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Abstract 

AB-type novel amphiphilic poly(L-lactide)-block-(N-isopropylacrylamide) (PLLA-b-PNIPAM) and poly(L-lactide)-
block-(N-vinyl-pyrrolidone) (PLLA-b-PNVP), diblock copolymers were synthesized through the combined use 
of ring-opening polymerization (ROP) and controlled/living radical polymerization (CRP) techniques.  (PLLA-
b-PNIPAM) block copolymer was prepared via combination of ROP and atom transfer radical polymerization 
(ATRP) using the novel PLLA-based ATRP macroinitiator. (PLLA-b-PNVP) block copolymer was synthesized via 
combination of ROP and reversible addition-fragmentation chain transfer (RAFT) polymerization using the PLLA-
based RAFT macro chain transfer agent (CTA). For this purpose, at first 2,4-difluorobenzyl alcohol (1) was used to 
initiate the ROP of (L-LA) using tin(II) 2-ethylhexanoate Sn(Oct)2 as a catalyst at 120 °C for synthesis of PLLA-OH 
(2). Secondly, bromoester end-functionalized PLLA-based ATRP macroinitiator (3) was synthesized by esterification 
of hydroxyl end group of (2). The first block copolymer, (PLLA-b-PNIPAM) (5), was synthesized by ATRP of 
NIPAM using (3) in presence of copper(I) chloride/tris[2-(dimethylamino)ethyl]amine (CuCl/Me6TREN) as catalyst 
system in DMF/water at 25 °C. For the synthesis step of second block copolymer, at first PLLA macro chain transfer 
agent (CTA) (4) was then synthesized via substitution reaction of (3) with potassium ethyl xanthogenate (KEX) 
and finally PLLA-b-PNVP (6) diblock copolymer was prepared via RAFT polymerization of NVP using (4). The 
molecular structures of novel polymers (2-6) were elucidated by spectroscopic (FTIR and 1H NMR) methods. In the 
application phase of this study, the effectiveness of copolymers was examined on cervical cancer cells. Cytotoxicity 
effects were evaluated in vitro on HeLa cell lines. 
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Introduction 
The preparation of block copolymers 
with amphiphilic character consisting of a 
biodegradable hydrophobic portion and a 
hydrophilic portion by combination of ROP 
controlled/living radical polymerization (CRP) 
techniques has made a great contribution to 
the studies in biomaterial and nanomedicine. 
ROP is one of the polymerization methods that 
can be performed depending on the variations 
of catalyst/initiator system and the monomer 
in the syntheses of several aliphatic polyesters 
[1]. Polyesters such as poly(lactide) (PLA) and 
poly(ε-caprolactone) (PCL) used for controlled 
drug delivery studies were generally prepared 
via ROP as the most chosen technique [2,3]. 
Among biodegradable polyesters, PLA is a 
bio-based and bio-compatible polymer used 
in many applications such as biomedicine, 
agriculture, packaging etc. not only because of 
its renewability, biocompatibility, and excellent 
process ability, but also because it decomposes 
to H2O and CO2 when degraded, forming non-
toxic and non-carcinogenic products. [4,5]. Atom 
transfer radical polymerization (ATRP), the one 
of most used of CRP methods, is extensively used 
in macromolecular through the combination of 
suitable catalyst-ligand systems with halogen-
containing initiators [6]. This technique has also 
been proven for the controlled polymerization 
of various monomers, including those with 
a range of functional groups [1,7]. Reversible 
addition-fragmentation chain transfer (RAFT) 
polymerization replicates the characteristics 
of living polymerization and enables the 
polymerization of a wide variety of functional 
monomers that are generally not compatible 
with other CRP methods [8].

Poly(N-isopropylacrylamide) (PNIPAM) is a 
hydrophilic character polymer widely employed 
to form the temperature-responsive copolymers 
with other polymers [9]. Advancements in 
synthetic methods have made it possible to 
prepare various block copolymers consisting 
of a hydrophobic part containing PLA and a 
hydrophilic part containing PNIPAM. Most of 
the studies have focused on preparation of AB-
type [9,10] diblock or ABA-type [11] or ABC-
type [12] triblock copolymers consisting of PLA 

and PNIPAM through various polymerization 
methods have been studied extensively by 
numerous researchers. The amphiphilic block 
copolymers consisting of polyester and PNIPAM 
with advanced macromolecular architectures 
have also been investigated as carriers for 
drug delivery systems. The copolymerization 
of PNIPAM with PLA combines the 
thermosensitivity of PNIPAM and degradability 
of PLA, enabling its use as a carrier in drug 
delivery systems [11]. Poly(N-vinyl pyrrolidone) 
(PNVP) is a hydrophilic polymer that can be 
used in the pharmaceutical and biomedical 
fields due to its properties such as water 
solubility and low toxicity [13,14]. PNVP has 
been used extensively in pharmaceutical tablets 
and hydrogels [15,16]. The studies focusing on 
synthesis of block copolymers including PNVP 
and PLA or PCL using the combination ROP and 
RAFT polymerization have been investigated 
extensively by many researchers in recent years. 
Polymeric micelles formed from biocompatible 
PNVP-based block copolymers, such as PNVP-
b-PCL [17,18] and PNVP-b-PDLLA [19] have 
been synthesized using via combination ROP 
and RAFT and their properties in terms of 
micelle formation have been evaluated for 
drug delivery applications. In addition to these 
literatures, Shin et al. prepared PVP-b-PLLA 
using a dual initiator via combination ROP 
and RAFT in one-step procedure [20]. In this 
work novel AB-type block copolymers were 
prepared in five stages via combination of ROP 
and ATRP or RAFT polymerizations of L-lactide, 
NIPAM or NVP, respectively. Firstly, PLLA (2) 
was prepared by ring opening polymerization 
(ROP) of (L-LA) at 120 °C using (1) as initiator. 
Secondly, bromoester end-functionalized 
PLLA macroinitiator (3) was synthesized by 
esterifying hydroxyl groups of (2). Thirdly, 
PLLA macro chain transfer agent (CTA) (4) was 
then synthesized via substitution reaction of (3) 
with potassium ethyl xanthogenate (KEX). The 
first diblock copolymer, (PLLA-b-PNIPAM) (4), 
was prepared by ATRP of NIPAM as monomer 
using (3) in presence of copper(I) chloride/tris[2-
(dimethylamino)ethyl]amine (CuCl/Me6TREN) 
as catalyst system in DMF/water at 25 °C. Finally, 
the second block copolymer, PLLA-b-PNVP (6), 
was synthesized RAFT polymerization of NVP 
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using (5). Characterization of the molecular 
structures for the novel polymers were 
elucidated by spectroscopic (FTIR and 1H NMR) 
methods. In the application phase of this study, 
the effectiveness of copolymers was examined on 
cervical cancer cells. The cytotoxicity of polymers 
was evaluated in vitro on HeLa cell lines.

Experimental Section

Materials
Reactions were carried out under an atmosphere 
of argon using standard Schlenk techniques. 
N-isopropylacrylamide (NIPAM, Sigma-
Aldrich, 97%), was purified by re-crystallization 
from n-hexane/toluene mixture and dried in 
vacuum. N-Vinyl pyrrolidone (NVP) was dried 
over anhydrous magnesium sulfate and distilled 
under reduced pressure.  L-lactide (L-LA, TCI, 
98%) was purified by recrystallization from ethyl 
acetate/n-hexane twice and dried in vacuum at 
room temperature and kept in freezer. Copper(I) 
chloride (CuCl) (98%; Aldrich) was purified 
by stirring it overnight in glacial acetic acid 
to eliminate Cu2+ ions, followed by filtration, 
washing with ethanol, and drying under vacuum 
at 70 °C for two days. 2,2′-Azobis(isobutyronitrile) 
(AIBN) was received from TCI (>98%). 
After recrystallisation from methanol it was 
stored at 4 °C. Tris[2-(dimethylamino)ethyl]
amine (Me6TREN) was prepared according to 
published procedure [21]. Dichloromethane 
(DCM ≥99.5%) was dried over calcium hydride 
(CaH2) and stored over molecular sieves (4 Å). 
2-Bromopropionyl bromide (Sigma-Aldrich, 
97%), 2,4-difluorobenzaldehyde (Sigma-Aldrich, 
98%), potassium ethylxanthate (TCI, >95%), 
triethylamine (TEA, Sigma-Aldrich, ≥99%), 
sodium borohydride NaBH4 (Sigma-Aldrich, 
98%), pyridine (Sigma-Aldrich, ≥99%) and tin(II) 
2-ethylhexanoate (Sn(Oct)2, Sigma-Aldrich, 
>92.5%) were used as received. Conventional 
methods were employed for purification of all 
solvents [22]. 

Measurement

Transmission IR spectra was recorded on a FTIR-
ATR spectrophotometer (Perkin-Elmer 1600) in 
the spectral range 4000–400 cm-1 with samples. 
1H NMR spectra were recorded on the Bruker 
AVANCE III 400 MHz NMR instrument was 

used for the characterization Varian Mercury 
400 MHz spectrometer with CDCl3 as solvent at 
ambient temperature. Tetramethylsilane (TMS) 
is used as the internal standard and the chemical 
shifts were given in parts per million (ppm) 
relative to this standard. 

Synthesis of 2,4-difluorobenzyl alcohol (1)

2,4-Difluorobenzyl alcohol was synthesized 
the reduction of 2,4-difluoro benzaldehyde in 
presence of NaBH4 in methanol according to 
published literature [23]. To a stirred solution 
of 2,4-difluorobenzaldehyde (1.67 mL, 2.18 
g, 15 mmol) in methanol (10 mL) was added 
NaBH4 (752 mg, 19.5 mmol) portion wise at 0 
oC overnight. After completion of the reaction, 
methanol was removed under reduced pressure, 
diluted ice-cold water (50 mL) and extracted 
with ethyl acetate (2x25 mL). The combined 
organic layers were washed with H2O (2x25 mL) 
and brine (2x25 mL) and dried over MgSO4 and 
concentrated to obtain the light-yellow liquid. 
Yield was 90%.
1H NMR (400  MHz, CDCl3, δ): 7.46-7.34 (ArH, 
1H), 6.89-6.78 (ArH, 2H), 4.72 (Ar–CH2–,2H), 
1.78 (CH2−OH, OH).

Synthesis of (2) in the presence of initiator (1) 
via ROP

PLLA-OH (2) was prepared as follows: Into a 
Schlenk tube equipped with a magnetic stirrer, 
ROP initiator (1) (0.06 g, 0.4 mmol), L-LA (1.47 g, 
10 mmol) and Sn(Oct)2 (3.41x10-3 mL, 0.01 mmol) 
in dry toluene (3 mL) were introduced. The flask 
with reaction mixture was degassed and then 
immersed into an oil bath at 120 °C for 24 h. The 
reaction mixture was poured into methanol with 
stirring and the polymer was precipitated. The 
white powder polymer (2) was re-precipitated 
using dissolve/precipitate process (DCM/
methanol), collected, and then dried in the 
vacuum at 30 °C.

Yield: 1.29 g, Conversion: 84%. Mn (theo.); 3160 
g/mol; Mn (NMR); 3320 g/mol; FTIR (ATR, cm‒1): 
2994, 2946, 1756, 1453, 1358, 1185, 1083, 868, 753; 
1H NMR (CDCl3, δ) = 7.34 (ArH, Hb), 6.85 (ArH, 
Ha+c), 5.16 (main chain, –CH(CH3)OCO) He), 4.34 
(terminal, –CH(CH3)OH, He’), 1.57 (main chain, 
–CH(CH3)OCO-, Hf), 1.49 (terminal, –CH(CH3)
OH, Hf ’).
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Synthesis of bromoester-ended PLLA (3) 

PLLA-OH (2) was converted to bromo-
ester functionalized (PLLA-Br) by using 
2-bromopropionyl bromide. (2) (1.0 g, 0.301 
mmol, Mn (NMR) =3320 g/mol) was charged a 
round-bottom two-necked flask and dissolved 
in dry DCM (15 mL). TEA (0.123 mL, 0.903 
mmol) was added to the mixture. The reaction 
was cooled down to 0 oC and 2-bromopropionyl 
bromide (0.066 mL, 0.588 mmol) in dry DCM 
(5 mL) was added dropwise for 30 min. The 
reaction continued at room temperature for 36 h 
with stirring. After the removal of precipitated 
salt, the filtrate was diluted with 30 ml of DCM 
and washed with 5% aqueous NaHCO3 (3x20 
mL), then water (3x20 mL), dried over MgSO4, 
and filtered. The concentrated solution was 
precipitated into cold methanol and the bromo-
ester ended PLLA (3) was dried overnight in 
vacuum at 40 oC. 

Mn (NMR): 3460 g/mol; 1H NMR (CDCl3, δ) = 7.34 
(ArH, Hb), 6.85 (ArH, Ha+c), 5.16 (main chain, –

CH(CH3)OCO) He), 4.43 (–CH(CH3)Br, Hg), 1.85 
(–CH(CH3)Br, Hh), 1.57 (main chain, –CH(CH3)
OCO-, Hf), 1.49 (–CH(CH3)O, Hf ’)

Synthesis of xanthate terminated PLLA (4)

The functional polyester (3) was converted into 
a PLLA-based RAFT-CTA (4) via substitution 
reaction of (3) with potassium ethyl xanthogenate 
(KEX) using molar ratio of reagents; [(3): KEX: 
pyridine]: 1:3:55. In a typical synthesis process, 
(3) (0.15 g, 0.043 mmol, Mn, (NMR) =3460 g/
mol) and potassium ethylxanthate (KEX) (0.021 
g, 0.129 mmol) were taken in a dried and argon 
purged round-bottom flask and the flask was 
immersed in a cold ice bath. In another dried 
flask, pyridine (0.19 mL, 2.37 mmol) dissolved 
in 20 mL DCM and this solution was added 
dropwise to first reaction mixture during stirring 
for 30 min. The reaction mixture continued at 
room temperature for 48 h with stirring. The 
reaction mixture diluted with 60 mL of DCM 
was washed successively with saturated NH4Cl 
solution (3x30 mL), saturated NaHCO3, solution 
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(3x30 mL), and water (3x 50 mL), dried over 
MgSO4 and filtered. After the filtrate was brought 
to dryness, the residue was dissolved in THF and 
precipitated into hexane. The PLLA macro-CTA 
(4) was dried overnight under vacuum. 

Mn (NMR); 3620 g/mol; 1H NMR (CDCl3, δ) = 7.33 
(ArH, Hb), 6.86 (ArH, Ha+c), 5.17 (main chain, –
CH(CH3)OCO) He),  4.64 (O–CH2CH3, Hi), 4.45 (–
CH(CH3)Br, Hg), 1.57 (–CH(CH3)OCO-, Hf), 1.52 
(–CH(CH3)O, Hh),  1.41 (O–CH2CH3, Hj).

Synthesis of PLLA-b-PNIPAM (5)

PLLA-b-PNIPAM (5) was prepared using (3) 
as macroinitiator via ATRP. In a dried Schlenk 
flask, (3) 0.09 g (0.026 mmol, Mn  (NMR)= 3460 
g/mol), NIPAM 304 mg (2.6 mmol) and 2.6 mg 
(0.065 mmol) CuCl were dissolved in 1.5 mL 
DMF, then 0.3 mL of distilled water were added 
to the reaction mixture. After three freeze-pump-
thaw cycles, 13.7 µL (0.065 mmol) Me6TREN 
were added under argon atmosphere. The 
reaction was then allowed to proceed under 
stirring at 25 OC for 0.5 h. The viscous solution 
was precipitated by adding diethyl ether. The 
crude product dissolved in DCM was passed 
through a neutral alumina column. The resulting 
filtrate was concentrated, precipitated in cold 
diethyl ether and the obtained polymer (5) was 
dried under vacuum for 48 h. 

Conversion: 19%. Mn (theo.):5610 g/mol; Mn 
(NMR): 5460 g/mol; FTIR (ATR, cm‒1): 3293, 3070, 
2972, 2924, 1756, 1638, 1536, 1455, 1365, 1183, 
1088, 1043, 872, 837; 1H NMR (CDCl3, δ): 6.61 (–
NHCH(CH3)2, H3, in PNIPAM), 5.13 (–CH(CH3)
OCO) He ), in PLLA], 3.98 (–CH(CH3)2, H4, in 
PNIPAM), 2.12 (–CH2−CH– , H2), 1.79 (–CH2−
CH– , H1, in PNIPAM),1.55 (–CH(CH3)OCO-, He, 
in PLLA), 1.12 (–CH(CH3)2 , H5, in PNIPAM).

Synthesis of PLLA-b-PNVP (6)

In a dried Schlenk flask, (4) (54 mg, 0.015 mmol, 
Mn (NMR)= 3620 g/mol) was dissolved in 1 
mL THF and then NVP (0.16 mL, 1.50 mmol) 
and AIBN (1.23 mg, 0.0064 mmol) were added. 
The homogeneous solution was degassed with 
argon and continued for 0.5 h with stirring. 
The flask was immersed in an oil bath at 80 OC 
and the reaction was allowed to proceed for 24 
h. The reaction mixture was diluted with THF 

(4 mL), precipitated with 250 mL of hexane 
and the precipitated polymer was separated by 
centrifugation. The obtained polymer (6) was 
purified by dissolution/precipitation procedure 
two more times and dried under vacuum at 30 
OC.

Conversion: 23%. Mn (theo.): 6175 g/mol; Mn 
(NMR); 5890 g/mol; FTIR (ATR, cm‒1): 3435, 
2974, 2946, 2925, 2886, 1755, 1650, 1421, 1289, 
1182, 1084, 842, 735; 1H NMR (CDCl3, δ) = 5.14 
(He, in PLLA), 4.62 (O–CH2CH3, Hi), 4,04–3.51 
(CH2CH, H7 in PNVP backbone), 3.51–3.02 (–
NCH2CH2CH2, H10, in PNVP ring), 2.55–1.81 
(–NCH2CH2CH2, H8 and –NCH2CH2CH2, H9, in 
PNVP ring)), 1.67–1.12 (Hf+6+i). 

Cell Culture

For this study, human cervical cancer (HeLa) 
cell lines obtained from Kırşehir Ahi Evran 
University, Department Medical Pharmacology, 
were used. The cells were cultured at 37 OC 
with 5% CO2 in RPMI medium supported with 
10% Fetal Bovine Serum and 1% penicillin-
streptomycin.

Cytotoxicity Analyses

The cytotoxic impact of polymers HeLa cells was 
evaluated using the XTT assay kit (Biological 
Industries, USA). 800 cells were seeded per well 
in a 96-well plate. Following a 24-hour incubation 
period, the cells were exposed to copolymer. 
After 72 h of incubation, the solutions from 
the XTT kit were introduced to the cells. Cell 
viability was then measured using a microplate 
reader (BIOTEK ELX808, USA) at a wavelength 
of 450 nm. The IC50 value was determined.  As 
a result of the readings the obtained values, the 
inhibition rates of cells were calculated using the 
following formula: % inhibition: (A450 nm test – 
A450 nm control/A450 nm control) ×100.

Results and Discussion
The synthetic route is depicted in Scheme 1. 
The main route used in the preparation of block 
copolymers, according to monomers or methods, 
is as follows:

The PLLA block was first synthesized by the 
ROP of L-LA using Sn(Oct)2 as catalyst, followed 
by the ATRP of NIPAM or RAFT polymerization 
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of NVP. In this study the novel synthesized 
PLLA-based block copolymers were prepared 
in five stages; the synthesis of PLLA via ROP 
(i), esterification of PLLA hydroxyl group with 
2-bromopropionyl bromide (ii), substitution 
reaction of bromine end group with potassium 
ethyl xanthogenate (KEX), synthesis of PLLA-
b-PNIPAM (5) via ATRP of NIPAM initiated 
by (3) (iv), synthesis of PLLA-b-PNVP (5) via 
RAFT polymerization of NVP using macroCTA 
(4) (v). For this purpose, at first PLLA was 
synthesized ROP of L-LA with molar ratio of 
([monomer]:[initiator]=25:1) using (1) as the 
initiator and Sn(Oct)2 as catalyst. The structure 
of (2) was elucidated by FTIR and 1H NMR. 

FTIR spectra of PLLA (2), PLLA-b-PNIPAM (5) 
and PLLA-b-PNVP (6) are depicted in Figure 
1. In the spectrum of (2) (in Figure 1A), the 
absorption band of the carbonyl group of PLLA 
block was observed at 1756 cm‒1. The bands at 

1185 and 1083 cm‒1 were attributed to carbon-
oxygen stretching. 

Figure 2A showed 1H NMR spectrum of PLLA 
(2). In the 1H NMR spectrum of (2) the signal 
(He’) of terminal methine group of PLLA was 
observed at 4.34 ppm.  The peaks of methine 
(He) and methyl (Hf) protons, corresponding 
to PLLA repeating units, were detected at 5.15 
and 1.57 ppm, respectively. The peaks at δ =7.34 
(Hb) and 6.85 (Ha+c) are also assigned to the 
aromatic protons of (1). Mn (NMR) of polymer 
(2) was determined by using the integral ratio of 
the methyl proton peaks of PLLA (δ = 1.57 ppm) 
to the methine proton peak of terminal unit of 
PLLA (peak e’ in Figure 2A). The calculated value 
of molecular weight by NMR spectra is close to 
Mn (theo.). Mn (NMR) of PLLA was calculated 
by integral area of related peaks displacements 
according to equation (1)

Figure 1. FTIR spectra of PLLA (A), PLLA-b-PNIPAM (B) and PLLA-b-PNVP (C).
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(2) 

In the second step, ATRP macroinitiator (3) 
was synthesized by esterifying of end group of 

(2) with 2-bromopropionyl bromide. 1H NMR 
spectrum of (3) is displayed in Figure 2B. After 
esterification of hydroxyl end groups of PLLA, 
two novel signals appeared at 4.43 and 1.85 ppm. 
These signals were attributed to methine (Hg) and 
methyl (Hh) protons of bromo propionate end, 
respectively. The disappearance of peak at 4.34 
ppm, which corresponds to the methine protons 
adjacent to terminal hydroxyl end groups of 
PLLA end, indicates that the esterification was 
successful. The peaks of methine and methyl 

Figure 2. 1H NMR spectra of (A) PLLAOH, (B) PLLA-Br macroinitiator, (C) PLLA macro CTA.
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protons of the repeating units of PLLA main 
chain at 5.16 (He) and 1.57 (Hf) ppm were 
detected, respectively. The aromatic protons of 
(1) gave multiple signals at 7.35 and 6.86 ppm. 
Mn (NMR) of (3) calculated by comparing the 
peak integrals derived from the methyl protons’ 
peaks of PLLA (δ = 1.57 ppm) and the methine 
proton peak of end group (peak g in Figure 2B).

In the third step, PLLA macro CTA (4) was 
synthesized via substitution reaction of (3) with 
KEX. 1H NMR spectrum of (4) is displayed 
in Figure 2C. After the substitution reaction 
two novel signals appeared at 4.64 and 1.41 
ppm, which correspond to methyl (Hi) and 
methyl (Hj) protons of xanthate end group, 
respectively. The peaks of methine and methyl 

protons of the PLLA at 5.17 (He) and 1.57 (Hf) 
ppm were detected, respectively. The signals for 
the aromatic protons of initiator fragment (1) in 
macro-CTA agree with the values recorded the 
previous spectrum (Figure 2B). 

In the fourth step, PLLA-b-PNIPAM (5) was 
synthesized by ATRP of NIPAM as monomer 
using (3) as macroinitiator with molar ratio of 
monomer to initiator, i.e. [M]:[I] =100:1. FTIR 
spectrum of block copolymer is depicted in 
Figure 1B. As seen in FTIR spectrum of (5), 
the appearance of bands at 3285 cm‒1 (N-H 
stretching), 1640 cm‒1 (C=O stretching) and 
1538 cm‒1 (N-H bending) belonging to PNIPAM 
indicated polymerization of NIPAM was 
successful [24]. In addition to these data, C=O 

Figure 3. 1H NMR spectra of (A) PLLA-b-PNIPAM, and (B) PLLA-b-PNVP.
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band at 1755 cm‒1, attributable to the PLLA block, 
supports the formation of block copolymer.
1H NMR spectrum of (5) (in Figure 3A) displayed 
characteristic signals at 3.98 and 1.12 ppm 
assigned to the methine (H4) and methyl (H5) 
protons of PNIPAM, respectively. The signals 
at 5.13 and 1.55 ppm were ascribed to methine 
and methyl protons of PLLA, respectively. A 
broad signal appeared at 6.61 ppm (H3), which 
show the presence of proton of –NH group. The 
signals at 2.12 (H2) and 1.79 (H1) ppm are also 
attributed to the methine and methylene group 
of PNIPAM backbone, respectively. Mn (NMR) 
of (5) was determined by comparing the peak 
integrals derived from the methine proton peaks 
of PNIPAM (δ = 3.98 ppm, peak ‘4’) and the 
methine proton signal of PLLA (δ = 5.13 ppm, 

peak ‘e’ in Figure 3A) according to equation (3 
and 4)

� (3)
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Here, DPPNIPAM and DPPLLA are degree of 
polymerization for PNIPAM and PLLA 
segments, respectively. Mmonomer is also molecular 
weight of the NIPAM.

Finally, PLLA-b-PNVP (6) was synthesized RAFT 
polymerization of NVP using (4). FTIR spectrum 
of (6) is shown in Figure 1C. As seen in the FTIR 
spectrum of (6), peaks corresponding to PVP 
can be detected by the appearance of C=O and 
C−N peaks at 1656 and 1289 cm‒1, respectively. 
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In addition to these values, the peak belongs 
to PLLA the appearance of C=O at 1755 cm‒1 
supports the formation of block copolymer.
1H NMR spectrum of PLLA-b-PNVP (6) is 
displayed in Figure 3B. In the spectrum, 
methylene protons of pyrrolidone ring, 
corresponding to the characteristic peaks of 
PVP backbone, were detected at 3.51–3.02 (H10) 
and 2.55–1.81 (H8+9) ppm. The other peaks of 
methine proton (H7) of PNVP chain appeared 
at 4,04–3.51 ppm. The observation of the peak at 
5.14 of the methine (He) protons of PLLA block 
and the overlapped peaks at 1.67–1.12 ppm 
methylene (H6) of PNVP block with methyl (Hf) 
protons of PLLA indicates the formation of block 

copolymer. Mn (NMR) of (6) was calculated by 
comparing the peak integrals derived from the 
methylene protons’ peaks of PNVP (δ =3.24 ppm, 
peak ’10’) and the methine proton peaks of PLLA 
(δ = 5.19 ppm, peak ‘e’ in Fig. 3B) according to 
equation (5 and 6)
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Here, DPPNVP and DPPLLA are degree of 
polymerization for PNVP and PLLA segments, 
respectively. Mmonomer is also molecular weight of 
the NVP.

.

 

Figure 7. A; Control group (Non copolymer treated) Hela cell line B; (PLLA-b-PNVP) block copolymer treated 
cells (1000 ug/ml) (X40).

Figure 6.  Cytotoxicity assay of PLLA-b-PNVP.
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In Vitro Investigation

In vitro cytotoxicity studies in cancer cell lines 
are an important assay to evaluate the potential 
activity and toxicity of new drug carriers [25]. 
XTT analysis was performed to investigate the 
cytotoxic effect of synthesized block copolymers 
on cervical cancer (HeLa) cells. Considering 
vitro analyses, the cytotoxicity of synthesized 
block copolymers was investigated in cervical 
cancer cell lines at dose ranges of 100-1125 ug/
mL. According to the obtained analyses results, 
it was observed that the first synthesized block 
copolymer PLLA-b-PNIPAM had no toxic 
properties on cells at doses below 350 ug/ml and 
the doses above 350 ug/mL killed approximately 
50% of the cells. The results obtained are shown 
in Figure 4 and Figure 5. This result may be 
attributed to the trace amounts of copper that 
could remain in the block copolymer during the 
polymer purification process.  

For PLLA-b-PNVP block copolymer, the cytotoxic 
effect of (6) on HeLa cell lines was also evaluated 
at dose ranges of 100-1125 ug/mL. According to 
the results obtained, (6) had no significant toxic 
effect on cells (Figure 6 and Figure 7).

Conclusion
In this work novel AB-type block copolymers, 
(PLLA-b-PNIPAM) and (PLLA-b-PNVP), were 
prepared by combining of ROP and controlled/
living radical polymerization (CRP) techniques, 
ATRP or RAFT polymerization of NIPAM or 
NVP as monomers. The synthesis utilized a 
novel PLLA-based macroinitiators, created using 
a novel initiator, 2,4-difluorobenzyl alcohol, not 
previously used in polymerization of L-LA. The 
molecular structures of the compounds were 
confirmed using FTIR and 1H NMR methods. 
The Mn​ of the obtained polymers was calculated 
by comparing the peak integrals of related NMR 
spectra and agreed with theoretical values. 
Considering vitro analyses, the cytotoxicity of 
synthesized block copolymers was investigated 
in cervical cancer cell lines at dose ranges of 100-
1125 ug/ml. According to the obtained analyses 
results, it was observed that the first synthesized 
block copolymer PLLA-b-PNIPAM (5) had no 
toxic properties on cells at doses below 350 
ug/ml and the doses above 350 ug/mL killed 

approximately 50% of the cells. This effect may 
be due to the fact that trace amounts of copper 
in the block copolymer are not completely 
removed during the purification process. The 
cytotoxic effect of (PLLA-b-PNVP) on HeLa 
cell lines was also evaluated at dose range of 
100-1125 ug/ml. PLLA-b-PNVP (6) had no a 
significant toxic effects according to the results 
obtained.  Furthermore, it was observed that if 
the (PLLA-b-PNIPAM) is further purified, both 
block copolymers could be used in future cancer 
treatments and drug delivery applications. 
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