A STUDY ON THE SUMS OF SQUARES OF GENERALIZED TRIBONACCI NUMBERS: CLOSED FORM FORMULAS OF ∑_{k=0}ⁿkx^{k}W_{k}²
Abstract views: 226 / PDF downloads: 303
DOI:
https://doi.org/10.26900/jsp.5.1.02Keywords:
Sums of squares, third order recurrence,, generalized Tribonacci numbers, Padovan numbers , Perrin numbers, Narayana numbersAbstract
In this paper, closed forms of the sum formulas ∑_{k=0}ⁿkx^{k}W_{k}², ∑_{k=0}ⁿkx^{k}W_{k+2}W_{k} and ∑_{k=0ⁿkx^{k}W_{k+1}W_{k} for the squares of generalized Tribonacci numbers are presented. As special cases, we give summation formulas of Tribonacci, Tribonacci-Lucas, Padovan, Perrin numbers and the other third order recurrence relations.
2020 Mathematics Subject Classication. 11B39, 11B83.
Downloads
References
Bruce, I., A modified Tribonacci sequence, Fibonacci Quarterly, 22(3), 244--246, 1984.
Catalani, M., Identities for Tribonacci-related sequences, arXiv:math/0209179, 2012.
Čerin, Z., Formulae for sums of Jacobsthal--Lucas numbers, Int. Math. Forum, 2(40), 1969--1984, 2007.
Čerin, Z., Sums of Squares and Products of Jacobsthal Numbers. Journal of Integer Sequences, 10, Article 07.2.5, 2007.
Chen, L., Wang, X., The Power Sums Involving Fibonacci Polynomials and Their Applications, Symmetry, 11, 2019, doi.org/10.3390/sym11050635.
Choi, E., Modular Tribonacci Numbers by Matrix Method, Journal of the Korean Society of Mathematical Education Series B: Pure and Applied. Mathematics. 20(3), 207--221, 2013.
Elia, M., Derived Sequences, The Tribonacci Recurrence and Cubic Forms, Fibonacci Quarterly, 39 (2), 107-115, 2001.
Frontczak, R.,Sums of powers of Fibonacci and Lucas numbers: A new bottom-up approach, Notes on Number Theory and Discrete Mathematics, 24(2), 94--103, 2018.
Frontczak, R., Sums of Cubes Over Odd-Index Fibonacci Numbers, Integers, 18, 2018.
Gnanam, A., Anitha, B., Sums of Squares Jacobsthal Numbers. IOSR Journal of Mathematics, 11(6), 62-64. 2015.
Kiliç, E., Taşçi, D., The Linear Algebra of The Pell Matrix, Boletín de la Sociedad Matemática Mexicana, 3(11), 2005.
Kılıc, E., Sums of the squares of terms of sequence {u_{n}}, Proc. Indian Acad. Sci. (Math. Sci.) 118(1), 27--41, 2008.
Lin, P. Y., De Moivre-Type Identities For The Tribonacci Numbers, Fibonacci Quarterly, 26, 131-134, 1988.
Pethe, S., Some Identities for Tribonacci sequences, Fibonacci Quarterly, 26(2), 144--151, 1988.
Prodinger, H., Sums of Powers of Fibonacci Polynomials, Proc. Indian Acad. Sci. (Math. Sci.), 119(5), 567-570, 2009.
Prodinger, H., Selkirk, S.J., Sums of Squares of Tetranacci Numbers: A Generating Function Approach, 2019, http://arxiv.org/abs/1906.08336v1.
Raza, Z., Riaz, M., Ali, M.A., Some Inequalities on the Norms of Special Matrices with Generalized Tribonacci and Generalized Pell-Padovan Sequences, arXiv, 2015, http://arxiv.org/abs/1407.1369v2
Schumacher, R., How to sum the squares of the Tetranacci numbers and the Fibonacci m-step numbers. Fibonacci Quarterly, 57:168--175, 2019.
Scott, A., Delaney, T., Hoggatt Jr., V., The Tribonacci sequence, Fibonacci Quarterly, 15(3), 193--200, 1977.
Shannon, A.G, Horadam, A.F., Some Properties of Third-Order Recurrence Relations, The Fibonacci Quarterly, 10 (2), 135-146, 1972.
Shannon, A., Tribonacci numbers and Pascal's pyramid, Fibonacci Quarterly, 15(3), pp. 268 and 275, 1977.
N.J.A. Sloane, The on-line encyclopedia of integer sequences, http://oeis.org/
Spickerman, W., Binet's formula for the Tribonacci sequence, Fibonacci Quarterly, 20, 118--120, 1982.
Soykan, Y., Closed Formulas for the Sums of Squares of Generalized Fibonacci Numbers, Asian Journal of Advanced Research and Reports, 9(1), 23-39, 2020. https://doi.org/10.9734/ajarr/2020/v9i130212
Soykan Y., Closed Formulas for the Sums of Cubes of Generalized Fibonacci Numbers: Closed Formulas of and ∑_{k=0}ⁿW_{k}³ and ∑_{k=1}ⁿW_{-k}³, Archives of Current Research International, 20(2), 58-69, 2020. DOI: 10.9734/ACRI/2020/v20i230177
Soykan, Y., A Closed Formula for the Sums of Squares of Generalized Tribonacci numbers, Journal of Progressive Research in Mathematics, 16(2), 2932-2941, 2020.
Soykan, Y., A Study On Sums of Cubes of Generalized Fibonacci Numbers: Closed Formulas of ∑_{k=0}ⁿx^{k}W_{k}³ and ∑_{k=1}ⁿx^{k}W_{-k}³ , Preprints 2020, 2020040437 (doi: 10.20944/preprints202004.0437.v1).
Soykan Y., On Sums of Cubes of Generalized Fibonacci Numbers: Closed Formulas of ∑_{k=0}ⁿkW_{k}³ and ∑_{k=1}ⁿkW_{-k}³, Asian Research Journal of Mathematics, 16(6), 37-52, 2020. DOI: 10.9734/ARJOM/2020/v16i630196
Soykan, Y., On the Sums of Squares of Generalized Tribonacci Numbers: Closed Formulas of ∑_{k=0}ⁿx^{k}W_{k}², Archives of Current Research International, 20(4), 22-47, 2020. DOI: 10.9734/ACRI/2020/v20i430187
Soykan, Y., Formulae For The Sums of Squares of Generalized Tribonacci Numbers: Closed Form Formulas of ∑_{k=0}ⁿkW_{k}², IOSR Journal of Mathematics, 16(4), 1-18, 2020. DOI: 10.9790/5728-1604010118
Soykan, Y., A Study on Generalized Fibonacci Numbers: Sum Formulas ∑_{k=0}ⁿkx^{k}W_{k}³ and ∑_{k=1}ⁿkx^{k}W_{-k}³ for the Cubes of Terms, Earthline Journal of Mathematical Sciences, 4(2), 297-331, 2020. https://doi.org/10.34198/ejms.4220.297331
Soykan Y., Generalized Fibonacci Numbers: Sum Formulas of the Squares of Terms, MathLAB Journal, Vol 5, 46-62, 2020.
Soykan, Y., Horadam Numbers: Sum of the Squares of Terms of Sequence, Int. J. Adv. Appl. Math. and Mech. In Presss.
Soykan, Y., On Generalized Tetranacci Numbers: Closed Form Formulas of the Sum ∑_{k=0}ⁿW_{k}² of the Squares of Terms, Preprints 2020, 2020050453 (doi: 10.20944/preprints202005.0453.v1).
Yalavigi, C.C., A Note on `Another Generalized Fibonacci Sequence', The Mathematics Student. 39, 407--408, 1971.
Yalavigi, C. C., Properties of Tribonacci numbers, Fibonacci Quarterly, 10(3), 231--246, 1972.
Yilmaz, N., Taskara, N., Tribonacci and Tribonacci-Lucas Numbers via the Determinants of Special Matrices, Applied Mathematical Sciences, 8(39), 1947-1955, 2014.
Marcellus E. Waddill, Using Matrix Techniques to Establish Properties of a Generalized Tribonacci Sequence (in Applications of Fibonacci Numbers, Volume 4, G. E. Bergum et al., eds.). Kluwer Academic Publishers. Dordrecht, The Netherlands: pp. 299-308, 1991.
Wamiliana., Suharsono., Kristanto, P. E., Counting the sum of cubes for Lucas and Gibonacci Numbers, Science and Technology Indonesia, 4(2), 31-35, 2019.
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2021 Holistence Publications
This work is licensed under a Creative Commons Attribution 4.0 International License.
When the article is accepted for publication in the HSQ authors transfer all copyright in the article to the Holistence Academy Ar-Ge Yazılım Yayıncılık Eğitim Danışmanlık ve Organizasyon Ticaret Ltd. Şti.The authors reserve all proprietary right other than copyright, such as patent rights.
Everyone who is listed as an author in this article should have made a substantial, direct, intellectual contribution to the work and should take public responsibility for it.
This paper contains works that have not previously published or not under consideration for publication in other journals.