AI in the healthcare system: Current viewpoint developments


Abstract views: 141 / PDF downloads: 105

Authors

DOI:

https://doi.org/10.26900/hsq.2850

Keywords:

Artificial intelligence, national health programs, natural language processing, machine learning, deep learning

Abstract

AI is increasingly fueling routine transformation in healthcare, computational pathology and diagnostics, but there are still challenges with its clinical integration. Artificial intelligence (AI) is simply mathematics, and to understand how it works, we must be good with our calculations. The major problem is how AI can be developed in such a manner without marginalizing the global population. AI needs to be reliable, as without trust it is impossible for it to drive adoption. In the next few years, many aspects of pharmaceutical manufacturing will be changed by AI through analysis of complex datasets, identification of subtle patterns, and precise predictions, leading to process optimization, quality assurance and operational efficiency. This review is focused on developments regarding current viewpoints on AI applications in healthcare, as well as the challenges, limitations, and concerns surrounding its use in replacing the human workforce.

Downloads

Download data is not yet available.

References

Taddy M. The Technological Elements of Artificial Intelligence. In: Agrawal A, Gans J, Goldfarb A, editors. The Economics of Artificial Intelligence: An Agenda. Chicago: University of Chicago Press; 2019. 61-87 p. DOI: https://doi.org/10.7208/chicago/9780226613475.003.0002

Liao Y-Y, Lin J-S, Tai S-C. CMAC with clustering memory and its implication to facial expression recognition. Int J Pattern Recognit Artif Intell. 2011;25(7):1055-72. doi: 10.1142/S0218001411008968. DOI: https://doi.org/10.1142/S0218001411008968

Bendig D, Bräunche A. The role of artificial intelligence algorithms in information systems research: A conceptual overview and avenues for research. Manag Rev Q. 2024. doi: 10.1007/s11301-024-00451-y. DOI: https://doi.org/10.1007/s11301-024-00451-y

Pu Z, Shi CL, Jeon CO, Fu J, Liu SJ, Lan C, et al. ChatGPT and generative AI are revolutionizing the scientific community: A Janus-faced conundrum. iMeta. 2024;3(2):e178. doi: 10.1002/imt2.178. DOI: https://doi.org/10.1002/imt2.178

Ulloa JG. Artificial intelligence: Predictive vs generative vs new mixing AI. Biomed Sci Res. 2024;22(4):577-9. doi: 10.34297/AJBSR.2024.22.002973. DOI: https://doi.org/10.34297/AJBSR.2024.22.002973

Agarwal R. Predictive Analysis in Health Care System Using AI. In: Garg L, Basterrech S, Banerjee C, Sharma TK, editors. Artificial Intelligence in Healthcare. Advanced Technologies and Societal Change. Singapore: Springer Nature Singapore Pte Ltd.; 2022. 117-31 p. doi: 10.1007/978-981-16-6265-2. DOI: https://doi.org/10.1007/978-981-16-6265-2_8

Elgesem D, editor The AI Act and the risks posed by generative AI models. NAIS 2023: The 2023 symposium of the Norwegian AI Society; 2023 June 14-15; Bergen.

Bajwa J, Munir U, Nori A, Williams B. Artificial intelligence in healthcare: Transforming the practice of medicine. Future Healthc J. 2021;8(2):e188-e94. doi: 10.7861/fhj.2021-0095. DOI: https://doi.org/10.7861/fhj.2021-0095

Alowais SA, Alghamdi SS, Alsuhebany N, Alqahtani T, Alshaya AI, Almohareb SN, et al. Revolutionizing healthcare: The role of artificial intelligence in clinical practice. BMC Med Educ. 2023;23(1):689. doi: 10.1186/s12909-023-04698-z. DOI: https://doi.org/10.1186/s12909-023-04698-z

Curzon J, Kosa TA, Akalu R, El-Khatib K. Privacy and artificial intelligence. IEEE Trans Artif Intell. 2021;2(2):96-108. doi: 10.1109/TAI.2021.3088084. DOI: https://doi.org/10.1109/TAI.2021.3088084

Ahmad SF, Han H, Alam MM, Rehmat MK, Irshad M, Arrano-Munoz M, et al. Impact of artificial intelligence on human loss in decision making, laziness and safety in education. Humanit Soc Sci Commun. 2023;10(1):311. doi: 10.1057/s41599-023-01787-8. DOI: https://doi.org/10.1057/s41599-023-01842-4

BaniHani I, Alawadi S, Elmrayyan N. AI and the decision-making process: A literature review in healthcare, financial, and technology sectors. J Decis Syst. 2024;33(sup1):389-99. doi: 10.1080/12460125.2024.2349425. DOI: https://doi.org/10.1080/12460125.2024.2349425

Arora A, Lawton T. Artificial intelligence in the NHS: Moving from ideation to implementation. Future Healthc J. 2024;11(3):100183. doi: 10.1016/j.fhj.2024.100183. DOI: https://doi.org/10.1016/j.fhj.2024.100183

Felzmann H, Villaronga EF, Lutz C, Tamò-Larrieux A. Transparency you can trust: Transparency requirements for artificial intelligence between legal norms and contextual concerns. Big Data Soc. 2019;6(1). doi: 10.1177/2053951719860542. DOI: https://doi.org/10.1177/2053951719860542

Ueda D, Kakinuma T, Fujita S, Kamagata K, Fushimi Y, Ito R, et al. Fairness of artificial intelligence in healthcare: Review and recommendations. Jpn J Radiol. 2024;42(1):3-15. doi: 10.1007/s11604-023-01474-3. DOI: https://doi.org/10.1007/s11604-023-01474-3

Lee D, Yoon SN. Application of artificial intelligence-based technologies in the healthcare industry: Opportunities and challenges. Int J Environ Res Public Health. 2021;18(1). doi: 10.3390/ijerph18010271. DOI: https://doi.org/10.3390/ijerph18010271

Bienefeld N, Keller E, Grote G. AI interventions to alleviate healthcare shortages and enhance work conditions in critical care: Qualitative analysis. J Med Internet Res. 2025;27:e50852. doi: 10.2196/50852. DOI: https://doi.org/10.2196/50852

Khanna NN, Maindarkar MA, Viswanathan V, Fernandes JFE, Paul S, Bhagawati M, et al. Economics of artificial intelligence in healthcare: Diagnosis vs. treatment. Healthc. 2022;10(12). doi: 10.3390/healthcare10122493. DOI: https://doi.org/10.3390/healthcare10122493

Hanna MG, Pantanowitz L, Dash R, Harrison JH, Deebajah M, Pantanowitz J, et al. Future of artificial intelligence-machine learning trends in pathology and medicine. Mod. Pathol.: An official journal of the United States and Canadian Academy of Pathology, Inc. 2025;38(4):100705. doi: 10.1016/j.modpat.2025.100705. DOI: https://doi.org/10.1016/j.modpat.2025.100705

Welsh C, Roman Garcia S, Barnett GC, Jena R. Democratising artificial intelligence in healthcare: Community-driven approaches for ethical solutions. Future Healthc J. 2024;11(3):100165. doi: 10.1016/j.fhj.2024.100165. DOI: https://doi.org/10.1016/j.fhj.2024.100165

Edwards SD. Artificial intelligence investigation into physical health activity during COVID-19 lockdown. Afr J Phys Act Health Sci. 2021;27(3):337-48. doi: 10.37597/ajphes.2021.27.3.4. DOI: https://doi.org/10.37597/ajphes.2021.27.3.4

Graham S, Depp C, Lee EE, Nebeker C, Tu X, Kim HC, et al. Artificial intelligence for mental health and mental illnesses: An overview. Curr Psychiatry Rep. 2019;21(11):116. doi: 10.1007/s11920-019-1094-0. DOI: https://doi.org/10.1007/s11920-019-1094-0

Yadav S, Singh A, Singhal R, Yadav JP. Revolutionizing drug discovery: The impact of artificial intelligence on advancements in pharmacology and the pharmaceutical industry. Int. Pharm. 2024;2(3):367-80. doi: 10.1016/j.ipha.2024.02.009. DOI: https://doi.org/10.1016/j.ipha.2024.02.009

Sharma S, Rawal R, Shah D. Addressing the challenges of AI-based telemedicine: Best practices and lessons learned. J Educ Health Promot. 2023;12:338. doi: 10.4103/jehp.jehp_402_23. DOI: https://doi.org/10.4103/jehp.jehp_402_23

Bekbolatova M, Mayer J, Ong CW, Toma M. Transformative potential of AI in healthcare: Definitions, applications, and navigating the ethical landscape and public perspectives. Healthc. 2024;12(2). doi: 10.3390/healthcare12020125. DOI: https://doi.org/10.3390/healthcare12020125

Eggerth A, Hayn D, Schreier G. Medication management needs information and communications technology-based approaches, including telehealth and artificial intelligence. Br J Clin Pharmacol. 2020;86(10):2000-7. doi: 10.1111/bcp.14045. DOI: https://doi.org/10.1111/bcp.14045

Secara I-A, Hordiiuk D. Personalized health monitoring systems: Integrating wearable and AI. J Intell Learn Syst Appl. 2024;16(2):44-52. doi: 10.4236/jilsa.2024.162004. DOI: https://doi.org/10.4236/jilsa.2024.162004

Arslan A, Cooper C, Khan Z, Golgeci I, Ali I. Artificial intelligence and human workers interaction at team level: A conceptual assessment of the challenges and potential HRM strategies. Int J Manpow. 2022;43(1):75-88. doi: 10.1108/IJM-01-2021-0052. DOI: https://doi.org/10.1108/IJM-01-2021-0052

Salway R, Sillero-Rejon C, Forte C, Grey E, Jessiman P, McLeod H, et al. A service evaluation of the uptake and effectiveness of a digital delivery of the NHS health check service. BMJ Open. 2024;14(11):e091417. doi: 10.1136/bmjopen-2024-091417. DOI: https://doi.org/10.1136/bmjopen-2024-091417

Jackson M. Christopher Strachey: A personal recollection. High-Order Symb Comput. 2000;13(1-2):73-4. doi: 10.1023/A:1010005808988. DOI: https://doi.org/10.1023/A:1010005808988

Cordeschi R. AI turns fifty: Revisiting its origins. Appl Artif Intell. 2007;21:259-79. doi: 10.1080/08839510701252304. DOI: https://doi.org/10.1080/08839510701252304

Mishra C, Gupta DL. Deep machine learning and neural networks: An overview. IAES Int J Artif Intell. 2017;6(2):66-73. DOI: https://doi.org/10.11591/ijai.v6.i2.pp66-73

Hsu F-H, Kleinberg J. Behind Deep Blue: Building the computer that defeated the World Chess Champion. Princeton: Princeton University Press; 2022. doi: 10.2307/j.ctv22pzxz1. DOI: https://doi.org/10.1515/9780691235141

Da Silva DM, Da Costa Farias R, Cunha A, Peres RA, Casagrande LS. History and legacy of Alan Turing for computer Science. Int J Sci Res Manag. 2024;12(2):1047-56. doi: 10.18535/ijsrm/v12i02.ec06. DOI: https://doi.org/10.18535/ijsrm/v12i02.ec06

Jones MM, Kamenetzky A, Manville C, Ghiga I, MacLure C, Harte E, et al. The National Institute for health research at 10 Years: An impact synthesis: 100 impact case studies. Rand Health Q. 2017;6(2):13.

Qadir MI, Hira RS, Kolbinger FR. From marginal gains to clinical utility: machine learning-based percutaneous coronary intervention risk prediction models. Eur Heart J Digit Health. 2025;6(2):159-61. doi: 10.1093/ehjdh/ztaf001. DOI: https://doi.org/10.1093/ehjdh/ztaf001

Tyler S, Olis M, Aust N, Patel L, Simon L, Triantafyllidis C, et al. Use of artificial intelligence in triage in hospital emergency departments: A scoping review. Cureus. 2024;16(5):e59906. doi: 10.7759/cureus.59906. DOI: https://doi.org/10.7759/cureus.59906

Gentile F, Malara N. Artificial intelligence for cancer screening and surveillance. ESMO Real World Data Digital Oncol. 2024;5(C). doi: 10.1016/j.esmorw.2024.100046. DOI: https://doi.org/10.1016/j.esmorw.2024.100046

Ayorinde A, Mensah DO, Walsh J, Ghosh I, Ibrahim SA, Hogg J, et al. Health care professionals' experience of using AI: Systematic review with narrative synthesis. J Med Internet Res. 2024;26:e55766. doi: 10.2196/55766. DOI: https://doi.org/10.2196/55766

Tucci V, Saary J, Doyle TE. Factors influencing trust in medical artificial intelligence for healthcare professionals: A narrative review. J Med Artif Intell. 2021;5. doi: 10.21037/jmai-21-25. DOI: https://doi.org/10.21037/jmai-21-25

Portoghese I, Galletta M, Coppola RC, Finco G, Campagna M. Burnout and workload among health care workers: The moderating role of job control. Saf Health Work. 2014;5(3):152-7. doi: 10.1016/j.shaw.2014.05.004. DOI: https://doi.org/10.1016/j.shaw.2014.05.004

Hillmann W, Hayes BD, Marshall J, Bravard M, Jacob S, Gil R, et al. Improving burnout through reducing administrative burden: A pilot of pharmacy-driven medication histories on a hospital medicine service. J Gen Intern Med. 2021;36(8):2511-3. doi: 10.1007/s11606-020-06066-9. DOI: https://doi.org/10.1007/s11606-020-06066-9

Farfan J, Pena M, Topa G. Lack of group support and burnout syndrome in workers of the state security forces and corps: Moderating role of neuroticism. Med. 2019;55(9). doi: 10.3390/medicina55090536. DOI: https://doi.org/10.3390/medicina55090536

Siira E, Tyskbo D, Nygren J. Healthcare leaders' experiences of implementing artificial intelligence for medical history-taking and triage in Swedish primary care: An interview study. BMC Prim Care. 2024;25(1):268. doi: 10.1186/s12875-024-02516-z. DOI: https://doi.org/10.1186/s12875-024-02516-z

Rahman MA, Victoros E, Ernest J, Davis R, Shanjana Y, Islam MR. Impact of Artificial Intelligence (AI) technology in healthcare sector: A critical evaluation of both sides of the coin. Clin Pathol. 2024;17:2632010X241226887. doi: 10.1177/2632010X241226887. DOI: https://doi.org/10.1177/2632010X241226887

Al-Antari MA. Artificial intelligence for medical diagnostics-existing and future ai technology! Diagn. 2023;13(4). doi: 10.3390/diagnostics13040688. DOI: https://doi.org/10.3390/diagnostics13040688

Paul D, Sanap G, Shenoy S, Kalyane D, Kalia K, Tekade RK. Artificial intelligence in drug discovery and development. Drug Discov Today. 2021;26(1):80-93. doi: 10.1016/j.drudis.2020.10.010. DOI: https://doi.org/10.1016/j.drudis.2020.10.010

Keegan AC, Bose S, McDermott KM, Starks White MP, Stonko DP, Jeddah D, et al. Implementation of a patient-centered remote wound monitoring system for management of diabetic foot ulcers. Front Endocrinol. 2023;14:1157518. doi: 10.3389/fendo.2023.1157518. DOI: https://doi.org/10.3389/fendo.2023.1157518

Margham T, Williams C, Steadman J, Hull S. Reducing missed appointments in general practice: Evaluation of a quality improvement programme in East London. Br J Gen Pract. 2021;71(702):e31-e8. doi: 10.3399/bjgp20X713909. DOI: https://doi.org/10.3399/bjgp20X713909

Sarker IH. Machine learning: Algorithms, real-world applications and research directions. SN Comput Sci. 2021;2(3):160. doi: 10.1007/s42979-021-00592-x. DOI: https://doi.org/10.1007/s42979-021-00592-x

Gaffney H, Mirza KM. Pathology in the artificial intelligence era: Guiding innovation and implementation to preserve human insight. Acad Pathol. 2025;12(1):100166. doi: 10.1016/j.acpath.2025.100166. DOI: https://doi.org/10.1016/j.acpath.2025.100166

Zou R. Research on Ethical Issues, Data Privacy Protection, Algorithmic Bias, and Regulatory Policy of Artificial Intelligence Technology in Digital Transformation. In: Li X, Yuan C, Vartiak L, editors. Proceedings of the 8th International Conference on Economic Management and Green Development ICEMGD 2024. Singapore: Springer; 2025. 234-42 p. doi: 10.1007/978-981-96-3236-7_21. DOI: https://doi.org/10.1007/978-981-96-3236-7_21

Wang SY, Pershing S, Lee AY, AI AAOTo, Committee AAOMIT. Big data requirements for artificial intelligence. Curr Opin Ophthalmol. 2020;31(5):318-23. doi: 10.1097/ICU.0000000000000676. DOI: https://doi.org/10.1097/ICU.0000000000000676

Bodenheimer T, Chen E, Bennett HD. Confronting the growing burden of chronic disease: Can the U.S. health care workforce do the job? Health Aff. 2009;28(1):64-74. doi: 10.1377/hlthaff.28.1.64. DOI: https://doi.org/10.1377/hlthaff.28.1.64

Kambhampati S. Challenges of human-aware AI Systems. AI Mag. 2020;41(3):3-17. doi: 10.1609/aimag.v41i3.5257. DOI: https://doi.org/10.1609/aimag.v41i3.5257

Sezgin E. Artificial intelligence in healthcare: Complementing, not replacing, doctors and healthcare providers. Digit Health. 2023;9:20552076231186520. doi: 10.1177/20552076231186520. DOI: https://doi.org/10.1177/20552076231186520

Oye E, Faith H. Ethical considerations in AI Healthcare Solutions 2025.

Dias R, Torkamani A. Artificial intelligence in clinical and genomic diagnostics. Genome Med. 2019;11(1):70. doi: 10.1186/s13073-019-0689-8. DOI: https://doi.org/10.1186/s13073-019-0689-8

Schwaller F. Will AI improve your life? Here's what 4,000 researchers think. Nat 2025. doi: 10.1038/d41586-025-01123-x. DOI: https://doi.org/10.1038/d41586-025-01123-x

Rodrigues R. Legal and human rights issues of AI: Gaps, challenges and vulnerabilities. J Resp Technol. 2020;4:100005. doi: 10.1016/j.jrt.2020.100005. DOI: https://doi.org/10.1016/j.jrt.2020.100005

Gibney E. China's cheap, open AI model DeepSeek thrills scientists. Nat. 2025;638(8049):13-4. doi: 10.1038/d41586-025-00229-6. DOI: https://doi.org/10.1038/d41586-025-00229-6

Parmar M, Govindarajulu Y. Challenges in ensuring AI safety in DeepSeek-R1 Models: The shortcomings of reinforcement learning strategies. arXiv. 2025. doi: 10.48550/arXiv.2501.17030.

Huanbutta K, Burapapadh K, Kraisit P, Sriamornsak P, Ganokratanaa T, Suwanpitak K, et al. Artificial intelligence-driven pharmaceutical industry: A paradigm shift in drug discovery, formulation development, manufacturing, quality control, and post-market surveillance. Eur J Pharm Sci. 2024;203:106938. doi: 10.1016/j.ejps.2024.106938. DOI: https://doi.org/10.1016/j.ejps.2024.106938

Sincavage SM, Muehlfelder T, Carter CM. Intersection of Biotechnology and AI. In: Sincavage SM, Muehlfelder T, Carter CM, editors. Advanced Technologies for Humanity. Kansas State University, Manhattan, KS: New Prairie Press; 2024.

Chowdhury M, Sadek AW. Advantages and Limitations of Artificial Intelligence Washington, DC: 2012.

Downloads

Published

2025-10-04

How to Cite

Herbert, E., & Fournier, D. (2025). AI in the healthcare system: Current viewpoint developments. Health Sciences Quarterly, 5(4), 599–613. https://doi.org/10.26900/hsq.2850

Issue

Section

Review Article