EKONOMETRİK ZAMAN SERİLERİ TAHMİNİNDE KÜMELEMEYE DAYANAN BULANIK ZAMAN SERİLERİ YÖNTEMLERİNİN PERFORMANSLARININ KARŞILAŞTIRILMASI


Özet Görüntüleme: 245 / PDF İndirme: 411

Yazarlar

DOI:

https://doi.org/10.15637/jlecon.6.019

Anahtar Kelimeler:

Bulanık Kümeleme, Bulanık Zaman Serileri, Zaman Serileri Analizi, Tahmin

Özet

ÖZET

Bulanık Zaman Serileri (BZS) yöntemleri, istatistiksel yöntemlerin aksine, hiçbir varsayım gerektirmemesi, az sayıda gözlemle çalışabilmesi, eksik, belirsiz ve dilsel veriyi işleyebilme yeteneğine sahip olması gibi avantajlarından dolayı zaman serisi analizinde son zamanlarda sıklıkla kullanılmaktadır. Şu ana kadar çok sayıda BZS yöntemi önerilmiştir. Bu yöntemlerden bir kısmı bulanıklaştırma adımında bulanık kümeleme algoritmalarının kullanımına dayanmaktadır. Ancak bu yöntemlerin ekonometrik zaman serilerinin tahmininde performanslarının karşılaştırılmasına dayanan bir çalışma bulunmamaktadır. Bu çalışmada, bulanıklaştırma adımında sırasıyla Bulanık C-Ortalamalar (BCO), Gustafson-Kessel (GK) ve Bulanık K-Medoidler (BKM) kümeleme algoritmalarını kullanan 3 BZS yöntemi 454 ekonometrik zaman serisine uygulanmış ve elde edilen tahmin sonuçları Ortalama Mutlak Yüzde Hata (OMYH), Hata Kareler Ortalamasının Karekökü (HKOK), Varyans Hesabı (VF) uyum iyiliği kriterlerine göre karşılaştırılmıştır. Karşılaştırmalar sonucunda, BKM algoritmasına dayanan BZS yönteminin tüm zaman serilerinin OMYH kriterine göre %72.25’inde, HKOK kriterine göre %65.9’unda, VH kriterine göre ise %59.3’ünde en iyi tahmin sonuçlarını sağladığı görülmüştür.

Anahtar Kelimeler: Bulanık Kümeleme, Bulanık Zaman Serileri, Zaman Serileri Analizi, Tahmin

JEL Kodları: C01,C22,C53

İndirmeler

İndirme verileri henüz mevcut değil.

Referanslar

ALADAĞ, H., 2010, Yüksek Dereceli Bulanık Zaman Serisi Modeli ve IMKB Uygulaması, Anadolu Üniversitesi Bilim ve Teknoloji Dergisi, 11(2), 95-101.
BEZDEK, J., EHRLICH, R., FULL, W., 1984, FCM: The fuzzy C-means Clustering Algorithm, Computers & Geosciences, 10(2-3), 191-203.
BOX, G. E. P., JENKINS, G. M., 1970, Time Series Analysis: Forecasting and Control, San Francisco: Holden-Day.
CHEN, S. M., 1996, Forecasting Enrollments Based on Fuzzy Time-Series, Fuzzy Sets and Systems, 81, 311-319.
CHENG, C. H., CHENG, G. W., WANG, J. W., 2008, Multi-Attribute Fuzzy Time Series Method Based on Fuzzy Clustering, Expert Systems with Applications, 34, 1235-1242.
DAVARI, S., ZARANDI, M. H. F., TURKSEN, I. B., 2009, An Improved Fuzzy Time Series Forecasting Model Based on Particle Swarm Intervalization, The 28th North American Fuzzy Information Processing Society Annual Conferences (NAFIPS), 14-17.
EĞRIOGLU, E., ALADAG, C. H., YOLCU, U., 2013, Fuzzy Time Series Method Based on Multiplicative Neruin Model and Membership Values, American Journal of Intelligent Systems, 3(1), 33-39.
EĞRIOGLU, E., ALADAG, C. H., YOLCU, U., USLU, V. R., ERILLI, N. A., 2011, Fuzzy Time Series Forecasting Method Based on Gustafson-Kessel Fuzzy Clustering, Expert Systems with Applications, 38, 10355-10357.
FURONG, Y., LIMING, Z., DEFU, Z., HAMIDO, F., ZHIGUO, G. , 2016, A Novel Forecasting Method Based on Multi-Order Fuzzy Time Series and Technical Analysis, Information Sciences, 367-368, 41-57.
GUSTAFSON, D. E., KESSEL, W. C., 1979, Fuzzy Clustering with Fuzzy Covariance Matrix, In Proceedings of the IEEE CDC, 761–766.
GÜLER, D. N., AKKUŞ, Ö., 2018, A New Fuzzy Clustering Based on Robust Clustering for Forecasting of Air Pollution, Ecological Informatics, 43:157-164.
HSU, L.Y., HORNG, S. J., KAO, T. W., CHEN, Y. H., RUN, R. S., CHEN, R. J., LAI, J. L., KUO, I. H., 2010, Temperature Prediction and TAIFEX Forecasting Based on Fuzzy Relationships and MTPSO Techniques, Expert Systems with Applications, 37, 2756-2770.
HUARNG, K., 2001a, Heuristic Models of Fuzzy Time Series for Forecasting, Fuzzy Sets and Systems, 123(3), 369-386.
HUARNG, K., 2001b, Effective Lengths of Interval to Improve Forecasting in Fuzzy Time Series, Fuzzy Sets and Systems, 123, 387-394.
HWANG, J. R., CHEN, S. M., LEE, C. H., 1998, Handling Forecasting Problems Using Fuzzy Time Series, Fuzzy Sets and Systems, 100, 217-228.
INCEOĞLU, F. E., 2010, Bulanık Zaman Serisi Yöntemleri ile IMKB Öngörüsü, Ondokuz Mayıs Üniversitesi Fen Bilimler Enstitüsü, Yüksek Lisans Tezi, Samsun.
KAHRAMAN, C., YAVUZ, M., KAYA, I., 2010, Fuzzy and Grey Forecasting Techniques and Their Applications in Production Systems, in Production Engineering and Management under Fuzziness Studies in Fuzziness and Soft Computing, Verlag Berlin Heidelberg, Springer, 1-24.
KOÇAK, C., 2011, Bulanık Zaman Serileri Öngörüsü için Yeni Bir Model Sınıfı, Ondokuz Mayıs Üniversitesi Fen Bilimler Enstitüsü, Doktora Tezi, Samsun.
KRISHNAPURAM R., JOSHI A., YI L., 1999, A Fuzzy relative of the k-medoids algorithm with application to document and snippet clustering, Proocedings IEEE International Conference on Fuzzy Systems. Seoul, South Korea.
KUO, I. H., HORNG, S. J., CHEN, Y. H., RUN, R. S., KAO, T. W., CHEN, R. J., LAI, J. L., LIN, T. L., 2010, Forecasting TAIFEX Based on Fuzzy Time Series And Particle Swarm Optimization, Expert Systems with Applications, 37, 1494-1502.
LEE, L. W., WANG, L. H., CHEN, S. M., 2007, Temperature Prediction and TAIFEX Forecasting Based on Fuzzy Logical Relationships and Genetic Algorithms, Expert Systems with Applications, 33(3), 539–550.
LI, S. T., CHENG, Y. C., LIN, S. Y., 2008, A FCM-Based Deterministic Forecasting Model for Fuzzy Time Series, Computers and Mathematics with Applications, 56, 3052–3063.
LIU, Z., ZHANG, T., 2019, A Second-Order Fuzzy Time Series Model for Stock Price Analysis, Journal of Applied Statistics, doi. https://doi.org/10.1080/02664763.2019.1601163
PARK, J. I., LEE, D. J., SONG, C. K., CHUN, M. G., 2010, TAIFEX and KOSPI 200 Forecasting Based on Two Factors High Order Fuzzy Time Series and Particle Swarm Optimization, Expert Systems with Applications, 37, 959-967.
SONG, Q., CHISSOM, B. S., 1993a, Fuzzy Time Series and its Models, Fuzzy Sets and Systems, 54, 269-277.
SONG, Q. ve CHISSOM, B. S., 1993b, Forecasting Enrollments with Fuzzy Time Series- Part I, Fuzzy Sets and Systems, 54, 1-10.
SUN, B., GUO, H., KARIMI, H. R., GE, Y., XIONG, S., 2015, Prediction of Stock Index Futures Prices Based on Fuzzy Sets and Multivariate Fuzzy Time Series, Neurocomputing, 151, Kısım 3, 1528-1536.
USLU, V. R., ALADAG, C. H., YOLCU, U., EGRIOGLU, E., 2010, A New Hybrid Approach for Forecasting a Seasonal Fuzzy Time Series, Proceedings of the 1st International Symposium on Computing In Science & Engineering, Izmır -Turkey.
UYAR, H., 2015, BIST Verilerinin Çeşitli Bulanık Zaman Serileri Yaklaşımları ile Öngörülerinin Karşılaştırılması, Akdeniz Üniversitesi Sosyal Bilimler Enstitüsü, Yüksek Lisans Tezi, Antalya.

İndir

Yayınlanmış

2019-07-25

Nasıl Atıf Yapılır

PEKMEZCİ, A., DİNÇER, N. G., & İŞÇİ GÜNERİ, Öznur. (2019). EKONOMETRİK ZAMAN SERİLERİ TAHMİNİNDE KÜMELEMEYE DAYANAN BULANIK ZAMAN SERİLERİ YÖNTEMLERİNİN PERFORMANSLARININ KARŞILAŞTIRILMASI. JOURNAL OF LIFE ECONOMICS, 6(3), 307–320. https://doi.org/10.15637/jlecon.6.019

Sayı

Bölüm

Araştırma Makaleleri