The explainable AI (XAI) in healthcare: A bibliometric analysis using VOSviewer and R Studio


Abstract views: 123 / PDF downloads: 80

Authors

DOI:

https://doi.org/10.26900/hsq.2847

Keywords:

Explainable AI (XAI), Web of Science, science mapping, bibliometric analysis, VOSviewer, Bibliometrix

Abstract

This study aims to perform a comprehensive bibliometric analysis to map the global research structure, evolution, and key trends of explainable XAI in healthcare. Utilizing Web of Science data (covering 2018–March 2025) and employing tools including VOSviewer and Bibliometrix, the analysis examined publication trends, keyword co-occurrence networks and centrality, thematic evolution, conceptual structure, author productivity, international collaboration networks, and co-citation patterns. Findings indicate exponential growth in XAI in healthcare research, peaking notably in 2024. “Explainable AI”, “machine learning”, and “deep learning” constitute the core conceptual basis, with “explainable AI” identified as structurally central. Key research themes driving the field, influential authors (e.g., Holzinger, Mueller, Guidotti, Lundberg, Ribeiro), major collaborating countries led by the USA and China, and foundational cited works were identified. Emerging themes like “fairness”, “transparency”, and “trust” were also emphasized. This bibliometric overview describes the dynamic landscape that defines XAI in healthcare, its main research areas, key players, and international collaboration networks, providing informative guidance for future research and development in this critical area.

Downloads

Download data is not yet available.

Author Biography

Özge Uysal Şahin, Canakkale Onsekiz Mart University / Türkiye

Doç. Dr.

ÇANAKKALE ONSEKİZ MART ÜNİVERSİTESİ/ÇANAKKALE UYGULAMALI BİLİMLER FAKÜLTESİ/SAĞLIK YÖNETİMİ BÖLÜMÜ/SAĞLIK EKONOMİSİ ANABİLİM DALI

References

Topol EJ. Deep medicine: How artificial intelligence can make healthcare human again. 1st ed. New York: Basic Books; 2019.1-400 p.

Doshi-Velez F, Kim B. Towards a rigorous science of interpretable machine learning. Cornell University Library, ArXiv. 2017;1702.08608:1-13. doi: 10.48550/arXiv.1702.08608.

Holzinger A, Malle B, Kieseberg P, Roth PM, Müller H, Reihs R, et al. Towards the augmented pathologist: Challenges of explainable-AI in digital pathology. Cornell University Library, ArXiv. 2017;1712.06657:1-34. doi: 10.48550/arXiv.1712.06657.

Samek W, Wiegand T, Müller KR. Explainable artificial intelligence: Understanding, visualizing, and interpreting deep learning models. Cornell University Library, ArXiv. 2017;1708.08296:1-8. doi: 10.48550/arXiv.1708.08296.

Amann J, Blasimme A, Vayena E, Frey D, Madai VI. Explainability for artificial intelligence in healthcare: A multidisciplinary perspective. BMC Med Inform Dec Mak. 2020;20(1):310. doi: 10.1186/s12911-020-01332-6. DOI: https://doi.org/10.1186/s12911-020-01332-6

Sadeghi Z, Alizadehsani R, Cifci MA, Kausar S, Rehman R, Mahanta P, et al. A review of explainable artificial intelligence in healthcare. Comput Electr Eng. 2024;118(109370):1-20. doi. 10.1016/j.compeleceng.2024.109370. DOI: https://doi.org/10.1016/j.compeleceng.2024.109370

European Commission (2019, April). Ethics guidelines for trustworthy AI. 2019. Available from: https://digital-strategy.ec.europa.eu/en/library/ethics-guidelines-trustworthy-ai. (Accessed on Sep 11, 2025).

FDA (2021, January). Artificial Intelligence/Machine Learning (AI/ML)-Based Software as a Medical Device (SaMD) Action Plan. U.S. Food & Drug Administration. Available from: https://www.fda.gov. (Accessed on Sep 11, 2025).

Tjoa E, Guan C. A survey on explainable artificial intelligence (XAI): Toward medical XAI. IEEE Trans Neural Netw Learn Sys. 2020;32(11):4793-4813. doi: 10.1109/TNNLS.2020.3027314. DOI: https://doi.org/10.1109/TNNLS.2020.3027314

Adadi A, Berrada M. Peeking inside the black-box: A survey on explainable artificial intelligence (XAI). IEEE Access. 2018;6:52138-60. doi: 10.1109/ACCESS.2018.2870052. DOI: https://doi.org/10.1109/ACCESS.2018.2870052

Donthu N, Kumar S, Mukherjee D, Pandey N, Lim WM. How to conduct a bibliometric analysis: An overview and guidelines. J Bus Res. 2021;133:285-96. doi: 10.1016/j.jbusres.2021.04.070. DOI: https://doi.org/10.1016/j.jbusres.2021.04.070

Lundberg SM, Lee SI. A unified approach to interpreting model predictions. Advances in neural information processing systems, Cornell University Library, ArXiv. 2017;30:1-10. doi: 10.48550/arXiv.1705.07874.

Ribeiro MT, Singh S, Guestrin C. Why should I trust you? Explaining the predictions of any classifier. In Proceedings of the 22nd ACM SIGKDD International Conference on Knowledge Discovery and Data Mining. 2016;1135-44. doi: 10.1145/2939672.2939778. DOI: https://doi.org/10.1145/2939672.2939778

Guidotti R, Monreale A, Ruggieri S, Turini F, Giannotti F, Pedreschi D. A survey of methods for explaining black box models. ACM Comp Surveys. 2018;51(5):1-42. doi: 10.1145/3236009. DOI: https://doi.org/10.1145/3236009

Band SS, Yarahmadi A, Hsu CC, Biyari M, Sookhak M, Ameri R, et al. Application of explainable artificial intelligence in medical health: A systematic review of interpretability methods. Inform Med Unlocked. 2023;40(101286):1-20. doi: 10.1016/j.imu.2023.101286. DOI: https://doi.org/10.1016/j.imu.2023.101286

Loh HW, Ooi CP, Seoni S, Barua PD, Molinari F, Acharya UR. Application of explainable artificial intelligence for healthcare: A systematic review of the last decade (2011–2022). Comp Meth Prog Biomed. 2022;226(107161):1-21. doi: 10.1016/j.cmpb.2022.107161. DOI: https://doi.org/10.1016/j.cmpb.2022.107161

Borys K, Schmitt YA, Nauta M, Seifert C, Krämer N, Friedrich CM, et al. Explainable AI in medical imaging: An overview for clinical practitioners - Beyond saliency-based XAI approaches. Eur J Radiol. 2023;162(110786):1-12. doi: 10.1016/j.ejrad.2023.110786. DOI: https://doi.org/10.1016/j.ejrad.2023.110786

Chaddad A, Peng J, Xu J, Bouridane A. Survey of explainable ai techniques in healthcare. Sensors. 2023;23(634):1-19. doi: 10.3390/s23020634. DOI: https://doi.org/10.3390/s23020634

Jin D, Sergeeva E, Weng W-H, Chauhan G, Szolovits P. Explainable deep learning in healthcare: A methodological survey from an attribution view. Cornell University Library, ArXiv. 2021;212.02625:1-37. doi: 10.48550/arXiv.2112.02625.

Antoniad AM, Du Y, Guendouz Y, Wei L, Mazo C, Becker BA, et al. Current challenges and future opportunities for XAI in machine learning-based clinical decision support systems: A systematic review. Appl Sci. 2021;11(11):5088. doi: 10.3390/app11115088. DOI: https://doi.org/10.3390/app11115088

Prentzas N, Kakas A, Pattichis CS. Explainable AI applications in the medical domain: A systematic review. Cornell University Library, ArXiv. 2023;(2308.05411):1-19. doi: 10.48550/arXiv.2308.05411.

Alharthi A, Alqurashi A, Alharbi T, Alammar M, Aldosari N, Bouchekara H, et al. The role of explainable AI in revolutionizing human health monitoring. Cornell University Library, ArXiv. 2024;(2409.07347):1-41. doi: 10.48550/arXiv.2409.07347.

Ticku A, Qureshi R, Jha S, Kumar VS. Explainable AI techniques used in healthcare. AIP Conference Proceedings. 2024;3121(1):040005. doi: 10.1063/5.0221511. DOI: https://doi.org/10.1063/5.0221511

Feretzakis G, Sakagianni A, Anastasiou A, Kapogianni I, Bazakidou E, Koufopoulos P, et al. Integrating shapley values into machine learning techniques for enhanced predictions of hospital admissions. Appl Sci. 2024;14(5925):1-16. doi: 10.3390/app14135925. DOI: https://doi.org/10.3390/app14135925

Darvish M, Holst JH, Bick M. Explainable AI in healthcare: Factors influencing medical practitioners’ trust calibration in collaborative tasks. In Proceedings of the 57th Hawaii International Conference on System Sciences. 2024. 3326-35 p. Available from: https://hdl.handle.net/10125/106785. (Accessed on Sep 11, 2025).

Jain V, Dhruv A. Examining the influence of explainable artificial intelligence on healthcare diagnosis and decision making. In 2024 2nd International Conference on Advancement in Computation & Computer Technologies (InCACCT). IEEE. 2024;136-141. doi: 10.1109/InCACCT61598.2024.10551183. DOI: https://doi.org/10.1109/InCACCT61598.2024.10551183

Wani NA, Kumar R, Mamta Bedi J, Rida I. Explainable AI-driven IoMT fusion: Unravelling techniques, opportunities, and challenges with explainable AI in healthcare. Inform Fus. 2024;110(102472):1-33. doi: 10.1016/j.inffus.2024.102472. DOI: https://doi.org/10.1016/j.inffus.2024.102472

Dutta J, Puthal D, Yeun CY. Next generation healthcare with explainable AI: IoMT–Edge–Cloud based advanced eHealth. In IEEE GLOBECOM 2023 - SAC: Big Data. 2023:7327-7332. doi: 10.1109/GLOBECOM53816.2023.10451429. DOI: https://doi.org/10.1109/GLOBECOM54140.2023.10436967

pagidoju v. fair and accountable ai in healthcare: building trustworthy models for decision-making and regulatory compliance. Int J Comp Sci Eng. 2025;3(6):26-38. doi: 10.63397/ISCSITR-IJCSE_2025_06_03_003. DOI: https://doi.org/10.63397/ISCSITR-IJCSE_2025_06_03_003

Alam MN, Kaur M, Kabir MS. Explainable AI in healthcare: Enhancing transparency and trust upon legal and ethical consideration. Int Res J Eng Tech. 2023:10(6):828-35. Available from: https://www.irjet.net/volume10-issue6. (Accessed on Sep 11, 2025). DOI: https://doi.org/10.63282/3050-9416.IJAIBDCMS-V6I2P102

TOTBID. Yapay zekâ uygulamalarında açıklanabilirlik ve hasta verilerinin korunması [in Turkish]. Türkiye Ortopedi ve Travmatoloji Derneği Bülteni. 2024;31(2):45-56. doi: 10.5578/totbid.dergisi.2024.04. DOI: https://doi.org/10.5578/totbid.dergisi.2024.04

Nazar M, Alam MM, Yafi E, Su’ud MM. A systematic review of human–computer interaction and explainable artificial intelligence in healthcare. IEEE Access. 2021;9:153316-35. doi: 10.1109/ACCESS.2021.3127881. DOI: https://doi.org/10.1109/ACCESS.2021.3127881

Aranovich TC, Matulionyte R. Ensuring AI explainability in healthcare: Problems and possible policy solutions. Inf Comm Techn Law. 2023;32(2):259-75. doi: 10.1080/13600834.2022.2146395. DOI: https://doi.org/10.1080/13600834.2022.2146395

Chakrapani K, Safa MI, Moorthy SG, Kumaraswamy M, Parimala G. Envisioning explainable AI in the healthcare industry. In Explainable Artificial Intelligence in the Healthcare Industry (Ch. 24). 1st ed. Hoboken: Scrivener Publishing LLC Wiley; 2025. 563-91 p. doi: 10.1002/9781394249312.ch24. DOI: https://doi.org/10.1002/9781394249312.ch24

Patel AU, Gu Q, Esper R, Maeser D, Maeser N. The crucial role of interdisciplinary conferences in advancing explainable AI in healthcare. BioMed Informatics. 2024;4(2):1363-83. doi: 10.3390/biomedinformatics4020075. DOI: https://doi.org/10.3390/biomedinformatics4020075

Dubey A, Bhanodia PK, Sethi KK, Rathore NPS, Khamparia A. Challenges and imperatives for equitable and ethical development of explainable AI in healthcare. In Explainable Artificial Intelligence for Biomedical and Healthcare Applications. 1st ed. Boca Raton: CRC Press 2024. 1-14 p. DOI: https://doi.org/10.1201/9781003220107-12

Aziz NA, Manzoor A, Qureshi MDM, Qureshi MA, Rashwan W. Explainable AI in healthcare: Systematic review of clinical decision support systems. medRxiv. 2024;24311735:1-22. doi: 10.1101/2024.08.10.24311735. DOI: https://doi.org/10.1101/2024.08.10.24311735

Dhiman P, Bonkra A, Kaur A, Gulzar Y, Hamid Y, Mir MS, et al. Healthcare trust evolution with explainable artificial intelligence: Bibliometric analysis. Information. 2023;14(541):1-23. doi: 10.3390/info14100541. DOI: https://doi.org/10.3390/info14100541

Aria M, Cuccurullo C. Bibliometrix: An R-tool for comprehensive science mapping analysis. J Informetrics. 2017;11(4):959-75. doi: 10.1016/j.joi.2017.08.007. DOI: https://doi.org/10.1016/j.joi.2017.08.007

Rashid MFA. How to conduct a bibliometric analysis using R Packages: A comprehensive guidelines. J Tour Hospit Culin Arts. 2023;15(1):24-39. Available from: https://ir.uitm.edu.my/id/eprint/87654. (Accessed on Sep 11, 2025).

Yıldız M, Karakuş Yılmaz T. Bibliometric analysis in scientific research using R: A review of Scopus and Web of Science databases. J Data Appl. 2023;2:31-46. doi: 10.26650/JODA.1462396. DOI: https://doi.org/10.26650/JODA.1462396

Kemeç A, Altınay AT. Sustainable energy research trend: A bibliometric analysis using VOSviewer, RStudio Bibliometrix, and CiteSpace software tools. Sustainability. 2023;15(3618):1-21. doi: 10.3390/su15043618. DOI: https://doi.org/10.3390/su15043618

Van Eck N, Waltman L. Software survey: VOSviewer, a computer program for bibliometric mapping. Scientometrics. 2010;84:523-38. doi: 10.1007/s11192-009-0146-3. DOI: https://doi.org/10.1007/s11192-009-0146-3

Van Eck NJ, Waltman L. Text mining and visualization using VOSviewer. ISSI Newsletter. 2011;7(3):50-4. Available from: https://www.vosviewer.com/text-mining-and-visualization-using-vosviewer. (Accessed on Sep 11, 2025).

Zhu J, Liu W. A tale of two databases: The use of Web of Science and Scopus in academic papers. Scientometrics. 2020;123:321-35. doi: 10.1007/s11192-020-03387-8. DOI: https://doi.org/10.1007/s11192-020-03387-8

Downloads

Published

2025-10-04

How to Cite

Uysal Şahin, Özge, & Akar, S. (2025). The explainable AI (XAI) in healthcare: A bibliometric analysis using VOSviewer and R Studio. Health Sciences Quarterly, 5(4), 553–71. https://doi.org/10.26900/hsq.2847

Issue

Section

Original Article