Gene Silencing RNAi Technology: Uses in Plants


Abstract views: 239 / PDF downloads: 200

Authors

DOI:

https://doi.org/10.56768/jytp.1.1.02

Keywords:

Gene silencing, RNAi, siRNA, climate, plants

Abstract

Ensuring sustainable food production in national and global area depends on the determination of plant species and varieties that can survive under the influence of various stress factors that may occur due to global climate changes and other factors that adversely limit growth and development, and depends on the protection and development of existing ones. It is important to develop new plant varieties that are resistant to abiotic stress factors that have occurred as a result of global climate changes. At this point, modern biotechnological methods have been widely needed in plant breeding in recent years. One of these techniques is RNAi technology. The mechanism of RNA interference (RNAi) is defined as post-transcriptional gene silencing or regulation of gene expression, resulting in the degradation of mRNA chain, which is the complement of double-stranded RNA (dsRNA) entering the cell. RNA interference begins when double-stranded RNA is cut into small inhibitory RNAs (siRNA) by an RNase III enzyme called as Dicer. These siRNAs then bind to the RNA-inducing silencing complex (RISC) which is a multiprotein-RNA nuclease complex. RISC uses siRNAs to find complementary mRNA and cuts the target mRNA endonucleolytically. The resulting decrease in specific mRNA leads to a decrease in available protein(s). Post transcriptional gene silencing, RNA interference and other forms of RNA silencing have been observed particularly in plants. In recent years, RNAi studies, which are among the leading topics in the global area, have shown that non-coding RNAs in plants play a role in the control of tissue differentiation and development, signal transmission, interaction with phytohormones, abiotic (drought, salinity, etc.) and environmental factors such as biotic stress. In this review paper, the basics of RNAi mechanism and the usage of RNAi in plants are explained.

Downloads

Download data is not yet available.

References

Adai, A., Johnson, C., Mlotshwa, S., Archer-Evans, S., Manocha, V., Vance, V., & Sundaresan, V. (2005). Computational prediction of miRNAs in Arabidopsis thaliana. Genome Research, 15(1), 78-91. 10.1101/gr.2908205

Ambion Inc. (2007). RNA Interference Overview, The RNA Company.

Ayaz, G. B., Şahin, Ö., & Ayaz, U. (2018). Epigenetik alanındaki tarım uygulamaları. Madde, Diyalektik ve Toplum, 3, 254-262.

Bartel, D. P. (2004). MicroRNAs: genomics, biogenesis, mechanism, and function. Cell, 116(2), 281-297. https://doi.org/10.1016/S0092-8674(04)00045-5

Bedell, J. A., Budiman, M. A., Nunberg, A., Citek, R. W., Robbins, D., Jones, J., Flick, E., Rholfing, T., Fries, J., Bradford, K., McMenamy, J., Smith, M, Holeman, H., Roe, B.A., Wiley, G., Korf, I.F., Rabinowicz, P.D., Lakey, N., McCombie, W.R., Jeddeloh, J.A, & Martienssen, R. A. (2005). Sorghum genome sequencing by methylation filtration. PLoS Biology, 3(1), e13. https://doi.org/10.1371/journal.pbio.0030013

Bernstein, E., Caudy, A. A., Hammond, S. M., & Hannon, G. J. (2001). Role for a bidentate ribonuclease in the initiation step of RNA interference. Nature, 409(6818), 363-366. https://doi.org/10.1038/35053110

Billoud, B., De Paepe, R., Baulcombe, D., & Boccara, M. (2005). Identification of new small non-coding RNAs from tobacco and Arabidopsis. Biochimie, 87(9-10), 905-910. https://doi.org/10.1016/j.biochi.2005.06.001

Bora, G. (2020). Nöron Benzeri Hücre Hatlarında RNA Interferans Aracılı Gen İfadesi Baskılama Çalışmaları: in vitro SMA modelleri. Osmangazi Tıp Dergisi, 42(2), 140-147. https://doi.org/10.20515/otd.497543

Carthew, R. W., & Sontheimer, E. J. (2009). Origins and mechanisms of miRNAs and siRNAs. Cell, 136(4), 642-655. 10.1016/j.cell.2009.01.035

Cushman, J. C., & Bohnert, H. J. (2000). Genomic approaches to plant stress tolerance. Current Opinion in Plant Biology, 3(2), 117-124. 10.1016/s1369-5266(99)00052-7

Dezulian, T., Palatnik, J. F., Huson, D., & Weigel, D. (2005). Conservation and divergence of microRNA families in plants. Genome Biology, 6(11), 1-25. https://doi.org/10.1186/gb-2005-6-11-p13

Elitzur, T., Yakir, E., Quansah, L., Zhangjun, F., Vrebalov, J., Khayat, E., & Friedman, H. (2016). Banana MaMADS transcription factors are necessary for fruit ripening and molecular tools to promote shelf-life and food security. Plant Physiology, 171(1), 380-391. https://doi.org/10.1104/pp.15.01866

Fire, A., Xu, S., Montgomery, M. K., Kostas, S. A., Driver, S. E., & Mello, C. C. (1998). Potent and specific genetic interference by double-stranded RNA in Caenorhabditis elegans. Nature, 391(6669), 806-811. 10.1038/35888

Fukusaki, E. I., Kawasaki, K., Kajiyama, S. I., An, C. I., Suzuki, K., Tanaka, Y., & Kobayashi, A. (2004). Flower color modulations of Torenia hybrida by downregulation of chalcone synthase genes with RNA interference. Journal of Biotechnology, 111(3), 229-240. 10.1016/j.jbiotec.2004.02.019

Gan, D., Ding, F., Zhuang, D., Jiang, H., Jiang, T., Zhu, S., & Cheng, B. (2014). Application of RNA interference methodology to investigate and develop SCMV resistance in maize. Journal of Genetics, 93(2), 305-311. 10.1007/s12041-014-0364-1

Khvorova, A., Reynolds, A., & Jayasena, S. D. (2003). Functional siRNAs and miRNAs exhibit strand bias. Cell, 115(2), 209-216. 10.1016/s0092-8674(03)00801-8

Kiirika, L. M., Bergmann, H. F., Schikowsky, C., Wimmer, D., Korte, J., Schmitz, U., & Colditz, F. (2012). Silencing of the Rac1 GTPase MtROP9 in Medicago truncatula stimulates early mycorrhizal and oomycete root colonizations but negatively affects rhizobial infection. Plant Physiology, 159(1), 501-516. https://doi.org/10.1104/pp.112.193706

Kim, V. N. (2005). Small RNAs: classification, biogenesis, and function. Molecules & Cells (Springer Science & Business Media BV), 19(1), 1-15.

Levitt, J. (1980). Responses of plants to environmental stresses. Volume II. Water, radiation, salt, and other stresses (No. Ed. 2). Academic Press.

Li, J. C., Guo, J. B., Xu, W. Z., & Ma, M. (2007). RNA interference mediated silencing of phytochelatin synthase gene reduce cadmium accumulation in rice seeds. Journal of Integrative Plant Biology, 49(7), 1032-1037. https://doi.org/10.1111/j.1672-9072.2007.00473.x

Li, X., & Zhang, Y. Z. (2005). Computational detection of microRNAs targeting transcription factor genes in Arabidopsis thaliana. Computational biology and chemistry, 29(5), 360-367. 10.1016/j.compbiolchem.2005.08.005

Lindbo, J. A., Silva-Rosales, L., Proebsting, W. M., & Dougherty, W. G. (1993). Induction of a highly specific antiviral state in transgenic plants: implications for regulation of gene expression and virus resistance. The Plant Cell, 5(12), 1749-1759. 10.1105/tpc.5.12.1749

Lu, S., Sun, Y. H., Shi, R., Clark, C., Li, L., & Chiang, V. L. (2005). Novel and mechanical stress–responsive microRNAs in Populus trichocarpa that are absent from Arabidopsis. The Plant Cell, 17(8), 2186-2203. 10.1105/tpc.105.033456

Napoli, C., Lemieux, C., & Jorgensen, R. (1990). Introduction of a chimeric chalcone synthase gene into petunia results in reversible co-suppression of homologous genes in trans. The plant cell, 2(4), 279-289. 10.1105/tpc.2.4.279

Park, W., Li, J., Song, R., Messing, J., & Chen, X. (2002). Carpel Factory, a Dicer homolog, and HEN1-1 a novel protein, act in microRNA metabolism in Arabidopsis thaliana. Current Biology, 12(17), 1484-1495. 10.1016/s0960-9822(02)01017-5

Piriyapongsa, J., & Jordan, I. K. (2008). Dual coding of siRNAs and miRNAs by plant transposable elements. Rna, 14(5), 814-821. 10.1261/rna.916708

Pratt, A. J., & MacRae, I. J. (2009). The RNA-induced silencing complex: a versatile gene-silencing machine. Journal of Biological Chemistry, 284(27), 17897-17901. 10.1074/jbc.R900012200

Qiu, C. X., Xie, F. L., Zhu, Y. Y., Guo, K., Huang, S. Q., Nie, L., & Yang, Z. M. (2007). Computational identification of microRNAs and their targets in Gossypium hirsutum expressed sequence tags. Gene, 395(1-2), 49-61. 10.1016/j.gene.2007.01.034

Savadi, S., Prasad, P., Kashyap, P. L., & Bhardwaj, S. C. (2018). Molecular breeding technologies and strategies for rust resistance in wheat (Triticum aestivum) for sustained food security. Plant pathology, 67(4), 771-791. https://doi.org/10.1111/ppa.12802

Schaart, J. G., van de Wiel, C. C., Lotz, L. A., & Smulders, M. J. (2016). Opportunities for products of new plant breeding techniques. Trends in Plant Science, 21(5), 438-449. https://doi.org/10.1016/j.tplants.2015.11.006

Sunilkumar, G., Campbell, L. M., Puckhaber, L., Stipanovic, R. D., & Rathore, K. S. (2006). Engineering cotton seed for use in human nutrition by tissue-specific reduction of toxic gossypol. Proceedings of the National Academy of Sciences, 103(48), 18054-18059. https://doi.org/10.1073/pnas.0605389103

Sunkar, R., & Zhu, J. K. (2007). Micro RNAs and short interfering RNAs in plants. Journal of Integrative Plant Biology, 49(6), 817-826. https://doi.org/10.1111/j.1744-7909.2007.00499.x

Sunkar, R., Girke, T., Jain, P. K., & Zhu, J. K. (2005). Cloning and characterization of microRNAs from rice. The Plant Cell, 17(5), 1397-1411. https://doi.org/10.1105/tpc.105.031682

Van der Krol, A. R., Lenting, P. E., Veenstra, J., van der Meer, I. M., Koes, R. E., Gerats, A. G., & Stuitje, A. R. (1988). An anti-sense chalcone synthase gene in transgenic plants inhibits flower pigmentation. Nature, 333(6176), 866-869. 10.1038/333866a0

Van Eck, J., Conlin, B., Garvin, D. F., Mason, H., Navarre, D. A., & Brown, C. R. (2007). Enhancing beta-carotene content in potato by RNAi-mediated silencing of the beta-carotene hydroxylase gene. American Journal of Potato Research, 84(4), 331-342. 10.1007/BF02986245

Velasco, R., Zharkikh, A., Troggio, M., Cartwright, D. A., Cestaro, A., Pruss, D., & Viola, R. (2007). A high quality draft consensus sequence of the genome of a heterozygous grapevine variety. PloS One, 2(12), e1326. https://doi.org/10.1371/journal.pone.0001326

Wan, P., Wu, J., Zhou, Y., Xiao, J., Feng, J., Zhao, W., & Chen, J. Y. (2011). Computational analysis of drought stress-associated miRNAs and miRNA co-regulation network in Physcomitrella patens. Genomics, proteomics & bioinformatics, 9(1-2), 37-44. 10.1016/S1672-0229(11)60006-5

Watanabe, T., Totoki, Y., Sasaki, H., Minami, N., & Imai, H. (2007). Analysis of small RNA profiles during development. Methods in enzymology, 427, 155-169. 10.1016/S0076-6879(07)27009-0

Xiong, A. S., Yao, Q. H., Peng, R. H., Li, X., Han, P. L., & Fan, H. Q. (2005). Different effects on ACC oxidase gene silencing triggered by RNA interference in transgenic tomato. Plant Cell Reports, 23(9), 639-646. 10.1007/s00299-004-0887-7

Yang, C., Li, D., Liu, X., Ji, C., Hao, L., Zhao, X., & Zhu, L. (2014). OsMYB103L, an R2R3-MYB transcription factor, influences leaf rolling and mechanical strength in rice (Oryza sativa L.). BMC Plant Biology, 14(1), 1-15. 10.1186/1471-2229-14-158

Zamore, P. D., Tuschl, T., Sharp, P. A., & Bartel, D. P. (2000). RNAi: double-stranded RNA directs the ATP-dependent cleavage of mRNA at 21 to 23 nucleotide intervals. Cell, 101(1), 25-33. 10.1016/S0092-8674(00)80620-0

Zilberman, D., Cao, X., & Jacobsen, S. E. (2003). Argonaute4 control of locus-specific siRNA accumulation and DNA and histone methylation. Science, 299(5607), 716-719. 10.1126/science.1079695

Downloads

Published

2022-07-12

How to Cite

Kaya, Çağlar ., & Sarıyer, T. (2022). Gene Silencing RNAi Technology: Uses in Plants. The Journal of Global Climate Change, 1(1), 7–14. https://doi.org/10.56768/jytp.1.1.02

Issue

Section

ARTICLES