The explainable AI (XAI) in healthcare: A bibliometric analysis using VOSviewer and R Studio
DOI:
https://doi.org/10.26900/hsq.2847Keywords:
Explainable AI (XAI), Web of Science, science mapping, bibliometric analysis, VOSviewer, BibliometrixAbstract
This study aims to perform a comprehensive bibliometric analysis to map the global research structure, evolution, and key trends of explainable XAI in healthcare. Utilizing Web of Science data (covering 2018–March 2025) and employing tools including VOSviewer and Bibliometrix, the analysis examined publication trends, keyword co-occurrence networks and centrality, thematic evolution, conceptual structure, author productivity, international collaboration networks, and co-citation patterns. Findings indicate exponential growth in XAI in healthcare research, peaking notably in 2024. “Explainable AI”, “machine learning”, and “deep learning” constitute the core conceptual basis, with “explainable AI” identified as structurally central. Key research themes driving the field, influential authors (e.g., Holzinger, Mueller, Guidotti, Lundberg, Ribeiro), major collaborating countries led by the USA and China, and foundational cited works were identified. Emerging themes like “fairness”, “transparency”, and “trust” were also emphasized. This bibliometric overview describes the dynamic landscape that defines XAI in healthcare, its main research areas, key players, and international collaboration networks, providing informative guidance for future research and development in this critical area.
Downloads
References
Topol EJ. Deep medicine: How artificial intelligence can make healthcare human again. 1st ed. New York: Basic Books; 2019.1-400 p.
Doshi-Velez F, Kim B. Towards a rigorous science of interpretable machine learning. Cornell University Library, ArXiv. 2017;1702.08608:1-13. doi: 10.48550/arXiv.1702.08608.
Holzinger A, Malle B, Kieseberg P, Roth PM, Müller H, Reihs R, et al. Towards the augmented pathologist: Challenges of explainable-AI in digital pathology. Cornell University Library, ArXiv. 2017;1712.06657:1-34. doi: 10.48550/arXiv.1712.06657.
Samek W, Wiegand T, Müller KR. Explainable artificial intelligence: Understanding, visualizing, and interpreting deep learning models. Cornell University Library, ArXiv. 2017;1708.08296:1-8. doi: 10.48550/arXiv.1708.08296.
Amann J, Blasimme A, Vayena E, Frey D, Madai VI. Explainability for artificial intelligence in healthcare: A multidisciplinary perspective. BMC Med Inform Dec Mak. 2020;20(1):310. doi: 10.1186/s12911-020-01332-6. DOI: https://doi.org/10.1186/s12911-020-01332-6
Sadeghi Z, Alizadehsani R, Cifci MA, Kausar S, Rehman R, Mahanta P, et al. A review of explainable artificial intelligence in healthcare. Comput Electr Eng. 2024;118(109370):1-20. doi. 10.1016/j.compeleceng.2024.109370. DOI: https://doi.org/10.1016/j.compeleceng.2024.109370
European Commission (2019, April). Ethics guidelines for trustworthy AI. 2019. Available from: https://digital-strategy.ec.europa.eu/en/library/ethics-guidelines-trustworthy-ai. (Accessed on Sep 11, 2025).
FDA (2021, January). Artificial Intelligence/Machine Learning (AI/ML)-Based Software as a Medical Device (SaMD) Action Plan. U.S. Food & Drug Administration. Available from: https://www.fda.gov. (Accessed on Sep 11, 2025).
Tjoa E, Guan C. A survey on explainable artificial intelligence (XAI): Toward medical XAI. IEEE Trans Neural Netw Learn Sys. 2020;32(11):4793-4813. doi: 10.1109/TNNLS.2020.3027314. DOI: https://doi.org/10.1109/TNNLS.2020.3027314
Adadi A, Berrada M. Peeking inside the black-box: A survey on explainable artificial intelligence (XAI). IEEE Access. 2018;6:52138-60. doi: 10.1109/ACCESS.2018.2870052. DOI: https://doi.org/10.1109/ACCESS.2018.2870052
Donthu N, Kumar S, Mukherjee D, Pandey N, Lim WM. How to conduct a bibliometric analysis: An overview and guidelines. J Bus Res. 2021;133:285-96. doi: 10.1016/j.jbusres.2021.04.070. DOI: https://doi.org/10.1016/j.jbusres.2021.04.070
Lundberg SM, Lee SI. A unified approach to interpreting model predictions. Advances in neural information processing systems, Cornell University Library, ArXiv. 2017;30:1-10. doi: 10.48550/arXiv.1705.07874.
Ribeiro MT, Singh S, Guestrin C. Why should I trust you? Explaining the predictions of any classifier. In Proceedings of the 22nd ACM SIGKDD International Conference on Knowledge Discovery and Data Mining. 2016;1135-44. doi: 10.1145/2939672.2939778. DOI: https://doi.org/10.1145/2939672.2939778
Guidotti R, Monreale A, Ruggieri S, Turini F, Giannotti F, Pedreschi D. A survey of methods for explaining black box models. ACM Comp Surveys. 2018;51(5):1-42. doi: 10.1145/3236009. DOI: https://doi.org/10.1145/3236009
Band SS, Yarahmadi A, Hsu CC, Biyari M, Sookhak M, Ameri R, et al. Application of explainable artificial intelligence in medical health: A systematic review of interpretability methods. Inform Med Unlocked. 2023;40(101286):1-20. doi: 10.1016/j.imu.2023.101286. DOI: https://doi.org/10.1016/j.imu.2023.101286
Loh HW, Ooi CP, Seoni S, Barua PD, Molinari F, Acharya UR. Application of explainable artificial intelligence for healthcare: A systematic review of the last decade (2011–2022). Comp Meth Prog Biomed. 2022;226(107161):1-21. doi: 10.1016/j.cmpb.2022.107161. DOI: https://doi.org/10.1016/j.cmpb.2022.107161
Borys K, Schmitt YA, Nauta M, Seifert C, Krämer N, Friedrich CM, et al. Explainable AI in medical imaging: An overview for clinical practitioners - Beyond saliency-based XAI approaches. Eur J Radiol. 2023;162(110786):1-12. doi: 10.1016/j.ejrad.2023.110786. DOI: https://doi.org/10.1016/j.ejrad.2023.110786
Chaddad A, Peng J, Xu J, Bouridane A. Survey of explainable ai techniques in healthcare. Sensors. 2023;23(634):1-19. doi: 10.3390/s23020634. DOI: https://doi.org/10.3390/s23020634
Jin D, Sergeeva E, Weng W-H, Chauhan G, Szolovits P. Explainable deep learning in healthcare: A methodological survey from an attribution view. Cornell University Library, ArXiv. 2021;212.02625:1-37. doi: 10.48550/arXiv.2112.02625.
Antoniad AM, Du Y, Guendouz Y, Wei L, Mazo C, Becker BA, et al. Current challenges and future opportunities for XAI in machine learning-based clinical decision support systems: A systematic review. Appl Sci. 2021;11(11):5088. doi: 10.3390/app11115088. DOI: https://doi.org/10.3390/app11115088
Prentzas N, Kakas A, Pattichis CS. Explainable AI applications in the medical domain: A systematic review. Cornell University Library, ArXiv. 2023;(2308.05411):1-19. doi: 10.48550/arXiv.2308.05411.
Alharthi A, Alqurashi A, Alharbi T, Alammar M, Aldosari N, Bouchekara H, et al. The role of explainable AI in revolutionizing human health monitoring. Cornell University Library, ArXiv. 2024;(2409.07347):1-41. doi: 10.48550/arXiv.2409.07347.
Ticku A, Qureshi R, Jha S, Kumar VS. Explainable AI techniques used in healthcare. AIP Conference Proceedings. 2024;3121(1):040005. doi: 10.1063/5.0221511. DOI: https://doi.org/10.1063/5.0221511
Feretzakis G, Sakagianni A, Anastasiou A, Kapogianni I, Bazakidou E, Koufopoulos P, et al. Integrating shapley values into machine learning techniques for enhanced predictions of hospital admissions. Appl Sci. 2024;14(5925):1-16. doi: 10.3390/app14135925. DOI: https://doi.org/10.3390/app14135925
Darvish M, Holst JH, Bick M. Explainable AI in healthcare: Factors influencing medical practitioners’ trust calibration in collaborative tasks. In Proceedings of the 57th Hawaii International Conference on System Sciences. 2024. 3326-35 p. Available from: https://hdl.handle.net/10125/106785. (Accessed on Sep 11, 2025).
Jain V, Dhruv A. Examining the influence of explainable artificial intelligence on healthcare diagnosis and decision making. In 2024 2nd International Conference on Advancement in Computation & Computer Technologies (InCACCT). IEEE. 2024;136-141. doi: 10.1109/InCACCT61598.2024.10551183. DOI: https://doi.org/10.1109/InCACCT61598.2024.10551183
Wani NA, Kumar R, Mamta Bedi J, Rida I. Explainable AI-driven IoMT fusion: Unravelling techniques, opportunities, and challenges with explainable AI in healthcare. Inform Fus. 2024;110(102472):1-33. doi: 10.1016/j.inffus.2024.102472. DOI: https://doi.org/10.1016/j.inffus.2024.102472
Dutta J, Puthal D, Yeun CY. Next generation healthcare with explainable AI: IoMT–Edge–Cloud based advanced eHealth. In IEEE GLOBECOM 2023 - SAC: Big Data. 2023:7327-7332. doi: 10.1109/GLOBECOM53816.2023.10451429. DOI: https://doi.org/10.1109/GLOBECOM54140.2023.10436967
pagidoju v. fair and accountable ai in healthcare: building trustworthy models for decision-making and regulatory compliance. Int J Comp Sci Eng. 2025;3(6):26-38. doi: 10.63397/ISCSITR-IJCSE_2025_06_03_003. DOI: https://doi.org/10.63397/ISCSITR-IJCSE_2025_06_03_003
Alam MN, Kaur M, Kabir MS. Explainable AI in healthcare: Enhancing transparency and trust upon legal and ethical consideration. Int Res J Eng Tech. 2023:10(6):828-35. Available from: https://www.irjet.net/volume10-issue6. (Accessed on Sep 11, 2025). DOI: https://doi.org/10.63282/3050-9416.IJAIBDCMS-V6I2P102
TOTBID. Yapay zekâ uygulamalarında açıklanabilirlik ve hasta verilerinin korunması [in Turkish]. Türkiye Ortopedi ve Travmatoloji Derneği Bülteni. 2024;31(2):45-56. doi: 10.5578/totbid.dergisi.2024.04. DOI: https://doi.org/10.5578/totbid.dergisi.2024.04
Nazar M, Alam MM, Yafi E, Su’ud MM. A systematic review of human–computer interaction and explainable artificial intelligence in healthcare. IEEE Access. 2021;9:153316-35. doi: 10.1109/ACCESS.2021.3127881. DOI: https://doi.org/10.1109/ACCESS.2021.3127881
Aranovich TC, Matulionyte R. Ensuring AI explainability in healthcare: Problems and possible policy solutions. Inf Comm Techn Law. 2023;32(2):259-75. doi: 10.1080/13600834.2022.2146395. DOI: https://doi.org/10.1080/13600834.2022.2146395
Chakrapani K, Safa MI, Moorthy SG, Kumaraswamy M, Parimala G. Envisioning explainable AI in the healthcare industry. In Explainable Artificial Intelligence in the Healthcare Industry (Ch. 24). 1st ed. Hoboken: Scrivener Publishing LLC Wiley; 2025. 563-91 p. doi: 10.1002/9781394249312.ch24. DOI: https://doi.org/10.1002/9781394249312.ch24
Patel AU, Gu Q, Esper R, Maeser D, Maeser N. The crucial role of interdisciplinary conferences in advancing explainable AI in healthcare. BioMed Informatics. 2024;4(2):1363-83. doi: 10.3390/biomedinformatics4020075. DOI: https://doi.org/10.3390/biomedinformatics4020075
Dubey A, Bhanodia PK, Sethi KK, Rathore NPS, Khamparia A. Challenges and imperatives for equitable and ethical development of explainable AI in healthcare. In Explainable Artificial Intelligence for Biomedical and Healthcare Applications. 1st ed. Boca Raton: CRC Press 2024. 1-14 p. DOI: https://doi.org/10.1201/9781003220107-12
Aziz NA, Manzoor A, Qureshi MDM, Qureshi MA, Rashwan W. Explainable AI in healthcare: Systematic review of clinical decision support systems. medRxiv. 2024;24311735:1-22. doi: 10.1101/2024.08.10.24311735. DOI: https://doi.org/10.1101/2024.08.10.24311735
Dhiman P, Bonkra A, Kaur A, Gulzar Y, Hamid Y, Mir MS, et al. Healthcare trust evolution with explainable artificial intelligence: Bibliometric analysis. Information. 2023;14(541):1-23. doi: 10.3390/info14100541. DOI: https://doi.org/10.3390/info14100541
Aria M, Cuccurullo C. Bibliometrix: An R-tool for comprehensive science mapping analysis. J Informetrics. 2017;11(4):959-75. doi: 10.1016/j.joi.2017.08.007. DOI: https://doi.org/10.1016/j.joi.2017.08.007
Rashid MFA. How to conduct a bibliometric analysis using R Packages: A comprehensive guidelines. J Tour Hospit Culin Arts. 2023;15(1):24-39. Available from: https://ir.uitm.edu.my/id/eprint/87654. (Accessed on Sep 11, 2025).
Yıldız M, Karakuş Yılmaz T. Bibliometric analysis in scientific research using R: A review of Scopus and Web of Science databases. J Data Appl. 2023;2:31-46. doi: 10.26650/JODA.1462396. DOI: https://doi.org/10.26650/JODA.1462396
Kemeç A, Altınay AT. Sustainable energy research trend: A bibliometric analysis using VOSviewer, RStudio Bibliometrix, and CiteSpace software tools. Sustainability. 2023;15(3618):1-21. doi: 10.3390/su15043618. DOI: https://doi.org/10.3390/su15043618
Van Eck N, Waltman L. Software survey: VOSviewer, a computer program for bibliometric mapping. Scientometrics. 2010;84:523-38. doi: 10.1007/s11192-009-0146-3. DOI: https://doi.org/10.1007/s11192-009-0146-3
Van Eck NJ, Waltman L. Text mining and visualization using VOSviewer. ISSI Newsletter. 2011;7(3):50-4. Available from: https://www.vosviewer.com/text-mining-and-visualization-using-vosviewer. (Accessed on Sep 11, 2025).
Zhu J, Liu W. A tale of two databases: The use of Web of Science and Scopus in academic papers. Scientometrics. 2020;123:321-35. doi: 10.1007/s11192-020-03387-8. DOI: https://doi.org/10.1007/s11192-020-03387-8
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2025 Holistence Publications

This work is licensed under a Creative Commons Attribution 4.0 International License.
Authors who publish with this journal agree to the following terms:
1. Authors retain copyright and grant the journal right of first publication, with the work simultaneously licensed under a Creative Commons Attribution 4.0 International License (CC BY 4.0) that allows others to share and adapt the work with an acknowledgement of the work's authorship and initial publication in this journal.
2. Everyone who is listed as an author in this article should have made a substantial, direct, intellectual contribution to the work and should take public responsibility for it.

