Investigation of Plant and Animal Production Values Affecting Consumer Price Index by Multivariate Adaptive Regression Spline: Turkey Case


Abstract views: 269 / PDF downloads: 242

Authors

  • Şenol ÇELİK Bingöl University/TURKEY
  • Turgay ŞENGÜL Bingöl University/TURKEY
  • A. Yusuf ŞENGÜL Bingöl University/TURKEY
  • Hakan İNCİ Bingöl University/TURKEY

DOI:

https://doi.org/10.26809/joa.2018548651

Keywords:

MARS, Genel çapraz geçerlilik, TÜFE, bitkisel ve hayvansal üretim

Abstract

In this study, the outcomes and interpretation of plant and animal production values affecting the consumer price index in Turkey (CPI) were investigated using MARS algorithm. In order to estimate CPI, plant production value (1000 TL), animal production value (1000 TL), livestock value (1000 TL), plant production per capita (TL), animal production per capita (TL), livestock value per capita (TL) variables for 81 provinces in Turkey were used. The compliance criteria were: correlation coefficient r = 0.975, R2 = 0.95, Adj. R2 = 0.867, GCV = 0.0187, RSS = 1.513, RMSE = 0.137, SDratio = 0.224, MAPE = 1.228, MAD = 0.11, AIC = -222 and AICc = -52. The most significant variables affecting CPI in the increasing direction are basic functions where per capita plant production value (PCPPV) is < 3268 liras, per capita plant production value (PCPPV) is > 1887 liras and per capita livestock value (PCLSV) is > 1766 liras. The most significant variables affecting CPI in the negative direction are basic functions where per capita plant production value (PCPPV) is > 3268 liras, per capita livestock value (PCLSV) is > 1143 liras, and per capita livestock value (PCLSV) is > 1972 liras, respectively. According to these results, it was found that MARS model where interactive variables are also used is an important predictive model for determining the effect of plant and animal production values on other factors.

Downloads

Download data is not yet available.

References

AYVALI, M. 2017. Tüketici Fiyat Endeksi-TÜFE Nedir?
http://www.bireyselyatirimci.com/tuketici-fiyatlari-endeksi-tufe-nedir/
BRİAND, L.C, FREIMUT, B., VOLLEI, F. 2000. IESE; Using Multiple Adaptive Regresyon Splines to Understand Trends in İnspection Data And İdentify Optimal Inspection Rates‖, Software Engineering Research Network Technical Report, Germany, 5-10.
CHEN, I. F., LEE, T. A. 2005. Two-Stage Credit Scoring Model Using Artificial Neural Networks and Multivariate Adaptive Regression Splines, Elsevier, 28:743-752.
DEICHMAN, J., ESHGI, A., HAUGHTON, D., SAYEK, S., TEEBAGY, N. 2002. Application of Multiple Adaptive Regression Splines (MARS) in Direct Response Modelling, Journal of Interactive Marketing, 16:15-27.
FRIEDMAN, J. H. 1991. Multivariate Adaptive Regression Splines, Annals of Statistics, 19(1):1-67.
HASTIE, T., TIBSHIRANI, R., FRIEDMAN, J. 2001. The Elements of Statistic al Learning; Data mining, Inference and Prediction. Springer Verlag, New York.
HILL, T., LEWICHI, P. 2006. Statistics Methods and Applications. A Comprehensive Reference for Science, Industry and Data Mining. StatSoft, Inc., USA. ISBN:1- 884233-59-7.
KAKİ, B.,YEŞİLOVA, A. ŞEN, C. 2004. Yarı Parametrik Regresyon Yönteminin Hayvancılıkta Kullanılması, 4. Ulusal Zootekni Bilim Kongresi Sözlü Bildiriler Programı, Van, 26-32.
OĞUZ, A. 2014. Çok değişkenli uyarlanabilir regresyon zincirlerinin irdelenmesi ve bir uygulama. Erzincan Üniversitesi Fen Bilimleri Enstitüsü. Yüksek Lisans Tezi, Erzincan.
TUNAY, K. B. 2001. Türkiye‘de Paranın Gelir Dolaşım Hızlarının MARS Yöntemiyle Tahmini. METU Studies in Development, Ankara, 28(2):1-23.
TURAN, Z., ŞANVER, D., ÖZTÜRK, K. 2017. Türkiye’de hayvancılık sektöründen süt inekçiliğinin önemi ve yurt içi hasılaya katkısı ve de dış ülkelerle karşılaştırılması. Ömer Halisdemir Üniversitesi İktisadi ve İdari Bilimler Fakültesi Dergisi, 10(3):60- 74.
TÜİK, 2016. Bölgesel İstatistikler. Tarımsal Üretim Değeri.
https://biruni.tuik.gov.tr/bolgeselistatistik/degiskenlerUzerindenSorgula.do?durum=ac kapa&menuNo=191&altMenuGoster=1&secilenDegiskenListesi=#
TÜİK, 2017a. Bitkisel ve Hayvansal Üretim Değerleri. Bitkisel Üretim Değeri.
https://www.gidahatti.com/turkiyenin-bitkisel-uretim-degeri-1352-milyar-tl-98674/
TÜİK, 2017b. Bitkisel ve Hayvansal Üretim Değerleri. Hayvansal Üretim Değeri.
https://www.gidahatti.com/hayvansal-uretim-70-milyara-dayandi-100360/

Published

2018-12-31

How to Cite

ÇELİK, Şenol, ŞENGÜL, T., ŞENGÜL, A. Y., & İNCİ, H. (2018). Investigation of Plant and Animal Production Values Affecting Consumer Price Index by Multivariate Adaptive Regression Spline: Turkey Case. JOURNAL OF AWARENESS, 3(Özel Sayı), 399–408. https://doi.org/10.26809/joa.2018548651

Issue

Section

Research Articles