ELECTROCHEMICAL BIOSENSOR FOR BRCA1 GENE AND TAMOXIFEN INTERACTION
PDF

Keywords

Tamoxifen
BRCA1
Electrochemical DNA nanobiosensor
carbon nanotube
Differential Pulse Voltammetry
Drug-DNA interaction
Pencil Graphite Electrode
Screen Printed Electrode

How to Cite

YANIK, S., ÖZKAN-ARIKSOYSAL, D., & YILMAZ, S. (2020). ELECTROCHEMICAL BIOSENSOR FOR BRCA1 GENE AND TAMOXIFEN INTERACTION. JOURNAL OF SCIENTIFIC PERSPECTIVES, 4(1), 37-48. https://doi.org/10.26900/jsp.4.004

Abstract

The electrochemical nanobiosensor was designed for the determination of specific DNA sequences related to breast cancer 1 (BRCA1) gene and interaction between Anticancer Drug Tamoxifen (TAM) and related DNA sequences by using pencil graphite electrode (PGE), bare and multi-walled carbon nanotube (MWCNT) contained screen printed carbon electrodes (SPEs) for the first time. Here, biomolecular interaction between TAM and DNA was investigated differential pulse voltammetry (DPV) based on not only guanine signal but also TAM oxidation response. It was obtained that the guanine signal at about +1.00V obtained from probe DNA or hybrid DNA shows a remerkable increase after the interaction with TAM. Additionally, it was found that TAM interact with guanine bases and TAM signal which is near the guanine oxidation area also increase after the interaction with DNA. Consequently, the prepared biosensor offer suitable platform for the analysis of DNA hybridization and TAM-DNA interaction sensitively.

https://doi.org/10.26900/jsp.4.004
PDF

References

BAGNI, G, MASCINI, M., 2010. DNA Biosensor for Environmental Risk Assessment and Drugs Studies. In: Sensors for Chemical and Biological Applications. Ed.: Ram, M. K., Bhethanabotla, V. R., Boca Raton, FL: CRC Press. 249–276.
DANESHGAR, P., NOROUZI, P., GANJALI, M. R., ZAMANI, H. A. 2009. Ultrasensitive flow-injection electrochemical method for detection of anticancer drug tamoxifen, Talanta, 77: 1075-1080.
HURTADO-MONROY, R., VARGAS-VIVEROS, P., CARRILLO-MUÑNOZ, S., DUENAS-GONZALEZ, A., 2007. Tamoxifen-associated vasculitis in a breast cancer patient, World Journal of Surgical Oncology, 5-7
KATZ, E., WILLNER, I., WANG, J., 2004. Electroanalytical and Bioelectroanalytical Systems Based on Metal and Semiconductor Nanoparticles, Electroanal., 16: 19-44.
KEİSHAM, R., PROBHAT, K., RAJU K., 2012. Detection of anticancer drug tamoxifen using biosensor based on polyaniline probe modified with horseradish peroxidase, Materials Science and Engineering C,33: 583-587.
KELSEY, J. L., BERNSTEIN, L., 1996. Epidemiology and Prevention of Breast Cancer, Annual Review of Public Health, 17:47-67.
OZKAN, D., KARADENIZ H., ERDEM A., MASCINI M., OZSOZ M., 2004. Electrochemical genosensor for Mitomycin C- DNA interaction based on guanine signal, Journal of Pharmaceutical and Biomedical Analysis, 35(4), 905-912
PATOLSKY, F., LIEBER, C.M., 2005. Nanowire nanosensors, Materials Today, 8(4): 20-28.
PUMERA, M., SANCHEZ, S., ICHINOSE, I., TANG, J., 2007. Electrochemical nanobiosensors, Sensors and Actuators B Chem., 123: 1195-1205.
SEYMA AYDINLIK, S., OZKAN-ARIKSOYSAL, D., KARA, P., SAYINER, A. A., OZSOZ, M., 2011. A nucleic acid-based electrochemical biosensor for the detection of influenza B virus from PCR samples using gold nanoparticle-adsorbed disposable graphite electrode and Meldola’s blue as an intercalator, Anal. Methods, 3, 1607–1614.
SUBAK, H., OZKAN-ARIKSOYSAL, D., 2018. Label-Free electrochemical biosensor for the detection of ınfluenza genes and the solution of guanine-based displaying problem of dna hybridization. Sens. Actuators B, 263, pp. 196-207
TOPKAYA, S. N., OZKAN-ARIKSOYSAL, D., 2016. Prostate cancer biomarker detection with carbon nanotubes modified screen printed electrodes, Electroanalysis, 28(5), 1077-1084.
WANG, J., 2005. Nanomaterial-based electrochemical biosensors, Analyst, 130: 421-426.
YARMAN, A., and SCHELLER. F. W., 2014. The first electrochemical mıp sensor for tamoxifen, Sensors,14, 7647-7654.

Downloads

Download data is not yet available.