Efficacy and possible benefits of using the sit to stand test (5 repetitions or 1 minute) instead of the 6-minute walk test in pulmonary emphysema patients


Abstract views: 143 / PDF downloads: 71

Authors

DOI:

https://doi.org/10.26900/hsq.2752

Keywords:

Pulmonary emphysema, exhaled nitric oxide, stand test

Abstract

To evaluate which test is more tolerable to exhaled nitric oxide (FeNO) measurements with 5 repetitions of sit to stand test (5 RSTS) and 1-minute sit to stand test (1 MSTS) and 6 MWT in chronic obstructive pulmonary disease (COPD) patients with pulmonary emphysema phenotype. This study included 128 participants with pulmonary emphysema phenotype and 67 healthy participants. 6-minute walking test (6 MWT), 1 MSTS, and 5 RSTS tests were applied to the participants, respectively. Severity of dyspnea (with Modified Borg Scale), heart rate, pulse oxygen saturation (SpO2, by pulse oximetry) during tests. Pulmonary function (with spirometry), quadriceps femoris muscle strength (with manual muscle testing), and FeNO measurements (with Bedfont NObreath) were evaluated. Both STS and 6 MWT outputs were lower in pulmonary emphysema patients than in healthy participants (p<0.05). In 6 MWT test, SPO2 decrease, pulse increase, FeNO increase was statistically significant in pulmonary emphysema patients. While 1 MSTS was more sensitive in predicting the sick ones, 5 RSTS was more specific in showing the healthy ones. Both STS create less cardiac and respiratory stress compared to 6 MWT, but also less exercise load. STS are performed in a short time in the outpatient setting in patients with pulmonary emphysema, making it easier to distinguish between the patient and the healthy people, and saves work and time.

Downloads

Download data is not yet available.

Author Biographies

Şule Çilekar, Afyonkarahisar Health Sciences University / Türkiye

 

 

Sinan Saraçlı, Balıkesir University / Türkiye

 

 

References

Szilasi M, Dolinay T, Nemes Z, Strausz J. Pathology of chronic obstructive pulmonary disease. Pathol Oncol Res. 2006;12(1):52–60. doi: 10.1007/BF02893433. DOI: https://doi.org/10.1007/BF02893433

Husein AN, Kumar V. The lung. In: Kumar V, Abbas AK, Fausto N, editors. Robbins and Cotran Pathologic Basis of Disease. 7th ed. Philadelphia: Elsevier Saunders; 2005. 711–72 p.

Celli BR, MacNee W, Agustí A, Anzueto A, Berg B, Buist AS, et al. Standards for the diagnosis and treatment of patients with COPD: A summary of the ATS/ERS position paper. Eur Respir J. 2004;23(6):932–46. doi: 10.1183/09031936.04.00014304. DOI: https://doi.org/10.1183/09031936.04.00014304

Singh A, Kumar S, Mishra AK, Tiwari P, Singh N, Verma R, et al. Correlation between clinical characteristics, spirometric indices and HRCT findings in COPD patients. Lung India. 2016;33(1):42–8. doi: 10.4103/0970-2113.173064. DOI: https://doi.org/10.4103/0970-2113.173064

Snoeck-Stroband JB, Lapperre TS, Gosman MM, Boezen HM, Timens W, ten Hacken NH, et al. Chronic bronchitis subphenotype within COPD: Inflammation in sputum and biopsies. Eur Respir J. 2008;31(1):70–7. doi: 10.1183/09031936.00137006. DOI: https://doi.org/10.1183/09031936.00137006

Bowen JB, Votto JJ, Thrall RS, Huber FA. Functional status and survival following pulmonary rehabilitation. Chest. 2000;118(3):697-703. doi: 10.1378/chest.118.3.697. DOI: https://doi.org/10.1378/chest.118.3.697

Couillard A, Muir JF, Veale D. COPD recent findings: Impact on clinical practice. COPD. 2010;7(3):204–13. doi: 10.3109/15412555.2010.482115. DOI: https://doi.org/10.3109/15412555.2010.482115

Eisner MD, Iribarren C, Blanc PD, Yelin EH, Sidney S, Katz PP, et al. Development of disability in chronic obstructive pulmonary disease: Beyond lung function. Thorax. 2011;66(2):108-14. doi: 10.1136/thx.2010.137661. DOI: https://doi.org/10.1136/thx.2010.137661

Stel HF, Bogaard JM, Rijssenbeek-Nouwens LH, Colland VT. Multivariable assessment of the 6-min walking test in patients with chronic obstructive pulmonary disease. Am J Respir Crit Care Med. 2001;163(7):1567–71. doi: 10.1164/ajrccm.163.7.2001071. DOI: https://doi.org/10.1164/ajrccm.163.7.2001071

Foglio K, Carone M, Pagani M, Bianchi L, Jones PW, Ambrosino N. Determinants of exercise performance in chronic airway obstruction. Respir Med. 2000;94(3):256–63. doi: 10.1053/rmed.1999.0734. DOI: https://doi.org/10.1053/rmed.1999.0734

de Torres JP, Pinto-Plata V, Ingenito E, Celli BR. Power of outcome measurements to detect clinically significant changes in pulmonary rehabilitation of patients with COPD. Chest. 2002;121(4):1092–8. doi: 10.1378/chest.121.4.1092. DOI: https://doi.org/10.1378/chest.121.4.1092

Holland AE, Spruit MA, Troosters T, Puhan MA, Pepin V, Saey D, et al. ERS/ATS technical standard: field walking tests in chronic respiratory disease. Eur Respir J. 2014;44(6):1428–46. doi: 10.1183/09031936.00150314. DOI: https://doi.org/10.1183/09031936.00150314

Kocks JW, Asijee GM, Tsiligianni IG, Kerstjens HA, van der Molen T, van Boven JFM, et al. Functional status measurement in COPD: A review of available methods and their feasibility in primary care. Prim Care Respir J. 2011;20(3):269–75. doi: 10.4104/pcrj.2011.00031. DOI: https://doi.org/10.4104/pcrj.2011.00031

Ozalevli S, Ozden A, Itil O, Akkoclu A. Sit-to-stand test vs 6-min walk test in COPD. Respir Med. 2007;101(2):286–93. doi: 10.1016/j.rmed.2006.05.007. DOI: https://doi.org/10.1016/j.rmed.2006.05.007

Huang CY, Mayer PK, Wu MY, Huang YT, Lee JJ, Chang YH, et al. Tai Chi in elderly with sarcopenia and frailty: meta-analysis. Ageing Res Rev. 2022;82:101747. doi: 10.1016/j.arr.2022.101747. DOI: https://doi.org/10.1016/j.arr.2022.101747

Kato T, Sekiguchi Y, Honda K, Masuda T, Nakamura K, Yamada Y, et al. Handrail forces during sit-to-stand movement in elderly. Clin Biomech. 2020;80:105130. doi: 10.1016/j.clinbiomech.2020.105130. DOI: https://doi.org/10.1016/j.clinbiomech.2020.105130

Millor N, Lecumberri P, Gómez M, Martínez-Ramírez A, Izquierdo M. An evaluation of the 30-s chair stand test in older adults: frailty detection based on kinematic parameters from a single inertial unit. J Neuroeng Rehabil. 2013;10:86. doi: 10.1186/1743-0003-10-86. DOI: https://doi.org/10.1186/1743-0003-10-86

Aguilaniu B, Roth H, Gonzalez-Bermejo J, Chambellan A. A simple semipaced 3-minute chair rise test for routine exercise tolerance testing in COPD. Int J Chron Obstruct Pulmon Dis. 2014;9:1009–19. doi: 10.2147/COPD.S59855. DOI: https://doi.org/10.2147/COPD.S59855

Fischer A, Folkerts G, Geppetti P, Groneberg DA. Mediators of asthma: nitric oxide. Pulm Pharmacol Ther. 2002;15(2):73–81. doi: 10.1006/pupt.2001.0332. DOI: https://doi.org/10.1006/pupt.2001.0332

Franco L, Doria D, Mattiucci F. Effect of acute exercise on plasma nitric oxide level in humans. Med Princ Pract. 2001;10(2):106–9. doi: 10.1159/000050351. DOI: https://doi.org/10.1159/000050351

Gonzalez AM, Townsend JR, Pinzone AG, Hoffman JR. Supplementation with nitric oxide precursors for strength performance: A review of the current literature. Nutrients. 2023;15(3):660. doi: 10.3390/nu15030660. DOI: https://doi.org/10.3390/nu15030660

Gough LA, Sparks SA, McNaughton LR, Barlow MJ, Bentley DJ, Graham-Smith P, et al. A critical review of citrulline malate supplementation and exercise performance. Eur J Appl Physiol. 2021;121(12):3283–95. doi: 10.1007/s00421-021-04774-6. DOI: https://doi.org/10.1007/s00421-021-04774-6

Bush A, Frey U. Long-acting beta-agonists safety in asthma. N Engl J Med. 2016;375(9):889–91. doi: 10.1056/NEJMp1606704. DOI: https://doi.org/10.1056/NEJMe1608508

Karampitsakos T, Protopapas A, Gianoloudi M, Krompa A, Katsaras M, Gaga M, et al. The effect of bronchodilation and spirometry on fractional exhaled nitric oxide (FeNO50), bronchial NO flux (JawNO), and alveolar NO concentration (CANO) in children and young adults. J Asthma. 2018;55(8):882–9. doi: 10.1080/02770903.2017.1373807. DOI: https://doi.org/10.1080/02770903.2017.1373807

Global Initiative for Chronic Obstructive Lung Disease. Global strategy for the diagnosis, management, and prevention of chronic obstructive pulmonary disease. 2025 Report. Available from: https://goldcopd.org/wp-content/uploads/2024/11/GOLD-2025-Report-v1.0-15Nov2024_WMV.pdf. (Accessed on Sep 11, 2025).

Buist AS, Vollmer WM, Sullivan SD, Weiss KB, Lee TA, Menezes AMB, et al. The Burden of Obstructive Lung Disease Initiative (BOLD): Rationale and design. COPD. 2005;2(2):277–83. doi: 10.1081/COPD-57610. DOI: https://doi.org/10.1081/COPD-200057610

Adeloye D, Chua S, Lee C, Basquill C, Papana A, Theodoratou E, et al. Global and regional estimates of COPD prevalence: Systematic review and meta-analysis. J Glob Health. 2015;5(2):020415. doi: 10.7189/jogh.05.020415. DOI: https://doi.org/10.7189/jogh.05.020415

Naqvi U, Sherman AL. Muscle strength grading. In: StatPearls [Internet]. Treasure Island (FL): StatPearls Publishing; 2024. Available from: https://www.statpearls.com/point-of-care/25393/. (Accessed on Sep 11, 2025).

Lord SR, Murray SM, Chapman K, Munro B, Tiedemann A. Sit-to-stand performance depends on sensation, speed, balance, and psychological status in addition to strength in older people. J Gerontol A Biol Sci Med Sci. 2002;57(8):M539–43. doi: 10.1093/gerona/57.8.M539. DOI: https://doi.org/10.1093/gerona/57.8.M539

Puhan MA, Siebeling L, Zoller M, Muggensturm P, Frei A, Steurer J, et al. Simple functional performance tests and mortality in COPD. Eur Respir J. 2013;42(4):956–63. doi: 10.1183/09031936.00110712. DOI: https://doi.org/10.1183/09031936.00131612

Flashner BM, Rifas-Shiman SL, Oken E, Camargo CA, Platts-Mills TJ, Workman L, et al. Obesity, sedentary lifestyle, and exhaled nitric oxide in an early adolescent cohort. Pediatr Pulmonol. 2020;55(2):503–9. doi: 10.1002/ppul.24597. DOI: https://doi.org/10.1002/ppul.24597

Oguzulgen İK, Türktaş H, Erbaş D. Airway inflammation in premenstrual asthma. J Asthma. 2002;39(6):517–22. doi: 10.1081/JAS 120004921. DOI: https://doi.org/10.1081/JAS-120004921

Theander K, Unosson M. Fatigue in patients with chronic obstructive pulmonary disease. J Adv Nurs. 2004;45(2):172–7. doi: 10.1046/j.1365-2648.2003.02878.x. DOI: https://doi.org/10.1046/j.1365-2648.2003.02878.x

Kostikas K, Papathanasiou E, Papaioannou AI, Hatzoglou C, Kiropoulos T, Gourgoulianis KI, et al. Blood eosinophils as predictor of outcomes in patients hospitalized for COPD exacerbations. Biomarkers. 2021;26(4):354–62. doi: 10.1080/1354750X.2021.1903998. DOI: https://doi.org/10.1080/1354750X.2021.1903998

Alter A, Aboussouan LS, Mireles-Cabodevila E. Neuromuscular weakness in chronic obstructive pulmonary disease: Chest wall, diaphragm, and peripheral muscle contributions. Curr Opin Pulm Med. 2017;23(2):129–38. doi:10.1097/MCP.0000000000000360. DOI: https://doi.org/10.1097/MCP.0000000000000360

Casaburi R. Skeletal muscle function in chronic obstructive pulmonary disease. Chest. 2000;117(5 Suppl 1):267S–71S. doi: 10.1378/chest.117.5_suppl_1.267s-a. DOI: https://doi.org/10.1378/chest.117.5_suppl_1.267S-a

Romagnoli I, Gigliotti F, Lanini B, Bruni GI, Coli C, Binazzi B, et al. Chest wall kinematics and breathlessness during unsupported arm exercise in COPD patients. Respir Physiol Neurobiol. 2011;178(2):242–9. doi: 10.1016/j.resp.2011.06.014. DOI: https://doi.org/10.1016/j.resp.2011.06.014

Nyberg A, Törnberg A, Wadell K. Relationship between limb muscle function, pulmonary function and quality of life in individuals with coronary artery disease. J Cardiopulm Rehabil Prev. 2017;37(5):315–323.

Singer J, Yelin EH, Katz PP, Sanchez G, Iribarren C, Eisner MD, et al. Respiratory and skeletal muscle strength in chronic obstructive pulmonary disease: Impact on exercise capacity and lower extremity function. J Cardiopulm Rehabil Prev. 2011;31(2):111–9. doi: 10.1097/HCR.0b013e3182033663. DOI: https://doi.org/10.1097/HCR.0b013e3182033663

Schagemann J, Koebrich T, Wendlandt R, Schulz AP, Gille J, Oheim R. Comparison of hamstring and quadriceps tendon autografts in anterior cruciate ligament reconstruction with gait analysis and surface electromyography. J Orthop Traumatol. 2021;22(1):20. doi: 10.1186/s10195-021-00581-z. DOI: https://doi.org/10.1186/s10195-021-00581-z

Poulain M, Durand F, Palomba B, Ceugniet F, Desplan J, Varray A, et al. 6-minute walk testing is more sensitive than maximal incremental cycle testing for detecting oxygen desaturation in patients with COPD. Chest. 2003;123(5):1401–7. doi: 10.1378/chest.123.5.1401. DOI: https://doi.org/10.1378/chest.123.5.1401

Downloads

Published

2025-10-04

How to Cite

Balcı, A., Aydın, S., Günay, S., Düz, M. E., Çilekar, Şule, Saraçlı, S., & İnkaya, Y. (2025). Efficacy and possible benefits of using the sit to stand test (5 repetitions or 1 minute) instead of the 6-minute walk test in pulmonary emphysema patients. Health Sciences Quarterly, 5(4), 424–42. https://doi.org/10.26900/hsq.2752

Issue

Section

Original Article