, Kovács A, Kovács L, et al. Antioxidant enzyme activities are decreased in preterm infants and in neonates born via caesarean section. Eur J Obstet Gynecol Reprod Biol. 2002;103(2):136-9. doi: 10.1016/s0301-2115(02)00050-7.

Santana C, Guindeo MC, González G, García-Muñoz F, Saavedra P, Doménech E. Cord blood levels of cytokines as predictors of early neonatal sepsis. Acta Paediatr. 2001;90(10):1176-81. doi: 10.1080/080352501317061602.

Ozdemir A, Oygür N, Gultekin M, Coskun M, Yegin O. Neonatal tumor-necrosis-factor, interleukin-1-Alpha, interleukin-1- beta, and interleukin-6 response to infection. Am J Perinatol. 1994;11(4):282-5. doi: 10.1055/s-2007-994592.

Atici A, Satar M, Alparslan N. Serum interleukin‐1β in neonatal sepsis. Acta Pædiatr. 1996;85:371-4. doi: 10.1111/j.1651-2227.1996.tb14036.x.

Levy E, Xanthou G, Petrakou E, Zacharioudaki V, Tsatsanis C, Fotopoulos S, et al. Distinct roles of TLR4 and CD14 in LPSinduced inflammatory responses of neonates. Pediatr Res. 2009;66(2):179-84. doi: 10.1203/PDR.0b013e3181a9f41b.

Fan F, Ma A, Guan Y, Huo J, Hu Z, Tian H, et al. Effect of PGE2 on DA tone by EP4 modulating Kv channels with different oxygen tension between preterm and term. Int J Cardiol. 2011;147(1):58-65. doi: 10.1016/j.ijcard.2009.07.045.

Steinborn A, von Gall C, Hildenbrand R, Stutte HJ, Kaufmann MA. Identification of placental cytokine-producing cells in term and preterm labor. Obstet Gynecol. 1998;91(3):329-35. doi:10.1016/s0029-7844(97)00680-7.

Hasegawa-Nakamura K, Tateishi F, Nakamura T, Nakajima Y, Kawamata K, Douchi T, et al. The possible mechanism of preterm birth associated with periodontopathic Porphyromonas gingivalis. J Periodontal Res. 2011;46(4):497-504. doi: 10.1111/j.1600-0765.2011.01366.x.

Molloy EJ, O’Neill AJ, Grantham JJ, Sheridan-Pereira M, Fitzpatrick JM, Webb DW, et al. Labor promotes neonatal neutrophil survival and lipopolysaccharide responsiveness. Pediatr Res. 2004;56(1):99-103. doi: 10.1203/01. PDR.0000130473.30874.B6.

Goepfert AR, Andrews WW, Carlo W, Ramsey PS, Cliver SP, Goldenberg RL, et al. Umbilical cord plasma interleukin-6 concentrations in preterm infants and risk of neonatal morbidity. Am J Obstet Gynecol. 2004;191(4):375-81. doi: 10.1016/j.ajog.2004.06.086.

Satar M, Turhan E, Yapicioglu H, Narli N, Ozgunen FT, Cetiner S. Cord blood cytokine levels in neonates born to mothers with prolonged premature rupture of membranes and its relationship with morbidity and mortality. Eur Cytokine Netw. 2008;19(1):37-41. doi: 10.1684/ecn.2008.0118.

Yazji I, Sodhi CP, Lee EK, Good M, Egan CE, Afrazi A, et al. Endothelial TLR4 activation impairs intestinal microcirculatory perfusion in necrotizing enterocolitis via eNOS-NO-nitrite signaling. Proc Natl Acad Sci USA. 2013;110(23):9451-6. doi: 10.1073/pnas.1219997110.

Downloads

Published

2021-10-15

How to Cite

Gurel, S., & Karadag Gurel, A. (2021). The link between cord blood IL-1β, TLR4, PGE2 and TAC values with neonatal diseases. HEALTH SCIENCES QUARTERLY, 1(3), 101–109. https://doi.org/10.26900/hsq.1.3.03

Issue

Section

Original Article