Quantum-Enhanced Conformal Methods for Multi-Output Uncertainty: A Holistic Exploration and Experimental Analysis


DOI:
https://doi.org/10.70447/ktve.2702Keywords:
Quantum Computing, Conformal Prediction, Multi-Output Regression, Distribution- Free Coverage, Multi-Basis Measurement, Quantum Machine Learning.Abstract
Quantum computing introduces unique forms of randomness arising from measurement processes, gate noise, and hardware imperfections. Ensuring reliable uncertainty quantifi- cation in such quantum-driven or quantum-derived predictions is an emerging challenge. In classical machine learning, conformal prediction has proven to be a robust frame- work for distribution-free uncertainty calibration, often focusing on univariate or low- dimensional outputs. Recent advances have extended conformal methods to handle multi-output or multi-dimensional responses, addressing sophisticated tasks such as time-series, image classification sets, and quantum-generated probability distributions. However, bridging the gap between these powerful conformal frameworks and the high- dimensional, noise-prone distributions typical of quantum measurement scenarios remains largely open. In this paper, we propose a unified approach to harness quantum conformal methods for multi-output distributions, with a particular emphasis on two experimental paradigms: (i) a standard 2-qubit circuit scenario producing a four-dimensional outcome distribution, and (ii) a multi-basis measurement setting that concatenates measurement probabilities in different bases (Z, X, Y) into a twelve-dimensional output space. By combining a multi- output regression model (e.g., random forests) with distributional conformal prediction, we validate coverage and interval-set sizes on both simulated quantum data and multi-basis measurement data. Our results confirm that classical conformal prediction can effectively provide coverage guarantees even when the target probabilities derive from inherently quantum processes. Such synergy opens the door to next-generation quantum-classical hybrid frameworks, providing both improved interpretability and rigorous coverage for quantum machine learning tasks. All codes and full reproducible Colab notebooks are made available at https://github.com/detasar/QECMMOU.
Downloads
Downloads
Published
How to Cite
Issue
Section
Categories
License
Copyright (c) 2025 Davut Emre Tasar

This work is licensed under a Creative Commons Attribution 4.0 International License.
Key Points of CC BY 4.0
- Attribution Requirement: Others can share, adapt, and use the work, even commercially, as long as they credit the original author(s) and the journal (JQTAIR) as the source.
- Flexibility in Usage: This license maximizes dissemination, as anyone can use the research in new projects, derivative works, or even commercial applications.
- Global and Broad: The 4.0 version is legally global, compatible with other open-access content, and widely accepted by institutions and funders worldwide.
- Freedom to Remix and Adapt: Researchers, educators, and industry professionals can freely build upon the work, encouraging collaboration and innovative uses in various fields.
Attribution Requirement for Users
To comply with CC BY 4.0, anyone who uses, shares, or builds upon the journal’s work must include:
- The title of the work.
- A link to the full text (ideally hosted on JQTAIR’s site or repository).
- Credit to the original authors and the journal (e.g., “Published by JQTAIR” or “Original work by [Author Name], published in JQTAIR”).