ÜLKELERİN GÜVENLİ OLMALARININ TAHMİNİNDE LOJİSTİK REGRESYON, YAPAY SİNİR AĞLARI VE MOORA YÖNTEMLERİNİN KARŞILAŞTIRILMASI


Özet Görüntüleme: 214 / PDF İndirme: 443

Yazarlar

  • Ozlem DENİZ BAŞAR İstanbul Ticaret Üniversitesi/TÜRKİYE
  • Elif GÜNEREN GENÇ İstanbul Ticaret Üniversitesi/TÜRKİYE

DOI:

https://doi.org/10.15637/jlecon.7.008%20

Anahtar Kelimeler:

Yapay Sinir Ağları- Lojistik Regresyon Analizi- Güvenlik- Sınıflandırma- MOORA

Özet

Son yıllarda yazılım ve donanım teknolojisindeki gelişmeler sayesinde araştırmalarda kullanılan veri kümeleri genişlemiş, yapay zeka teknolojilerinin devreye girmesi ile de öngörülerde kullanılan modeller daha geniş anlamlar içeren sonuçların elde edilmesine imkan sağlamıştır. Bu çalışmada her yıl ülkelerdeki suç oranlarını ortaya çıkarmak amacıyla hesaplanan suç endeksi kullanılarak 106 ülkeye ilişkin güvenilir olma durumları tahmin edilmiştir. Bu amaçla lojistik regresyon analizi, yapay sinir ağları ve sınıflandırma yöntemleri arasında olmamasına rağmen farklı bir bakış açısı sağlamak adına çok kriterli karar verme yöntemlerinden biri olan MOORA yöntemi kullanılmıştır. Çalışma sonucunda yapay sinir ağları yöntemi ile ülkelerin güvenilir olma durumlarına göre yapılan tahminlerin doğru sınıflandırma oranının diğer yöntemlere göre fazla olduğu tespit edilmiştir. 

İndirmeler

İndirme verileri henüz mevcut değil.

Referanslar

ALTAŞ, D. & GÜLPINAR, V., (2012). Karar Ağaçları ve Yapay Sinir Ağlarının Sınıflandırma Performanslarının Karşılaştırılması: Avrupa Birliği Örneği. Trakya Üniversitesi Sosyal Bilimler Dergisi, 14(1), 1-22.

ARIKAN KARGI, V. S., (2015). Yapay Sinir Ağ Modelleri ve Bir Tekstil Firmasında Uygulama. Bursa: Ekin Basın Yayın Dağıtım. ISBN: 9786055187620

AYYILDIZ, E., (2018). Amerika Basketbol Ligi (NBA) Maç Sonuçlarının Yapay Sinir Ağları ile Tahmini. Gaziantep Üniversitesi Spor Bilimleri Dergisi, 3(1), 40-53.

BADDELEY, M. & Barrowclough, D., (2009). Running Regssions A Practical Guide to Quantitative Research in Economics, Finance and Development Studies. Edinburg, UK: Cambridge University Press. ISBN: 978-0521603089

BİLGİN, M. & YILMAZ, A., (2018). Makine Öğrenmesi: Makine Öğrenmesi Teorisi ve Algoritmaları. 2. dü. İstanbul: Papatya Bilim. ISBN: 978-605-9594-25-7

BRAUERS, W. K. M., (2018). Location Theory and Multi-Criteria Decision Making: An Application of the MOORA Method.. Contemporary Economics, 12(3), 241-252.

BRAUERS, W. & ZAVADSKAS, E., (2006). The MOORA Method and Its Application Privatization in a Transition Economy. Control and Cybernetics, 35(2), 445-469.

BUDAK, H. & ERPOLAT, S., (2012). Kredi Riski Tahmininde Yapay Sinir Ağları ve Lojistik Regresyon Analizi Karşılaştırması. Online Academic Journal of Information Technology, 3(9), 23-30.

CHEN, C. L., HSIN, H. C., CHEN, Y. H. & NANG, S. Y., (2014). Predictive Models for Pre-operative Diagnosis of Rotator Cuff Tear: A Comparison Study of Two Methods between Logistic Regression and Artificial Neural Network. Applied Mechanics and Materials, Cilt 595, 263-268.

CIABURRO, G. & VENKATESWARAN, B., (2017). Neural Networks with R: Smart models Using CNN, RNN, Deep Learning, and Artificial Intelligence Principles. Birmingham: Packt Publishing. ISBN: 978-1-78839-787-2

ÇAKIN, E. & ÖZDEMİR, A., (2019). Veri Zarflama Analizi Temelli Yapay Sinir Ağları ve Lojistik Regresyon Analizi ile Teknoloji Geliştirme Bölgelerinin Etkinliklerinin Tahminlenmesi. Hacettepe Üniversitesi İktisadi ve İdari Bilimler Dergisi, 37(2), 271-293.

FİLİZ, E., KARABOĞA, H. A. & AKOGUL, S., (2017). BIST-50 Endeksi Değişim Değerlerinin Sınıflandırılmasında Makine Öğrenmesi Yöntemleri ve Yapay Sinir Ağları Kullanımı. Ç.Ü. Sosyal Bilimler Enstitüsü Dergisi, 26(1), 231-241.

GADAKH, V., SHINDE, V. & KHEMNAR, N., (2013). Optimization of Welding Process Parameters Using MOORA Method. International Journal of Advanced Manufacturing Technology, 69(9-12), 2031-2039.

GAMACHE, K., GIARDINO, J. R., ZHAO, P. & OWENS, R. H., (2018). Bivouacs of the Anthropocene: Urbanization, Landforms, and Hazards in Mountainous Regions. %1 içindeUrban Geomorphology: Landforms and Processes in Cities. London: Elsevier, 205-230.

GREENE, W. H., (2012). Econometric Analysis. USA: Pearson Education Inc. ISBN: 0-13-066189-9

GÜRİŞ, S. & ÇAĞLAYAN, E., (2005). Ekonometri Temel Kavramlar. İstanbul: Der Yayınları. ISBN: 9789753535298

HILL, R. C., GRIFFITHS, W. E. & LIM, G. C., (2011). Principles of Econometrics. USA: Wiley. ISBN: 978-0-470-62673-3

Kennedy, P., 2008. A Guide to Econometrics. (2008): Blackwell Publishing. ISBN: 978-1405182577

KUMAR, H. & GIRI, S., (2019). A Flow Shop Scheduling Algorithm Based On Artificial Neural Network. Bulletin of Pure and Applied Sciences, 38(E)(1), 62-71.

MCCULLOCH, W. S. & PITTS, W., (1943). A logical calculus of the ideas immanent in nervous activity. Bulletin of Mathematical Biophysics, Cilt 5, 115-133.

MOHAMED, A. E., (2017). Comparative Study of Four Supervised Machine Learning Techniques for Classification. International Journal of Applied Science and Technology , 7(2), 5-18.

NUMBEO, (2019). Numbeo Crime Index by Country 2019. [Çevrimiçi] : Crime Index by Country 2019, https://www.numbeo.com/crime/rankings_by_country.jsp?title=2019 [Erişildi: 21.9.2019].

YAKUBU, A., DAHLOUM, L., SHOYOMB, A. & YAHAYA, U., (2019). Modelling hatchability and mortality in muscovy ducks using automatic linear modelling and artificial neural network. Journal of the Indonesian Tropical Animal Agriculture, 44(1), 65-76.

İndir

Yayınlanmış

2020-08-05

Nasıl Atıf Yapılır

DENİZ BAŞAR, O., & GÜNEREN GENÇ, E. (2020). ÜLKELERİN GÜVENLİ OLMALARININ TAHMİNİNDE LOJİSTİK REGRESYON, YAPAY SİNİR AĞLARI VE MOORA YÖNTEMLERİNİN KARŞILAŞTIRILMASI. JOURNAL OF LIFE ECONOMICS, 7(2), 123–134. https://doi.org/10.15637/jlecon.7.008

Sayı

Bölüm

Araştırma Makaleleri