A study on the comparison of technical indicators used in stock price prediction with the FAHP method
Abstract views: 248 / PDF downloads: 313
DOI:
https://doi.org/10.15637/jlecon.1954Keywords:
Stock, Technical Analysis, Indicators, FAHPAbstract
Savers want to direct their savings to investment areas where they can get maximum efficiency. This is the most basic feature that a rational investor should have. Stock investors also want to manage their investments with this thought. In this respect, investors conduct detailed research on the sector and stock they plan to invest in. Predictions regarding the possible price formation of the stock in the future is one of these studies. In the finance literature, there are many indicators, ratios, analyzes, indicators and oscillators developed for the future price prediction of the stock. In this study, technical indicators used by licensed professional stock investors were obtained by taking expert opinion. These indicators were conveyed to the experts again to get their opinions with the help of the fuzzy comparison matrix and the experts were asked to compare the variables. The data obtained were analyzed with the Fuzzy Analytical Hierarchy Process (FAHP) method and the technical indicators and ratios used by the experts were listed according to a certain hierarchy. As a result of the analysis, it has been determined that the most important ratio in the stock price estimation process is the MV/BV ratio. While EBIT is the second most important ratio in stock price prediction, P/E is the third most important indicator.Savers want to direct their savings to investment areas where they can get maximum efficiency. This is the most basic feature that a rational investor should have. Stock investors also want to manage their investments with this thought. In this respect, investors conduct detailed research on the sector and stock they plan to invest in. Predictions regarding the possible price formation of the stock in the future is one of these studies. In the finance literature, there are many indicators, ratios, analyzes, indicators and oscillators developed for the future price prediction of the stock. In this study, technical indicators used by licensed professional stock investors were obtained by taking expert opinion. These indicators were conveyed to the experts again to get their opinions with the help of the fuzzy comparison matrix and the experts were asked to compare the variables. The data obtained were analyzed with the Fuzzy Analytical Hierarchy Process (FAHP) method and the technical indicators and ratios used by the experts were listed according to a certain hierarchy. As a result of the analysis, it has been determined that the most important ratio in the stock price estimation process is the MV/BV ratio. While EBIT is the second most important ratio in stock price prediction, P/E is the third most important indicator.
Downloads
References
AFŞAR, A. (2007). Finansal gelişme ile ekonomik büyüme arasındaki ilişki. Muhasebe ve Finansman Dergisi. (36), 188-198.
AKARSU, Y., YAZAR, E., & ALACAHAN, N. D. İndikatörlerin Standart Parametreleri ile Optimize Edilmiş Parametrelerinin Getiri Performans Karşılaştırılması. Research in Social Sciences. Volume II, 53.
AKŞEHİR, Z. D., & KILIÇ, E. (2019). Makine Öğrenmesi Teknikleri ile Banka Hisse Senetlerinin Fiyat Tahmini. Türkiye Bilişim Vakfı Bilgisayar Bilimleri ve Mühendisliği Dergisi. 12(2), 30-39.
ALACA, M., & GÜRAN, A. (2022). COVID-19 Salgını Sürecinde Duygu Skorlarının ve Teknik İndikatörlerin Kullanılmasıyla BİST 100 Endeksi Trend Tahmini. Bilişim Teknolojileri Dergisi. 15(4), 379-388.
ASTUTY, P. (2017). The Influence of Fundamental Factors and Systematic Risk to Stock Prices on Companies Listed in the Indonesian Stock Exchange. European Research Studies Journal. 0(4A), 230-240.
BAŞOĞLU, U., CEYLAN, A. & PARASIZ, İ. (2009) Finans, Teosi, Kurum, Uygulama. Ekin, Bursa.
CAMGÖZ, M. (2022). Temettü Veriminin BIST Hisse Senedi Fiyatlarını Tahmin Gücünün Nedensellik Testleriyle Analizi. İnsan ve Toplum Bilimleri Araştırmaları Dergisi. 11(3), 1419-1442.
CHONG, T. T. L., & NG, W. K. (2008). Technical Analysis and the London Stock Exchange: Testing the MACD and RSI Rules Using the FT30. Applied Economics Letters. 15(14), 1111-1114.
CHONG, T. T. L., NG, W. K., & LİEW, V. K. S. (2014). Revisiting the Performance of MACD and RSI Oscillators. Journal of Risk and Financial Management. 7(1), 1-12.
ÇETİNYOKUŞ, T., & GÖKÇEN, H. (2002). Borsada Göstergelerle Teknik Analiz İçin Bir Karar Destek Sistemi. Gazi Üniversitesi Mühendislik Mimarlık Fakültesi Dergisi. 17(1), 43-58.
DANİSWARA, D. A., WİDJANARKO, H. & HİKMAH, K. (2022). The Accuracy Test of Technical Analysis of Moving Average, Bollinger Bands, and Relative Strength Index on Stock Prices of Companies Listed In LQ45 Index. 6(2), 16-25
DAY, M. Y., CHENG, Y., HUANG, P., & Ni, Y. (2022). The profitability of Bollinger Bands trading bitcoin futures. Applied Economics Letters, https://doi.org/10.1 080/13504851.2022.2060494
FOAN, C. (2006). İkincil Piyasalarda İşlem Gören Hisse Senetleri İçin Yatırım Kararlarına Yönelik Sistematik Bir Yatırım Yaklaşımı ve IMKB 30 Üzerine Bir Uygulama. İstanbul Üniversitesi Sosyal Bilimler Enstitüsü. Yayınlanmış Yüksek Lisans Tezi.
GÖKTEN, S., OKAN, P., ÖNER, E. & AYPEK, N. (2008). Tasarruf ve Ekonomik Büyüme Arasındaki İlişkide Finansal Sistemin Rolü-Kırgızistan Örneği. Sosyoekonomi, 7(7).
İLARSLAN, K. (2014). Hisse Senedi Fiyat Hareketlerinin Tahmin Edilmesinde Markov Zincirlerinin Kullanılması: İMKB 10 Bankacılık Endeksi İşletmeleri Üzerine Ampirik Bir Çalışma.Yaşar Üniversitesi E-Dergisi. 9(35), 6158-6198.
KALAYCI, Ş., & KARATAŞ, A. (2005). Hisse senedi Getirileri ve Finansal Oranlar İlişkisi: İMKB’de Bir Temel Analiz Araştırması. Muhasebe ve Finansman Dergisi. (27), 146-158.
KARABIYIK, L. & ANBAR, A. (2010). Sermaye Piyasası ve Yatırım Analizi. Ekin, Bursa.
KARABULUT, T., & ERBAŞI, A. (2016). Öğretmenlerin İş Tatmin Düzeylerinin Bulanık Analitik Hiyerarşi Proses Yöntemiyle Değerlendirilmesi: Erzincan’da Millî Eğitim Bakanlığı’na Bağlı Okullarda Bir Uygulama. Kahramanmaraş Sütçü İmam Üniversitesi Sosyal Bilimler Dergisi. 13(2).
KORKMAZ, T. & CEYLAN, A. (2012). Sermaye Piyasası ve Menkul Değer Analiz. Ekin, Bursa.
MİTRA, S. K. (2011). Usefulness of Moving Average Based Trading Rules in India. International Journal of Business and Management. 6(7), 199-206.
NARANCHIMEG, L. & BOLOR, B. (2022). P/B Ratio to Stock Price and Correlation Analysis of Other Financial Indicators. iBusiness. 14(1)i 24-29.
OĞUZ, R. F., UYGUN, Y., AKTAŞ, M. S., & AYKURT, İ. (2019, April). On the Use of Technical Analysis Indicators for Stock Market Price Movement Direction Prediction. In 2019 27th Signal Processing and Communications Applications Conference (SIU) (pp. 1-4). IEEE.
ÖZKAN, N. (2021). Gross Profıtabılıty and 52-Week Hıgh Prıce. Mehmet Akif Ersoy Üniversitesi İktisadi ve İdari Bilimler Fakültesi Dergisi. 8(2), 704-719.
ÖZTÜRK, H. (2016). Teknik Analizde AlımSatım Sistemi Oluşturma: Sistemin Geçmişe Yönelik Testleri. Finansal Araştırmalar ve Çalışmalar Dergisi. 8(15), 469-493.
PABUÇCU, H. (2019). Borsa Endeksi Hareketlerinin Tahmini: Trend Belirleyici Veri. Selçuk Üniversitesi Sosyal Bilimler Meslek Yüksekokulu Dergisi., 22(1), 246-256.
PARK, C. H., & IRWİN, S. H. (2007). What Do We Know About the Profitability of Technical Analysis? Journal of Economic surveys. 21(4), 786-826.
SARAÇ, M., & KAHYAOĞLU, M. B. (2011). Bireysel Yatırımcıların Risk Alma Eğilimine Etki Eden Sosyo-Ekonomik ve Demografik Faktörlerin Analizi. BDDK Bankacılık ve Finansal Piyasalar Dergisi. 5(2), 135-157.
SESHU, V., SHANBHAG, H., RAO, S. R., VENKATESH, D., AGARWAL, P., & ARYA, A. (2022, January). Performance Analysis of Bollinger Bands and Long Short-Term Memory (LSTM) models based Strategies on NIFTY50 Companies. In 2022 12th International Conference on Cloud Computing, Data Science & Engineering (Confluence) (pp. 184-190). IEEE.
TEK, A. O, BABUŞÇU, Ş & HAZAR, A. (2022). Pay Senedi Yatırımlarında Teknik Analiz Yöntemlerinin Uygulanması ve BIST 30 Endeksi Üzerinde Test Edilmesi. Ufuk Üniversitesi Sosyal Bilimler Enstitüsü Dergisi. 11(22), 7-23.
WANG, J., & KİM, J. (2018). Predicting Stock Price Trend Using MACD Optimized by Historical Volatility. Mathematical Problems in Engineering. https:// doi.org/10.1155/2018/9280590
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2023 JOURNAL OF LIFE ECONOMICS
This work is licensed under a Creative Commons Attribution 4.0 International License.
When the article is accepted for publication in the Journal of Life Economics, authors transfer all copyright in the article to the Holistence Publications.The authors reserve all proprietary right other than copyright, such as patent rights.
Everyone who is listed as an author in this article should have made a substantial, direct, intellectual contribution to the work and should take public responsibility for it.
This paper contains works that have not previously published or not under consideration for publication in other journals.