Perspective on artificial intelligence: A profile study on the attitudes of university students


Abstract views: 1187 / PDF downloads: 968

Authors

DOI:

https://doi.org/10.26809/joa.2684

Keywords:

Applied statistics, Two-stage clustering analysis, Artificial Intelligence Techniques, Higher Education

Abstract

The global growth of artificial intelligence (AI) across various industries necessitates considering the impact it will have on future generations. However, studies on university students’ perspectives on AI remain limited. Previous studies in Turkey have not grouped students with similar characteristics based on their attitudes toward AI, nor attempted to identify potential student profiles. The current study aims to fill this gap in the literature. Data for the study were collected by conducting face-to-face interviews with 254 students studying at Marmara University using a questionnaire covering their sociodemographic characteristics and views on AI. Frequency tables and descriptive statistics were first evaluated within the scope of the study. Since the variables used in the study were categorical, Two-Stage Cluster Analysis, one of the multivariate analysis techniques, was applied to identify homogeneous subgroups among the students. As a result of the analysis performed using the log-likelihood distance measure, 3 clusters were obtained, and the profiles of the student clusters formed were identified as “Cautious Innovators,” “Active Beneficiaries and Concerned User,” and “Positive and Forward-Thinking Users.” Student prof iles were then evaluated for similarities and differences. The findings show that artificial intelligence cannot be considered separately from education (83.9% of students receive support from artificial intelligence.) but ethics, security (96% of students do not find the use of artificial intelligence ethical and reliable.) and psychological effects (63% of students are afraid of the possible effects of artificial intelligence.) should be carefully evaluated.

Downloads

Download data is not yet available.

References

ALPAR, R. (2011). Uygulamalı Çok Değişkenli İstatistiksel Yöntemler, Üçüncü Baskı, Detay Yayıncılık, Ankara.

CROMPTON, H., & BURKE, D. (2023). Artificial İntelligence in Higher Education: The State of The Field. International Journal of Educational Technology in Higher Education, 20(1), 22.

DEMİR, B., & BEYAZHANÇER, R. (2024). İlköğretim Matematik Öğretmeni Adaylarının Yapay Zekâ Öz-Yeterliklerinin Bazı Değişkenler Açısından İncelenmesi. International Journal of Social and Humanities Sciences Research (JSHSR), 11(113), 2393-2398.

FOSNER, A. (2024). University Students’ Attitudes and Perceptions towards AI Tools: Implications for Sustainable Educational Practices. Sustainability, 16(19), 8668.

GENÇER ÇELİK, G., & ALTINDAĞ, Ö. (2022). Meslek Yüksekokulu Sağlık Programları Öğrencilerinin Hastane Yönetimi ve Organizasyonu Dersine İlişkin Tutum ve Algıları. Erciyes Akademi, 36(4).

GİRAY, S. (2016). İki Aşamalı Kümeleme Analizi ile Hükümlü Verilerinin İncelenmesi. İstanbul Üniversitesi İktisat Fakültesi Ekonometri ve İstatistik Dergisi, 25, 1-31.

GÖLBAŞI, B., & OKUL, Ö (2024). Öğretmen Adaylarının Yapay Zeka Kavramına İlişkin Metaforik Algıları, Xı Internatıonal Eurasıan Educatıonal Research Congress Tam Metin Bildiri Kitabı. 21-24 Mayıs Koceali. Ankara: Anı yayıncılık, 49-58.

HAIR, J. F., BLACK, W. C., BABIN, B. J., & ANDERSON, R. E. (2018). Multivariate Data Analysis. United Kingdom: Cengage Learning.

HARANTOVA, V., MAZANEC, J., STEFANCOVA, V., MASEK, J., & FOLTYNOVA, H. B. (2023). Two-Step Cluster Analysis of Passenger Mobility Segmentation During the COVID-19 Pandemic. Mathematics, 11(3), 583.

KALAYCI, Ş. (2010). SPSS Uygulamalı Çok Değişkenli İstatistik Teknikleri. Ankara, Türkiye: Asil Yayın Dağıtım.

KALEDIO, P., ROBERT, A., & FRANK, L. (2024). The Impact of Artificial Intelligence on Students' Learning Experience. Logical Techniques in computer science, 2(2), 71-76.

LONG, D., & MAGERKO, B. (2020). What is AI Literacy? Competencies and Design Considerations. In Proceedings of the 2020 CHI conference on human factors in computing systems, 1-16.

MEMON, M. A., TING, H., CHEAH, J. H., THURASAMY, R., CHUAH, F., & CHAM, T. H. (2020). Sample Size for Survey Research: Review and Recommendations. Journal of Applied Structural Equation Modeling, 4(2), 1-20.

MOHAMED, N., & AWANG, S. R. (2015). The Multiple Intelligence Classification of Management Graduates Using Two Step Cluster Analysis. Malaysian Journal of Fundamental and Applied Sciences, 11(1).

NIELSEN, M.B. and KNARDAHL, S. (2014), Coping Strategies: A Prospective Study of Patterns, Stability, and Relationships with Psychological Distress. Scandinavian Journal of Psychology, 55 (2), 142-150.

NORUSIS, M. J. (2007). SPSS 15.0 Advanced Statistical Procedures Companion. Chicago, IL: Prentice Hall.

NORUSIS, M. J. (2011). IBM SPSS Statistics 19 Procedures Companion. Reading, MA, Addison-Wesley.

OBENZA, B. N., CABALLO, J. H. S., CAANGAY, R. B. R., MAKİGOD, T. E. C., ALMOCERA, S. M., BAYNO, J. L. M., ... & TUA, A. G. (2024). Analyzing University Students’ Attitude and Behavior Toward AI Using the Extended Unified Theory of Acceptance and Use of Technology Model. American Journal of Applied Statistics and Economics, 3(1), 99-108.

OMENKA, O. S., & REUBEN, B. (2024). Utilizing Technology to Enhance Education: A Comprehensive Overview. Global Scientific and Academic Research Journal of Multidisciplinary Studies, 2(3), 8-12.

PEDRÓ, F., SUBOSA, M., RIVAS, A., & VALVERDE, P. (2019). Artificial İntelligence in Education: Challenges and Opportunities for Sustainable Development. United Nations Educational, Scientific and Cultural Organization, 7, 1-48.

PUNJ, G., & STEWART, D. W. (1983). Cluster Analysis in Marketing Research: Review and Suggestions For Application. Journal of marketing research, 20(2), 134-148.

RAI, A., CONSTANTINIDES, P., & SARKER, S. (2019). Next Generation Digital Platforms: Toward Human-AI Hybrids. Mis Quarterly, 43(1), iii-ix.

RAMIREZ, J. P., OBENZA, D. M., CUARTE, R. & MABAYAG, A. (2024). AI Trust and Attitude Towards AI of University Students. International Journal of Multidisciplinary Studies in Higher Education, 1(1), 21-34.

ROBERT, A., POTTER, K., & FRANK, L. (2024). The Impact of Artificial İntelligence on Students’ Learning Experience. Logical Techniques in computer science, 2(2), 71-76.

RUNDLE-THIELE, S., KUBACKI, K., TKACZYNSKI, A., & PARKINSON, J. (2015). Using Two-Step Cluster Analysis to Identify Homogeneous Physical Activity Groups. Marketing Intelligence & Planning, 33(4), 522-537.

SEÇER, M. B. (2024). Sağlık Alanında Öğrenim Gören Üniversite Öğrencilerinin Sağlıkta Yapay Zekâ Uygulamaları ve ChatGPT Farkındalığı, Yapay Zekâ Kullanımına Yönelik Görüşleri ve Teknostres Düzeylerinin İncelenmesi: Kesitsel Bir Çalışma. Türkiye Klinikleri Journal of Health Sciences, 9(4), 856-866.

SIDDIQUI, K. (2013). Heuristics for Sample Size Determination in Multivariate Statistical Techniques. World Applied Sciences Journal, 27(2), 285-287.

SKRABANEK, P., & DOLEZEL, P. (2017). On Reporting Performance of Binary Classifiers. Scientific papers of the University of Pardubice. Series D, Faculty of Economics and Administration. 41/2017.

TAYE, G., SHARMA, S., SHAH, P., & NURİYE, Y. G. (2023). Exploring the Role of Artificial Intelligence in Class Scheduling and Management: A Comprehensive Survey and Review. In 2023 International Conference on Computer Science and Emerging Technologies (CSET) (pp. 1-11). IEEE.

TEKTAŞ, N., & PALA, S. K. T. (2014). Devlet ve Vakıf Meslek Yüksekokulu Öğrencilerinin Umutsuzluk Düzeylerinin Karşılaştırılması ve Umutsuzluk Düzeylerini Etkileyen Faktörlerin Belirlenmesi. Türkiye Sosyal Araştırmalar Dergisi, 182(182), 169-186.

TKACZYNSKI, A. (2017). Segmentation Using Two-Step Cluster Analysis. Segmentation in social marketing: Process, methods and application, 109-125.

XU, Z. (2024). AI in Education: Enhancing Learning Experiences and Student Outcomes. Applied and Computational Engineering, 51(1), 104-111.

WANG, S., SUN, Z., & CHEN, Y. (2023). Effects of Higher Education Institutes’ Artificial Intelligence Capability on Students' Self-Efficacy, Creativity and Learning Performance. Education and Information Technologies, 28(5), 4919-4939.

YILMAZ, Y., YILMAZ, D. U., YILDIRIM, D., KORHAN, E. A., & KAYA, D. Ö. (2021). Yapay Zeka ve Sağlıkta Yapay Zekanın Kullanımına Yönelik Sağlık Bilimleri Fakültesi Öğrencilerinin Görüşleri. Süleyman Demirel Üniversitesi Sağlık Bilimleri Dergisi, 12(3), 297-308.

YILMAZ KÜSEN, G. (2024). Marmara Üniversitesi Öğrencilerinin Yapay Zeka Kullanımlarının ve Yapay Zekaya Bakış Açılarının Araştırılması. Marmara Üniversitesi Sosyal Bilimler Enstitüsü. Dönem Projesi

ZAWACKI-RICHTER, O., MARÍN, V. I., BOND, M., & GOUVERNEUR, F. (2019). Systematic Review of Research on Artificial Intelligence Applications In Higher Education–Where are the Educators?. International Journal of Educational Technology in Higher Education, 16(1), 1-27.

ZHANG, Y., YANG, X., & TONG, W. (2024). University Students’ Attitudes Toward ChatGPT Profiles and Their Relation to ChatGPT Intentions. International Journal of Human–Computer Interaction, 1-14.

ZHANG, K., & ASLAN, A. B. (2021). AI Technologies for Education: Recent Research & Future Directions. Computers and Education: Artificial Intelligence, 2, 100025.

Published

2025-02-01

How to Cite

Giray Yakut, S., Kandur Aslan, H., & Yılmaz Küsen, G. (2025). Perspective on artificial intelligence: A profile study on the attitudes of university students. Journal of Awareness, 10(1), e2684. https://doi.org/10.26809/joa.2684

Issue

Section

Research Articles