Optical coherence tomography angiography
Optic nerve

How to Cite



Glaucoma is an optic neuropathy and is one of the leading causes of irreversible blindness worldwide. There are studies on the role of vascular dysfunction in the pathogenesis of glaucoma. Evaluation of intraocular blood flow will be useful in elucidating the pathogenesis. Various techniques are available for the diagnosis and follow-up of patients with glaucoma. Optical coherence tomography angiography (OCTA) has emerged as new technology to detect the vascular effects of glaucoma.

Objectives: Optical coherence tomography angiography is a new technology and many publications have been made in the field of glaucoma. In this article, we aimed to review the studies conducted on the role of OCTA technology in glaucoma pathogenesis and to draw attention to how OCTA can be helpful for diagnosis and follow-up in glaucoma patients.

Methods: Whole literature through PubMed for the keywords of optical coherence tomography angiography (OCTA) and glaucoma were scanned. This review included articles up to February 2021. Only English languages articles were included.

Results: Optical coherence tomography angiography provides a rapid and noninvasive quantitative assessment of the microcirculation of the retina, optic nerve, and choroid.  Optical coherence tomography angiography uses the action of red blood cells as an intrinsic contrast agent. It has high reproducibility. Optical coherence tomography angiography studies have shown that microcirculation in the superficial optic nerve, peripapillary retina, and the macula is reduced in glaucoma patients. Optical coherence tomography angiography parameters in the peripapillary region are thought to be better biomarkers in advanced glaucoma than OCT parameters.

Conclusion: Optical coherence tomography angiography is a new technology that has the potential to provide useful information in the diagnosis and follow-up of patients with glaucoma.



AGHSAEI FARD, M.,RITCH, R.(2020).Optical coherence tomography angiography in glaucoma. Ann Transl Med., 8(18),1204.

BAEK, S.U.,KIM, Y.K.,HA, A.,KIM, Y.W.,LEE, J.,KIM, J.S.,JEOUNG, J.W.,PARK K.H.(2019).Diurnal change of retinal vessel density and mean ocular perfusion pressure in patients with open-angle glaucoma. PLoS One, 26,14(4),e0215684.

BAPTISTA, P.M.,VIEIRA, R.,FERREIRA, A.,FIGUEIREDO, A.,SAMPAIO, I.,REIS, R., MENÉRES, M.J.(2021)The Role of Multimodal Approach in the Assessment of Glaucomatous Damage in High Myopes. Clin Ophthalmol., 8(15),1061-1071.

BOJIKIAN, K.D.,CHEN, P.P.,WEN, J.C. (2019). Optical coherence tomography angiography in glaucoma.Curr Opin Ophthalmol., 30(2),110-116

CHEN, C.L.,ZHANG, A.,BOJIKIAN, K.D.,WEN, J.C.,ZHANG, Q.,XIN, C., MUDUMBAI,R.C.,JOHNSTONE,M.A.,CHEN,P.P.,WANG,R.K. (2016).Peripapillary Retinal Nerve Fiber Layer Vascular Microcirculation in Glaucoma Using Optical Coherence Tomography-Based Microangiography. Invest Ophthalmol Vis Sci., 57(9),OCT475-85.

CHEN,C.L.,WANG,R.K. (2017).Optical coherence tomography based angiography [Invited]. Biomed Opt Express., 24,8(2),1056-1082

CHEN, C.L.,BOJIKIAN, K.D.,WEN, J.C.,ZHANG, Q.,XIN, C.,MUDUMBAI, R.C., JOHNSTONE,M.A.,CHEN, P.P.,WANG, R.K.(2017). Peripapillary Retinal Nerve Fiber Layer Vascular Microcirculation in Eyes With Glaucoma and Single-Hemifield Visual Field Loss. JAMA Ophthalmol., 135(5),461-468.

CHEN,H.S.,LIU,C.H.,WU,W.C.,TSENG,H.J.,LEE,Y.S. (2017). Optical Coherence Tomography Angiography of the Superficial Microvasculature in the Macular and Peripapillary Areas in Glaucomatous and Healthy Eyes. Invest Ophthalmol Vis Sci., 58(9),3637-3645.

CHUNG,,J.K.,HWANG,Y.H.,WI,J.M.,KIM, M.,JUNG, J.J.(2017).Glaucoma Diagnostic Ability of the Optical Coherence Tomography Angiography Vessel Density Parameters. Curr Eye Res., 42 (11),1458-1467

GEYMAN,L.S.,GARG,R.A.,SUWAN Y,TRIVEDI,V.,KRAWITZ, B.D.,MO, S.,PINHAS A., TANTRAWORASIN,A.,CHUI TY,P., RITCH, R., ROSEN,R.B. (2017).Peripapillary perfused capillary density in primary open-angle glaucoma across disease stage: an optical coherence tomography angiography study. Br J Ophthalmol., 101(9),1261-1268.

GHAHARI,E.,BOWD,C.,ZANGWILL,L.M.,PROUDFOOT, J.,HASENSTAB, K.A.,HOU, H.,PENTEADO, R.C.,MANALASTAS, P.I.C., MOGHIMI,S., SHOJI,T.,CHRISTOPHER, M.,YARMOHAMMADI, A.,WEINREB, R.N.(2019).Association of Macular and Circumpapillary Microvasculature with Visual Field Sensitivity in Advanced Glaucoma. Am J Ophthalmol., 204,51-61.

HAGAG,A.M, GAO,S.S., JIA,Y., HUANG, D. (2017). Optical Coherence tomography angiography: technical principles and clinical applications in ophthalmology. Taiwan J Ophthalmol., 7 (3),115–129.

HOLLO,G. (2017a). Relationship between optical coherence tomography sector peripapillary angioflow-density and octopus visual field cluster mean defect values. PLoS One, 12, e0171541.

HOLLO, G.(2017b). Influence of large intraocular pressure reduction on peripapillary OCT vessel density in ocular hypertensive and glaucoma eyes. J Glaucoma, 26(1),e7–e10.

HOOD, D.C.,RAZA,A.S., DE MORAES, C.G.V.,LIEBMANN, J.M., RİTCH, R.(2013). Glaucomatous damage of the macula. Prog Retin Eye Res., 32,1–21.

HOU, H., MOGHIMI,S.,ZANGWILL,L.M., SHOJI, T.,GHAHARI, E., MANALASTAS, P.I.C.,PENTEADO, R.C.,WEINREB, R.N.(2018). Inter-eye Asymmetry of Optical Coherence Tomography Angiography Vessel Density in Bilateral Glaucoma, Glaucoma Suspect, and Healthy Eyes. Am J Ophthalmol., 190,69-77.

HOU,H.,MOGHIMI, S., PROUDFOOT, J.A.,GHAHARI, E.,PENTEADO, R.C.,BOWD, C., YANG,D.,WEINREB, R.N.(2020). Ganglion Cell Complex Thickness and Macular Vessel Density Loss in Primary Open-Angle Glaucoma. Ophthalmology, 127(8),1043-1052.

JEON S.J.,SHIN D.Y., PARK H.L., PARK, C.K.(2019).Association of Retinal Blood Flow with Progression of Visual Field in Glaucoma. Sci Rep., 14,9(1),16813.

JIA,Y.,MORRİSON, J.C.,TOKAYER, J.,TAN,O.,LOMBARDI,L.,BAUMANN,B.,LU,C.D., CHOI,W.,FUJIMOTO,J.G.,HUANG,D. (2012a).Quantitative OCT angiography of optic nerve head blood flow. Biomed Opt Express, 1,3(12),3127-37.

JIA,Y.,TAN,O.,TOKAYER,J.,POTSAID,B.,WANG,Y.,LIU,J.J.,KRAUS,M.F.,SUBHASH,H.,FUJIMOTO,J.G.,HORNEGGER, J., HUANG,D. (2012b).Split-spectrum amplitude-decorrelation angiography with optical coherence tomography.Opt Express., 13,20(4),4710-25.

JIA,Y.,WEI,E.,WANG,X.,ZHANG, X.,MORRISON,J.C.,PARIKH,M.,LOMBARDI,L.H., GATTEY,D.M.,ARMOUR,R.L., EDMUNDS,B.,KRAUS,M.F.,FUJIMOTO,J.G.,HUANG,D. (2014). Optical coherence tomography angiography of optic disc perfusion in glaucoma. Ophthalmology,121(7),1322-32.

KUMAR,R.S.,ANEGONDI,N.,CHANDAPURA,R.S.,SUDHAKARAN,S.,KADAMBI,S.V., RAO,H.L., AUNG,T.,SINHA ROY,A. (2016). Discriminant Function of Optical Coherence Tomography Angiography to Determine Disease Severity in Glaucoma. Invest Ophthalmol Vis Sci., 1,57(14),6079-6088.

KWON,J.,SHIN,J.W.,LEE,J.,KOOK,M.S. (2018). Choroidal Microvasculature Dropout Is Associated With Parafoveal Visual Field Defects in Glaucoma. Am J Ophthalmol., 188:141-154.

LEE,E.J.,LEE,K.M.,LEE,S.H.,KIM,T.W. (2016 ).OCT Angiography of the Peripapillary Retina in Primary Open-Angle Glaucoma. Invest Ophthalmol Vis Sci.,57 (14), 6265-6270.

LESKE,M.C.,CONNELL,A.M.,SCHACHAT,A.P.,HYMAN,L.(1994 ).The Barbados eye study. prevalence of open angle glaucoma. Arch Ophthalmol., 112(6),821–829.

LESKE,M.C.,HEIJL,A.,HUSSEIN,M.,BENGTSSON,B.,HYMAN,L.,KOMAROFF,E.(2003). Early Manifest Glaucoma Trial Group. Factors for glaucoma progression and the effect of treatment: the early manifest glaucoma trial. Arch Ophthalmol., 121(1),48-56.

LESKE,M.C.(2009 ).Ocular perfusion pressure and glaucoma: clinical trial and epidemiologic findings. Curr Opin Ophthalmol., 20(2),73–78.

LIN,F.,LI,F.,GAO,K.,HE,W.,ZENG,J.,CHEN,Y.,CHEN,M.,CHENG,W.,SONG,Y.,PENG,Y., JIN,L.,LIN,T.P.H.,WANG,Y.,THAM,C.C.,CHEUNG,C.Y.,ZHANG,X.(2021). Longitudinal Changes in Macular Optical Coherence Tomography Angiography Metrics in Primary Open-Angle Glaucoma With High Myopia: A Prospective Study. Invest Ophthalmol Vis Sci., 4,62(1),30

LIU,L.,JIA,Y.,TAKUSAGAWA,H.L.,PECHAUER,A.D.,EDMUNDS,B.,LOMBARDI,L., DAVIS,E.,MORRISON,J.C.,HUANG,D. (2015). Optical Coherence Tomography Angiography of the Peripapillary Retina in Glaucoma. JAMA Ophthalmol., 133(9),1045-52.

MEMARZADEH,F.,YING-LAI,M.,CHUNG,J.,AZEN,S.P.,VARMA,R.(2010).Blood pressure, perfusion pressure, and open-angle glaucoma: the los angeles latino eye study. Invest Ophthalmol Vis Sci., 51,2872–2877.

MANSOORI,T.,SIVASWAMY,J.,GAMALAPATI,J.S.,BALAKRISHNA,N. (2018). Topography and correlation of radial peripapillary capillary density network with retinal nerve fibre layer thickness. Int Ophthalmol., 38(3),967-974.

MANSOURI,K.,RAO,H.L.,HOSKENS,K.,D'ALESSANDRO,E.,FLORES-REYES E.M., MERMOUD,A.,WEINREB,R.N.(2018). Diurnal Variations of Peripapillary and Macular Vessel Density in Glaucomatous Eyes Using Optical Coherence Tomography Angiography. J Glaucoma., 27(4),336-341.

PENTEADO,R.C.,BOWD,C.,PROUDFOOT,J.A.,MOGHIMI,S.,MANALASTAS,P.I.C., GHAHARI,E.,HOU,H.,SHOJI,T.,ZANGWILL,L.M.,WEINREB,R.N.(2020).Diagnostic Ability of Optical Coherence Tomography Angiography Macula Vessel Density for the Diagnosis of Glaucoma Using Difference Scan Sizes. J Glaucoma., 29(4),245-251.

PRADHAN,Z.S.,DIXIT,S.,SREENIVASAIAH,S.,RAO,H.L.,VENUGOPAL,J.P.,DEVI,S., WEBERS,C.A.B.(2018 ).A Sectoral Analysis of Vessel Density Measurements in Perimetrically Intact Regions of Glaucomatous Eyes: An Optical Coherence Tomography Angiography Study. J Glaucoma., 27(6),525-531.

QUİGLE, H.A.,BROMAN,A.T.(2006).The number of people with glaucoma worldwide in 2010 and 2020. Br J Ophthalmol., 90,262–267.

RAO,H.L.,PRADHAN,Z.S.,WEINREB,R.N.,REDDY,H.B.,RIYAZUDDIN,M.,DASARI,S., PALAKURTHY,M.,PUTTAIAH,N.K.,RAO,D.A.,WEBERS,C.A.(2016). Regional Comparisons of Optical Coherence Tomography Angiography Vessel Density in Primary Open-Angle Glaucoma. Am J Ophthalmol., 71,75-83.

RAO,H.L.,PRADHAN,Z.S.,WEİNREB,R.N.,RIYAZUDDIN,M.,DASARI,S.,VENUGOPAL, J.P.,PUTTAIAH,N.K.,RAO,D.A.,DEVİ,S.,MANSOURİ,K.,WEBERS,C.A. (2017a).A comparison of the diagnostic ability of vessel density and structural measurements of optical coherence tomography in primary open angle glaucoma. PLoS One., 12(3),e0173930.

RAO,H.L.,PRADHAN,Z.S.,WEINREB,R.N.,DASARI,S.,RIYAZUDDIN,M.,VENUGOPAL,J.P.,PUTTAIAH,N.K.,RAO,D.A.S.,DEVI ,S.,MANSOURI,K.,WEBERS,C.A.B.(2017b). Optical Coherence Tomography Angiography Vessel Density Measurements in Eyes With Primary Open-Angle Glaucoma and Disc Hemorrhage. J Glaucoma., 26(10),888-895.

RAO,H.L.,KADAMBI,S.V.,WEINREB,R.N.,PUTTAIAH,N.K.,PRADHAN,Z.S.,RAO, D.A.S.,KUMAR,R.S.,WEBERS,C.A.B.,SHETTY,R.(2017c). Diagnostic ability of peripapillary vessel density measurements of optical coherence tomography angiography in primary open-angle and angle-closure glaucoma. Br J Ophthalmol., 101(8),1066-1070.

SCRIPSEMA,N.K.,GARCIA,P.M.,BAVIER,R.D.,CHUI,T.Y.,KRAWITZ, B.D.,MO,S., AGEMY,S.A.,XU,L.,LIN,Y.B.,PANARELLI,J.F.,SIDOTI,P.A.,TSAI,J.C.,ROSEN,R.B. (2016).Optical Coherence Tomography Angiography Analysis of Perfused Peripapillary Capillaries in Primary Open-Angle Glaucoma and Normal-Tension Glaucoma. Invest Ophthalmol Vis Sci., 1,57(9),OCT611-OCT620.

SHIN,J.W.,KWON,J.,LEE,J.,KOOK,M.S .(2019). Relationship between vessel density and visual field sensitivity in glaucomatous eyes with high myopia. Br J Ophthalmol., 103,585-91.

SHIN,J.W.,JO,Y.H.,SONG,M.K.,WON,H.J.,KOOK,M.S.(2021). Nocturnal blood pressure dip and parapapillary choroidal microvasculature dropout in normal-tension glaucoma. Sci Rep., 8,11(1),206.

SHOJI,T.,ZANGWILL,L.M.,AKAGI,T.,SAUNDERS,L.J.,YARMOHAMMADI,A., MANALASTAS,P.I.C.,PENTEADO,R.C.,WEINREB,R.N.(2017). Progressive Macula Vessel Density Loss in Primary Open-Angle Glaucoma: A Longitudinal Study. Am J Ophthalmol., 182,107-117.

SPAIDE,R.,FUJIMOTO,J.G.,WAHEED,N.K. (2015). Image artifacts in optical coherence angiography. Retina. 35 (11),2163–2180.

SUWAN,Y.,GEYMAN,L.S.,FARD,M.A.,TANTRAWORASIN,A.,CHUI,T.Y.,ROSEN,R.B., RITCH,R.(2018). Peripapillary Perfused Capillary Density in Exfoliation Syndrome and Exfoliation Glaucoma versus POAG and Healthy Controls: An OCTA Study. Asia Pac J Ophthalmol (Phila)., 7(2),84-89.

SUWAN,Y.,FARD,M.A.,GEYMAN,L.S.,TANTRAWORASIN,A.,CHUI,T.Y., ROSEN,R.B, RITCH,R.(2018).Association of Myopia With Peripapillary Perfused Capillary Density in Patients With Glaucoma: An Optical Coherence Tomography Angiography Study. JAMA Ophthalmol., 136(5),507-513.

TAKUSAGAWA,H.L.,LIU,L., MA,K.N.,JIA,Y.,GAO,S.S.,ZHANG,M.,EDMUNDS,B., PARIKH,M.,TEHRANİ,S.,MORRİSON,J.C.,HUANG,D. (2017). Projection-Resolved Optical Coherence Tomography Angiography of Macular Retinal Circulation in Glaucoma. Ophthalmology, 124(11),1589-1599.

TROLO,G.,RABOLO,A.,SHEMONSKI,N.D.,FARD,A.,DI MATTEO,F.,SACCONI,R., BETTIN,P.,MAGAZZENI,S.,QUERQUES,G.,VAZQUEZ,L.E.,BARBONI,P.,BANDELLO, F. (2017).Optical Coherence Tomography Angiography Macular and Peripapillary Vessel Perfusion Density in Healthy Subjects, Glaucoma Suspects, and Glaucoma Patients. Invest Ophthalmol Vis Sci., 58(13),5713-5722.

VAN MELKEBEKE,L.,BARBOSA-BREDA,J.,HUYGENS,M.,STALMANS,I.(2018). Optical Coherence Tomography Angiography in Glaucoma: A Review. Ophthalmic Res., 60(3),139-151.

WAN,K.H.,LAM,A.K.N.,LEUNG,C.K. (2018).Optical coherence tomography angiography compared with optical coherence tomography macular measurements for detection of glaucoma. JAMA Ophthalmol., 136,866–874.

WANG,X.,JIANG,C.,KO,T.,KONG,X.,YU,X.,MIN,W.,SHI,G.,SUN,X. (2015) .Correlation between optic disc perfusion and glaucomatous severity in patients with open-angle glaucoma: an optical coherence tomography angiography study. Graefes Arch Clin Exp Ophthalmol., 253(9),1557-64.

WANG,X.,JIANG,C., KONG,X.,YU,X., SUN,X. (2017). Peripapillary retinal vessel density in eyes with acute primary angle closure: an optical coherence tomography angiography study. Graefes Arch Clin Exp Ophthalmol., 255(5),1013-1018.

WANG,Y.,XIN,C.,LI,M.,SWAIN,D.L.,CAO,K.,WANG, H.,WANG,N. (2020). Macular vessel density versus ganglion cell complex thickness for detection of early primary open-angle glaucoma. BMC Ophthalmol., 20(1),17.

WERNER,A.C.,SHEN,L.Q. (2019). A Review of OCT Angiography in Glaucoma. Semin Ophthalmol., 34(4),279-286.

YARMOHAMMADI,A.,ZANGWILL,L.M.,DINIZ-FILHO,A. (2016). Relationship between optical coherence tomography angiography vessel density and severity of visual field loss in Glaucoma. Ophthalmology., 123,2498–2508

YARMOHAMMADI,A.,ZANGWILL,L.M.,DINIZ-FILHO,A.,SAUNDERS,L.J.,SUH,M.H., WU,Z.,MANALASTAS,P.I.C.,AKAGI,T.,MEDEIROS,F.A.,WEINREB,R.N.(2017). Peripapillary and Macular Vessel Density in Patients with Glaucoma and Single-Hemifield Visual Field Defect. Ophthalmology., 124(5),709-719.

YARMOHAMMADI,A.,ZANGWILL,L.M.,MANALASTAS,P.I.C.,FULLER,N.J.,DINIZ-FILHO,A.,SAUNDERS,L.J.,SUH,M.H.,HASENSTAB,K.,WEINREB,R.N.(2018). Peripapillary and Macular Vessel Density in Patients with Primary Open-Angle Glaucoma and Unilateral Visual Field Loss. Ophthalmology., 125(4),578-587.

ZHANG,S.,WU,C.,LIU,L.,JIA,Y.,ZHANG,Y.,ZHANG,Y.,ZHANG,H.,ZHONG,Y.,HUANG D. (2017). Optical Coherence Tomography Angiography of the Peripapillary Retina in Primary Angle-Closure Glaucoma. Am J Ophthalmol., 182,194-200.

ZHU,L.,ZONG,Y.,YU,J.,JIANG,C., HE,Y.,JIA,Y.,HUANG,D.,SUN,X. (2018). Reduced Retinal Vessel Density in Primary Angle Closure Glaucoma: A Quantitative Study Using Optical Coherence Tomography Angiography. J Glaucoma, 27(4),322-327.

Creative Commons License

This work is licensed under a Creative Commons Attribution 4.0 International License.

Copyright (c) 2021 Holistence Publications


Download data is not yet available.