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Abstract

In this study, the performance of the Jacobi and Gauss-Seidel iteration methods for solving systems of linear 
equations with complex coefficients is analyzed. The coefficient matrix of the system is transformed into a real 
coefficient system by separating the real and imaginary parts. The study aims to compare the accuracy and 
computational efficiency of these methods within the context of selected examples, while also evaluating their 
convergence behavior. The findings demonstrate that, for the examples considered, the Gauss-Seidel method 
converges faster and with lower initial errors compared to the Jacobi method
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1. INTRODUCTION 
In many real-life problems, the relationships 
between variables are non-linear. However, linear 
approaches are widely employed in engineering 
and other scientific disciplines. Numerous studies 
are conducted based on linear models, which are 
frequently preferred due to their suitability for 
applying both approximate and exact methods in 
the analysis and resolution of mathematical 
problems [1]. Linear models, particularly in areas 
such as engineering, provide exact or approximate 
solutions by addressing problems with a 
systematic approach and facilitate analysis 
processes.  

Some problems in science and technology are 
inherently more complex. Particularly in physics 
and engineering, where modeling and solving 
complex systems are essential, large-scale linear 
systems of equations are commonly utilized. For 
example, linear equations with a large number of 
variables can be used to describe scientific 
problems such as calculating the structural 
strength of a bridge or forecasting weather 
conditions. The extensive use of linear systems has 
consequently positioned their solutions as a 
central topic in numerical computation. 

Problems involving linear systems with complex 
coefficients can be exemplified by the propagation 
of electromagnetic waves. Complex numbers are 
used to represent electromagnetic waves, with 
their two-dimensional structure enabling the 
simultaneous representation of both the wave's 
amplitude (magnitude) and phase (temporal 
shift). Additionally, sinusoidal functions used to 
describe electromagnetic waves can be converted 
into complex expressions through Euler's 
formula, 𝑒𝑒𝑒𝑒𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖 = 𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐 + 𝑖𝑖𝑖𝑖𝑐𝑐𝑐𝑐𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑐𝑐𝑐𝑐. As emphasized with 
the example of electromagnetic waves, complex 
numbers play a significant role in expressing 
problems in physics and engineering.  

Iterative methods for solving linear algebraic 
systems require fewer computational resources, 
such as memory, compared to direct methods. 
Consequently, iterative methods are often favored 
for solving large-scale systems [2]. Iterative 
methods used for linear systems generally fall into 
two categories: Stationary methods (e.g., Gauss-
Seidel, Jacobi, SOR) and methods based on Krylov 

subspace (e.g., Conjugate Gradient, Generalized 
Minimal Residual) [2]. 

Building on the basic classification and efficiency 
of iterative methods, their practical applications 
and comparative performance have been 
extensively studied. Numerous studies have 
analyzed the performance of these methods for 
different system sizes and coefficient classes. 
These analyses contribute to a deeper 
understanding of the effectiveness and 
convergence properties of iterative methods, 
particularly when applied to systems with varied 
complexities. This foundation lays the way for 
facilitating specific studies that compare the 
behavior and convergence of these methods.  

In the context of the methods discussed, a brief 
literature review on studies utilizing the Gauss-
Seidel method will now be presented. Iterative 
methods for solving linear systems have evolved 
significantly throughout the 20th century, 
encouraged by increasing computational 
demands in science and engineering. Although 
their origins date back to the 19th century with 
Gauss’s early work, recent advancements have 
resulted in a broad spectrum of specialized 
algorithms designed to address large and complex 
systems [3]. Among these, the Jacobi and Gauss-
Seidel methods have remained central due to their 
simplicity and practical effectiveness. 

The Gauss-Seidel method, while traditionally 
sequential due to variable dependencies, has 
inspired various parallel adaptations—such as the 
red-black Gauss-Seidel (RBGS) method for sparse 
systems [4]—and has been implemented in 
distributed computing frameworks [5]. Building 
on the strengths of both classical methods, [2] 
developed an algorithm that merges the 
convergence behavior of Gauss-Seidel with the 
inherent parallelism of Jacobi. Comparative 
studies continue to evaluate these methods under 
diverse conditions. For example, the solutions of 
two distinct linear systems with real coefficients 
(one of order 3 × 3 and the other 5 × 5) were 
examined in [6] using both Jacobi and Gauss-
Seidel iterations. In [7], convergence conditions 
for both methods were presented and illustrated 
with numerical examples, along with a formula to 
estimate the required number of iterations. Other 
studies extend this comparison to fuzzy systems 
[8] or explore the convergence domains of these 
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methods for systems with real and complex 
coefficients [9], further demonstrating the 
enduring relevance and adaptability of the Gauss-
Seidel method across a range of problem domains. 

In this study, the results obtained by using Jacobi 
and Gauss-Seidel iterative methods to solve linear 
equation systems with complex coefficients are 
analyzed (based on certain examples). The 
method used to conduct this study as described in 
the following. The approach used in this study 
includes several steps, starting with the extraction 
of two separate matrices from the 𝑖𝑖𝑖𝑖 × 𝑖𝑖𝑖𝑖 coefficient 
matrix of the system, representing the real and 
imaginary parts of the matrix entries. Thus, the 
initial 𝑖𝑖𝑖𝑖 × 𝑖𝑖𝑖𝑖 matrix with complex coefficients is 
extended to a real matrix of order 2𝑖𝑖𝑖𝑖 × 2𝑖𝑖𝑖𝑖 and the 
initial system is effectively transformed into a real 
system.  Subsequently, the Jacobi and Gauss-
Seidel iterative methods were applied to this 
transformed real system, and the solutions were 
analyzed. 

2. THE COMPLEX-REAL TRANSFORM 
APPROACH 

Let 𝐹𝐹𝐹𝐹𝑚𝑚𝑚𝑚×𝑛𝑛𝑛𝑛 denote the set of matrices of order 𝑚𝑚𝑚𝑚 × 𝑖𝑖𝑖𝑖 
defined over a field 𝐹𝐹𝐹𝐹. If the entries of a matrix 𝐾𝐾𝐾𝐾 
of order 𝑚𝑚𝑚𝑚 × 𝑖𝑖𝑖𝑖 are chosen from the field of 
complex numbers (ℂ), then this matrix is denoted 
by 𝐾𝐾𝐾𝐾 ∈ ℂ𝑚𝑚𝑚𝑚×𝑛𝑛𝑛𝑛. 

Let 𝐴𝐴𝐴𝐴 = �𝑧𝑧𝑧𝑧𝑗𝑗𝑗𝑗𝑗𝑗𝑗𝑗� ∈ ℂ𝑛𝑛𝑛𝑛×𝑛𝑛𝑛𝑛, 𝑋𝑋𝑋𝑋 = [𝑥𝑥𝑥𝑥1 𝑥𝑥𝑥𝑥2 ⋯ 𝑥𝑥𝑥𝑥𝑛𝑛𝑛𝑛]𝑇𝑇𝑇𝑇 ∈
ℂ𝑛𝑛𝑛𝑛×1 , and 𝐵𝐵𝐵𝐵 = [𝑏𝑏𝑏𝑏1 𝑏𝑏𝑏𝑏2 ⋯ 𝑏𝑏𝑏𝑏𝑛𝑛𝑛𝑛]𝑇𝑇𝑇𝑇 ∈ ℂ𝑛𝑛𝑛𝑛×1. We then 
consider a linear equation system with complex 
coefficients (in short LCC) 

𝐴𝐴𝐴𝐴𝑋𝑋𝑋𝑋 = 𝐵𝐵𝐵𝐵. (4) 

Following the transformation of a LCC into a 
linear equation system with reel coefficients (in 
short LRC) using the method detailed below, we 
will explore its solution through iterative 
methods. 

The product of two complex numbers yields 
another complex number, i.e., 

(𝑎𝑎𝑎𝑎 + 𝑖𝑖𝑖𝑖𝑏𝑏𝑏𝑏)(𝑥𝑥𝑥𝑥 + 𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖) = 𝑐𝑐𝑐𝑐 + 𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖 (5) 

where 𝑖𝑖𝑖𝑖2 = −1 and 𝑎𝑎𝑎𝑎, 𝑏𝑏𝑏𝑏, 𝑥𝑥𝑥𝑥,𝑖𝑖𝑖𝑖, 𝑐𝑐𝑐𝑐,𝑖𝑖𝑖𝑖 ∈ ℝ. From Eq.(5), 
we obtain  

𝑎𝑎𝑎𝑎𝑥𝑥𝑥𝑥 − 𝑏𝑏𝑏𝑏𝑖𝑖𝑖𝑖 = 𝑐𝑐𝑐𝑐 (6) 

𝑖𝑖𝑖𝑖𝑏𝑏𝑏𝑏𝑥𝑥𝑥𝑥 + 𝑖𝑖𝑖𝑖𝑎𝑎𝑎𝑎𝑖𝑖𝑖𝑖 = 𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖 

which subsequently allows us to write   

�𝑎𝑎𝑎𝑎 −𝑏𝑏𝑏𝑏
𝑏𝑏𝑏𝑏    𝑎𝑎𝑎𝑎� �

𝑥𝑥𝑥𝑥
𝑖𝑖𝑖𝑖� = �𝑐𝑐𝑐𝑐𝑖𝑖𝑖𝑖�. (7) 

In order to better analyze a linear system with 
complex coefficients, an approach has been 
proposed, modeled on the process of 
transforming the LCC given in Eq.(4) into its 
matrix form as shown in Eq.(7). This approach 
involves separating the real and complex 
components of the coefficients. A brief 
explanation of this method is provided below, 
while detailed information can be found in 
references [9] and [10]. 

Let us consider each entry of the coefficient matrix 
𝐴𝐴𝐴𝐴 = [𝑧𝑧𝑧𝑧𝑗𝑗𝑗𝑗𝑗𝑗𝑗𝑗] in Eq.(4) as a complex number of the 
form 

𝑧𝑧𝑧𝑧𝑗𝑗𝑗𝑗𝑗𝑗𝑗𝑗 = 𝑅𝑅𝑅𝑅𝑒𝑒𝑒𝑒�𝑧𝑧𝑧𝑧𝑗𝑗𝑗𝑗𝑗𝑗𝑗𝑗� + 𝑖𝑖𝑖𝑖. 𝐼𝐼𝐼𝐼𝑚𝑚𝑚𝑚�𝑧𝑧𝑧𝑧𝑗𝑗𝑗𝑗𝑗𝑗𝑗𝑗�. (8) 

Hence, we construct the matrices 

𝐴𝐴𝐴𝐴ℝ = �𝑅𝑅𝑅𝑅𝑒𝑒𝑒𝑒�𝑧𝑧𝑧𝑧𝑗𝑗𝑗𝑗𝑗𝑗𝑗𝑗�� ∈ ℝ𝑛𝑛𝑛𝑛×𝑛𝑛𝑛𝑛, (9) 

and 

𝐴𝐴𝐴𝐴ℂ = �𝐼𝐼𝐼𝐼𝑚𝑚𝑚𝑚�𝑧𝑧𝑧𝑧𝑗𝑗𝑗𝑗𝑗𝑗𝑗𝑗�� ∈ ℂ𝑛𝑛𝑛𝑛×𝑛𝑛𝑛𝑛. (10) 

Then we build the augmented matrix �̃�𝐴𝐴𝐴 ∈ ℝ2𝑛𝑛𝑛𝑛×2𝑛𝑛𝑛𝑛 
as follows: 

�̃�𝐴𝐴𝐴 = �𝐴𝐴𝐴𝐴
ℝ −𝐴𝐴𝐴𝐴ℂ
𝐴𝐴𝐴𝐴ℂ 𝐴𝐴𝐴𝐴ℝ

�
2𝑛𝑛𝑛𝑛×2𝑛𝑛𝑛𝑛

 (11) 

For example, given the matrix 𝐴𝐴𝐴𝐴 =

�2 + 3𝑖𝑖𝑖𝑖 4 − 5𝑖𝑖𝑖𝑖
7 1 + 9𝑖𝑖𝑖𝑖�, we separate it into its real and 

complex parts as follows: 𝐴𝐴𝐴𝐴ℝ = �2 4
7 1� and 𝐴𝐴𝐴𝐴ℂ =

�3 −5
0 9 �. We then form the matrix �̃�𝐴𝐴𝐴 as 

�̃�𝐴𝐴𝐴 = �
 2    4
 7    1

−3    5
 0 −9

 3 −5
 0    9

   2     4
   7     1

�. 

In a similar manner as the process used to obtain 
the matrix �̃�𝐴𝐴𝐴, let us denote the real and complex 
parts of the elements of the column vector 
𝑋𝑋𝑋𝑋 ∈ ℂ𝑛𝑛𝑛𝑛×1 in Eq.(4) as 𝑋𝑋𝑋𝑋ℝ and 𝑋𝑋𝑋𝑋ℂ, respectively, and 
build the following column vector: 
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𝒳𝒳𝒳𝒳 = �𝑋𝑋𝑋𝑋
ℝ

𝑋𝑋𝑋𝑋ℂ
�
2𝑛𝑛𝑛𝑛×1

 (12) 

Similarly, let us denote the real and complex parts 
of the elements of the column vector 𝐵𝐵𝐵𝐵 ∈ ℂ𝑛𝑛𝑛𝑛×1 in 
Eq.(4) as 𝐵𝐵𝐵𝐵ℝ and 𝐵𝐵𝐵𝐵ℂ, respectively, and build the 
following column vector: 

ℬ = �𝐵𝐵𝐵𝐵
ℝ

𝐵𝐵𝐵𝐵ℂ
�
2𝑛𝑛𝑛𝑛×1

 (13) 

Thus, the 𝑖𝑖𝑖𝑖 × 𝑖𝑖𝑖𝑖 complex linear system 𝐴𝐴𝐴𝐴𝑋𝑋𝑋𝑋 = 𝐵𝐵𝐵𝐵 is 
transformed into a 2𝑖𝑖𝑖𝑖 × 2𝑖𝑖𝑖𝑖 real linear system  

�̃�𝐴𝐴𝐴𝒳𝒳𝒳𝒳 = ℬ (14) 

as shown below: 

�𝐴𝐴𝐴𝐴
ℝ −𝐴𝐴𝐴𝐴ℂ
𝐴𝐴𝐴𝐴ℂ 𝐴𝐴𝐴𝐴ℝ

� �𝑋𝑋𝑋𝑋
ℝ

𝑋𝑋𝑋𝑋ℂ
� = �𝐵𝐵𝐵𝐵

ℝ

𝐵𝐵𝐵𝐵ℂ
�. (15) 

This process is referred to as the Complex-Real 
Transform in [11]. After converting the LCC to LRC 
using the method described above, the following 
proposition, proven in [12], should be considered 
in the solution process. 

Proposition: ([12]) The complex linear system 
𝐴𝐴𝐴𝐴𝑋𝑋𝑋𝑋 = 𝐵𝐵𝐵𝐵 has a unique solution if and only if the real 
linear system �̃�𝐴𝐴𝐴𝒳𝒳𝒳𝒳 = ℬ has a unique solution. 

3. GENERAL ITERATION FORMULAE 
OF JACOBI AND GAUSS-SEIDEL 
METHODS 
Let us consider 𝑖𝑖𝑖𝑖 by 𝑖𝑖𝑖𝑖 complex linear system 𝐴𝐴𝐴𝐴𝑋𝑋𝑋𝑋 =
𝐵𝐵𝐵𝐵, and split the coefficient matrix 𝐴𝐴𝐴𝐴 = �𝑎𝑎𝑎𝑎𝑖𝑖𝑖𝑖𝑗𝑗𝑗𝑗� into 
three parts as  

𝐴𝐴𝐴𝐴 = 𝐿𝐿𝐿𝐿 + 𝐷𝐷𝐷𝐷 + 𝑈𝑈𝑈𝑈, (16) 

The following conditions hold for the matrices 𝐿𝐿𝐿𝐿, 
𝑈𝑈𝑈𝑈 and 𝐷𝐷𝐷𝐷 in In Eq.(16): 

• The lower triangular matrix 𝐿𝐿𝐿𝐿 is obtained 
by replacing the elements 𝑎𝑎𝑎𝑎𝑖𝑖𝑖𝑖𝑗𝑗𝑗𝑗 ∈ 𝐴𝐴𝐴𝐴 with 
zero if 𝑖𝑖𝑖𝑖 ≤ 𝑗𝑗𝑗𝑗.  

• The upper triangular matrix 𝑈𝑈𝑈𝑈 is obtained 
by replacing the elements 𝑎𝑎𝑎𝑎𝑖𝑖𝑖𝑖𝑗𝑗𝑗𝑗 ∈ 𝐴𝐴𝐴𝐴 with 
zero if 𝑗𝑗𝑗𝑗 ≤ 𝑖𝑖𝑖𝑖. 

• The diagonal matrix 𝐷𝐷𝐷𝐷 is obtained by 
replacing the elements 𝑎𝑎𝑎𝑎𝑖𝑖𝑖𝑖𝑗𝑗𝑗𝑗 ∈ 𝐴𝐴𝐴𝐴 with zero if 
𝑖𝑖𝑖𝑖 ≠ 𝑗𝑗𝑗𝑗. 

By combining Eq.(4) and Eq.(16) yields the 
following equation: 

𝐷𝐷𝐷𝐷𝑋𝑋𝑋𝑋 = 𝐵𝐵𝐵𝐵 − (𝐿𝐿𝐿𝐿 + 𝑈𝑈𝑈𝑈)𝑋𝑋𝑋𝑋 (17) 

Therefore, the following equation can be 
expressed for the matrix representation of the 
Jacobi iteration method. 

𝐷𝐷𝐷𝐷𝑋𝑋𝑋𝑋(𝑗𝑗𝑗𝑗+1) = B − (𝐿𝐿𝐿𝐿 + 𝑈𝑈𝑈𝑈)𝑋𝑋𝑋𝑋(𝑗𝑗𝑗𝑗) (18) 

In Eq.(18), 𝑋𝑋𝑋𝑋(𝑗𝑗𝑗𝑗) denotes the solution vector at the 
𝑘𝑘𝑘𝑘th iteration step. Let 𝑋𝑋𝑋𝑋 = [𝑥𝑥𝑥𝑥1 𝑥𝑥𝑥𝑥2 ⋯ 𝑥𝑥𝑥𝑥𝑛𝑛𝑛𝑛]𝑇𝑇𝑇𝑇 and  

𝐵𝐵𝐵𝐵 = [𝑏𝑏𝑏𝑏1 𝑏𝑏𝑏𝑏2 ⋯ 𝑏𝑏𝑏𝑏𝑛𝑛𝑛𝑛]𝑇𝑇𝑇𝑇. According to the Jacobi 
iteration method outlined in Eq. (18), each 𝑥𝑥𝑥𝑥𝑖𝑖𝑖𝑖 is 
calculated using the following formula [13]. 

𝑥𝑥𝑥𝑥𝑖𝑖𝑖𝑖
(𝑗𝑗𝑗𝑗+1) =

1
𝑎𝑎𝑎𝑎𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖

⎝

⎜
⎛
𝑏𝑏𝑏𝑏𝑖𝑖𝑖𝑖 −�𝑎𝑎𝑎𝑎𝑖𝑖𝑖𝑖𝑗𝑗𝑗𝑗𝑥𝑥𝑥𝑥𝑗𝑗𝑗𝑗

(𝑗𝑗𝑗𝑗)
𝑛𝑛𝑛𝑛

𝑗𝑗𝑗𝑗=1
𝑖𝑖𝑖𝑖≠𝑗𝑗𝑗𝑗 ⎠

⎟
⎞

 (19) 

where 𝑎𝑎𝑎𝑎𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖 ≠ 0. Each variable in the linear system 
of equations with complex coefficients, as 
expressed in Eq. (19), converges iteratively toward 
the true solution or diverges, depending on the 
initial guess values provided. 

With a simple modification on Eq.(18), we obtain 
the following equation, which represents the 
matrix form of the Gauss-Seidel iteration. 

𝐷𝐷𝐷𝐷𝑋𝑋𝑋𝑋(𝑗𝑗𝑗𝑗+1) = B − �𝐿𝐿𝐿𝐿𝑋𝑋𝑋𝑋(𝑗𝑗𝑗𝑗+1) + 𝑈𝑈𝑈𝑈𝑋𝑋𝑋𝑋(𝑗𝑗𝑗𝑗)� (20) 

According to the Gauss-Seidel iteration method 
described in Eq.(20), each 𝑥𝑥𝑥𝑥𝑖𝑖𝑖𝑖 is computed using the 
following formula [13]. 

𝑥𝑥𝑥𝑥𝑖𝑖𝑖𝑖
(𝑗𝑗𝑗𝑗+1) =

1
𝑎𝑎𝑎𝑎𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖

�𝑏𝑏𝑏𝑏𝑖𝑖𝑖𝑖 −�𝑎𝑎𝑎𝑎𝑖𝑖𝑖𝑖𝑗𝑗𝑗𝑗𝑥𝑥𝑥𝑥𝑗𝑗𝑗𝑗
(𝑗𝑗𝑗𝑗+1)

𝑖𝑖𝑖𝑖−1

𝑗𝑗𝑗𝑗=1

− � 𝑎𝑎𝑎𝑎𝑖𝑖𝑖𝑖𝑗𝑗𝑗𝑗𝑥𝑥𝑥𝑥𝑗𝑗𝑗𝑗
(𝑗𝑗𝑗𝑗)

𝑛𝑛𝑛𝑛

𝑗𝑗𝑗𝑗=𝑖𝑖𝑖𝑖+1

� 

(21) 

where 𝑖𝑖𝑖𝑖 ≠ 𝑗𝑗𝑗𝑗. 

Apart from the formula given in Eq. (19), the 
formula presented in Eq. (21) accounts for the 
calculation of the 𝑖𝑖𝑖𝑖th variable of the 𝑖𝑖𝑖𝑖th equation 
using the iteration values from the 1st variable to 
the (𝑗𝑗𝑗𝑗 − 1)th variable at step (𝑘𝑘𝑘𝑘 + 1), as well as the 
values from the (𝑗𝑗𝑗𝑗 + 1)th to the 𝑖𝑖𝑖𝑖th variable at step 
𝑘𝑘𝑘𝑘. 
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For further details, including MATLAB code 
related to the Jacobi and Gauss-Seidel iteration 
methods, see [14]. 

4. CONVERGENCE CONDITION OF 
GAUSS-SEIDEL AND JACOBI 
METHOD 
Techniques used to find solutions in root-finding 
problems vary significantly in terms of how they 
ensure convergence. These variations stem from 
the convergence properties of the method, initial 
conditions, and the structure of the function being 
used. 

The fixed-point technique, often considered the 
fundamental idea behind many iteration methods, 
aims to find a point where the function satisfies 
the condition of x=f(x). In this method, an iterative 
process is initiated based on an initial estimate, 
and the function's output at each step is used as 
the new estimate. However, fixed-point iteration 
may not always converge rapidly or reliably. 

Jacobi iteration, a method developed based on the 
fixed-point technique, is commonly used for 
solving linear systems of equations. According to 
the Jacobi method, the new values of the 
unknowns in each iteration are updated based on 
the previous iteration values of the other 
unknowns. This technique can be particularly 
effective for solving large-scale and sparse 
matrices. The convergence speed and reliability of 
this method depend on the structure of the system 
and the properties of the matrix. 

The Gauss-Seidel iteration method is a modified 
version of the Jacobi iteration. By using more 
updated solution values during each iteration, the 
Gauss-Seidel method improves convergence 
speed, enabling more efficient solutions for large 
and complex systems. 

The sufficiency condition for the convergence of 
Jacobi and Gauss-Seidel methods is expressed by 
Theorem. 7.21 in [13], as shown below. 

Teorem: ([13]) If 𝐴𝐴𝐴𝐴 is strictly diagonally dominant, 
then for any choice of 𝑥𝑥𝑥𝑥(0), both the Jacobi and 
Gauss-Seidel methods give sequences �𝑥𝑥𝑥𝑥(𝑗𝑗𝑗𝑗)�

𝑗𝑗𝑗𝑗=0
∞  

that converge to the unique solution of 𝐴𝐴𝐴𝐴𝑋𝑋𝑋𝑋 = 𝐵𝐵𝐵𝐵.  

Definition: The 𝑖𝑖𝑖𝑖 by 𝑖𝑖𝑖𝑖 matrix 𝐴𝐴𝐴𝐴 is said to be 
diagonally dominant when 

|𝑎𝑎𝑎𝑎𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖| ≥��𝑎𝑎𝑎𝑎𝑖𝑖𝑖𝑖𝑗𝑗𝑗𝑗�
𝑛𝑛𝑛𝑛

𝑗𝑗𝑗𝑗=1
𝑗𝑗𝑗𝑗≠𝑖𝑖𝑖𝑖

 (22) 

holds for each 𝑖𝑖𝑖𝑖 = 1, 2,⋯ ,𝑖𝑖𝑖𝑖.  

𝐴𝐴𝐴𝐴 diagonally dominant matrix is said to be strictly 
diagonally dominant when the inequality in 
Eq.(22) is strict for each 𝑖𝑖𝑖𝑖, that is, when  

|𝑎𝑎𝑎𝑎𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖| > ��𝑎𝑎𝑎𝑎𝑖𝑖𝑖𝑖𝑗𝑗𝑗𝑗�
𝑛𝑛𝑛𝑛

𝑗𝑗𝑗𝑗=1
𝑗𝑗𝑗𝑗≠𝑖𝑖𝑖𝑖

 (23) 

holds for each 𝑖𝑖𝑖𝑖 = 1, 2, … ,𝑖𝑖𝑖𝑖. 

Ensuring this condition guarantees faster and 
more reliable convergence of iterative methods. In 
the Jacobi and Gauss-Seidel methods, if the 
coefficient matrix exhibits this dominance, 
potential deviations during iterations are 
minimized, leading to a reliable convergence 
towards the solution. As frequently emphasized 
in the literature, systems that do not exhibit 
diagonal dominance may tend to diverge during 
iterations or require significantly more iterations 
to converge. This can reduce the efficiency of these 
methods. Therefore, satisfying the diagonal 
dominance of the coefficient matrix is considered 
an essential prerequisite for the successful 
application of these methods. 

5. NUMERICAL EXAMPLES 
In this section we present numerical examples 
analyzing the solutions obtained by applying the 
Jacobi and Gauss-Seidel iterations to the system 
transformed by the application of the complex-
real transformation. 

5.1. Example 1 

Let us consider the equation  

(4 + 2𝑖𝑖𝑖𝑖)𝑥𝑥𝑥𝑥 = 20 − 10𝑖𝑖𝑖𝑖. (24) 

Assuming 𝑥𝑥𝑥𝑥 = 𝑢𝑢𝑢𝑢 + 𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖, then we obtain  

�4 −2
2 4 � �𝑢𝑢𝑢𝑢𝑖𝑖𝑖𝑖� = �   20

−10�. (25) 

The results obtained by applying Jacobi and 
Gauss-Seidel methods to the real system in Eq.(25) 
are given in Table-1. 
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Table 1. Values of variables depending on iterations 

Iter No 
Jacobi Method Gauss Seidel Method 

𝒖𝒖𝒖𝒖 𝒗𝒗𝒗𝒗 𝒖𝒖𝒖𝒖 𝒗𝒗𝒗𝒗 

1 5 -2.5 5 -5 

2 3.75 -5 2.5 -3.75 

3 2.5 -4.375 3.125 -4.0625 

. . . . . 

8 2.9883 -3.9844 2.9999 -3.9999 

9 3.0078 -3.9941 3 -4 

. . . . . 

16 3 -3.9999 3 -4 

17 3 -4 3 -4 

. . . . . 

20 3 -4 3 -4 

 

5.2. Example 2 

Let us consider the following LCC. 

(5 + 𝑖𝑖𝑖𝑖)𝑥𝑥𝑥𝑥 + (−2 + 3𝑖𝑖𝑖𝑖)𝑖𝑖𝑖𝑖 = 13 + 14𝑖𝑖𝑖𝑖 

(2 − 𝑖𝑖𝑖𝑖)𝑥𝑥𝑥𝑥 + (4 + 2𝑖𝑖𝑖𝑖)𝑖𝑖𝑖𝑖 = 13 − 6𝑖𝑖𝑖𝑖 
(26) 

The matrix representation of this system is as 
follows. 

�5 + 𝑖𝑖𝑖𝑖 −2 + 3𝑖𝑖𝑖𝑖
2 − 𝑖𝑖𝑖𝑖   4 + 2𝑖𝑖𝑖𝑖 � �

𝑥𝑥𝑥𝑥
𝑖𝑖𝑖𝑖� = �13 + 14𝑖𝑖𝑖𝑖

13 − 6𝑖𝑖𝑖𝑖 � (27) 

Applying complex-real transforms to the system 
in Eq.(27), we obtain 

�
     5 −2
     2  4

−1 −3
1 −2

   1   3
−1   2

  5   −2
  2     4

� �

𝑢𝑢𝑢𝑢1
𝑢𝑢𝑢𝑢2
𝑖𝑖𝑖𝑖1
𝑖𝑖𝑖𝑖2
� = �

13
13
14
−6

� (28) 

where = 𝑢𝑢𝑢𝑢1 + 𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖1,  𝑖𝑖𝑖𝑖 = 𝑢𝑢𝑢𝑢2 + 𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖2. The results 
obtained by applying Jacobi and Gauss-Seidel 
methods to the system given by Eq.(28) are given 
in Table-2 and Table-3, respectively. 

 

 

 

 

 

 

 

Table 2. Values of the variables depending on 
iterations 

Iteration 
No 

  

Jacobi Iteration Method  

𝒖𝒖𝒖𝒖𝟏𝟏𝟏𝟏 𝒖𝒖𝒖𝒖𝟐𝟐𝟐𝟐 𝒗𝒗𝒗𝒗𝟏𝟏𝟏𝟏 𝒗𝒗𝒗𝒗𝟐𝟐𝟐𝟐 

1 2.6 3.25 2.8 -1.5 

2 3.56 0.5 -0.27 -3.875 

3 0.421 -0.4 0.238 -0.725 

. . . . . 

12 1.5362 -0.0078 0.1578 -1.9098 

13 1.4826 1.4876 1.7335 -1.191 

. . . . . 

38 1.955 1.13 1.1547 -1.8912 

39 2.1482 1.0382 0.9745 -2.1536 

40 1.9181 0.8555 0.886 -1.9693 

 

Table 3. Values of the variables depending on 
iterations 

Iteration 
No 

Gauss-Seidel Iteration Method 

𝒖𝒖𝒖𝒖𝟏𝟏𝟏𝟏 𝒖𝒖𝒖𝒖𝟐𝟐𝟐𝟐 𝒗𝒗𝒗𝒗𝟏𝟏𝟏𝟏 𝒗𝒗𝒗𝒗𝟐𝟐𝟐𝟐 

1 2.6 1.95 1.11 -2.38 

2 2.174 0.6955 0.9959 -1.8022 

3 1.9961 1.1019 1.0188 -2.0613 

. . . . . 

9 2 1.0002 1 -2.0001 

10 2 0.9999 1 -2 

11 2 1 1 -2 

. . . . . 

39 2 1 1 -2 

40 2 1 1 -2 

 

In the following example, the solution of the 
system of complex linear equations given in [12] 
will be discussed. It is worth noting that during 
the iterative solution of this problem, as outlined 
in [12], a specialized storage (or compression) 
method referred to as VRC (value-row-column) 
was utilized for the coefficient matrix. In this 
study, solutions obtained through the direct 
application of Jacobi and Gauss-Seidel iteration 
methods to this problem will be presented. 
Additionally, different from the results reported 
in [12], detailed error analysis results and 
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convergence graphs of the solutions toward the 
root will be provided. 

5.3. Example 3 

Let us consider the complex linear system 𝐴𝐴𝐴𝐴𝑋𝑋𝑋𝑋 = 𝐵𝐵𝐵𝐵 
where matrix 𝐴𝐴𝐴𝐴 and matrix 𝐵𝐵𝐵𝐵 are as follows: 

⎣
⎢
⎢
⎢
⎡

19.73
−0.51𝑖𝑖𝑖𝑖

12.11 − 𝑖𝑖𝑖𝑖  5   
32.3 + 7𝑖𝑖𝑖𝑖  23.07 

0             0        
𝑖𝑖𝑖𝑖             0       

0  −0.51𝑖𝑖𝑖𝑖 70 + 7.3𝑖𝑖𝑖𝑖     3.95 19 + 31
0
0

    0          1 + 1.1𝑖𝑖𝑖𝑖
    0        0

50.17  45.51      
−9.351𝑖𝑖𝑖𝑖      55           

 (29
) 

 

𝐵𝐵𝐵𝐵 =

⎣
⎢
⎢
⎢
⎡

77.38 + 8.82𝑖𝑖𝑖𝑖
157.48 + 19.8𝑖𝑖𝑖𝑖

1175.62 + 20.69𝑖𝑖𝑖𝑖
912.12 − 801.75𝑖𝑖𝑖𝑖

550 − 1060.4𝑖𝑖𝑖𝑖 ⎦
⎥
⎥
⎥
⎤
. (30) 

Accordingly, the matrices obtained from the real 
and imaginary parts of the elements of the matrix 
𝐴𝐴𝐴𝐴 ∈ ℂ5×5 are as 

𝐴𝐴𝐴𝐴ℝ

=

⎣
⎢
⎢
⎢
⎡
19.73

0
12.11 0
32.3 23.07

0         0
0         0

0 0       70 3.95     19 
0
0

0         1
0         0

50.17 45.51
0           55 ⎦

⎥
⎥
⎥
⎤
 (31) 

and 

𝐴𝐴𝐴𝐴ℂ

=

⎣
⎢
⎢
⎢
⎡

0
0.51

1 −5
−7    0

   0          0  
−1         0   

0 0.51 −7.3    0 −31.83
0
0

  0  −1.1
  0      0

0         0
9.351       0      ⎦

⎥
⎥
⎥
⎤
 (32) 

On the other hand, the matrices obtained from the 
real and imaginary parts of the elements of the 
matrix       𝐵𝐵𝐵𝐵 ∈ ℂ10×1 are as 

𝐵𝐵𝐵𝐵ℝ =

⎣
⎢
⎢
⎢
⎡

77.38
157.48

1175.62
912.12

550 ⎦
⎥
⎥
⎥
⎤
 (33) 

and 

𝐵𝐵𝐵𝐵ℂ =

⎣
⎢
⎢
⎢
⎡

8.82
19.8

20.69
−801.75
−1060.4⎦

⎥
⎥
⎥
⎤
. (34) 

The matrices 𝐴𝐴𝐴𝐴ℝ, 𝐴𝐴𝐴𝐴ℂ, 𝐵𝐵𝐵𝐵ℝ ve 𝐵𝐵𝐵𝐵ℂ are written in Eq 
(15) to obtain the system �̃�𝐴𝐴𝐴𝒳𝒳𝒳𝒳 = 𝐵𝐵𝐵𝐵 with order 10 ×
10. The exact solution of this transformed system 
is  

𝒳𝒳𝒳𝒳
= [3.3;  1 ;  5.5 ;  9 ;  10 ; −1 ;  0.17 ;  0 ;  0 ;  −17.75 ]𝑇𝑇𝑇𝑇 . 

Considering that 𝒳𝒳𝒳𝒳 = [𝑋𝑋𝑋𝑋ℝ 𝑋𝑋𝑋𝑋ℂ]𝑇𝑇𝑇𝑇 ∈ ℂ10×1 ve 𝑋𝑋𝑋𝑋 =
𝑋𝑋𝑋𝑋ℝ + 𝑖𝑖𝑖𝑖𝑋𝑋𝑋𝑋ℂ, the solution of the original system is 
obtained as follows: 

𝑋𝑋𝑋𝑋 =

⎣
⎢
⎢
⎢
⎡

3.3 − 𝑖𝑖𝑖𝑖
1 − 0.17𝑖𝑖𝑖𝑖

5.5
9

10 − 17.75𝑖𝑖𝑖𝑖⎦
⎥
⎥
⎥
⎤
 (34) 

Considering that  

𝒳𝒳𝒳𝒳 =
[𝑢𝑢𝑢𝑢1 𝑢𝑢𝑢𝑢2 𝑢𝑢𝑢𝑢3 𝑢𝑢𝑢𝑢4 𝑢𝑢𝑢𝑢5 𝑖𝑖𝑖𝑖1 𝑖𝑖𝑖𝑖2 𝑖𝑖𝑖𝑖3 𝑖𝑖𝑖𝑖4 𝑖𝑖𝑖𝑖5]𝑇𝑇𝑇𝑇, the 
numerical solution results of this problem based 
on the iteration methods Jacobi and Gauss-Seidel 
are given in  
Table-4 and Table-5. 

 

 

 

 

 

 

 

 

 

 

 

  

1 2.6 3.25 2.8 -1.5 

2 3.56 0.5 -0.27 -3.875 

3 0.421 -0.4 0.238 -0.725 

. . . . . 

12 1.5362 -0.0078 0.1578 -1.9098 

13 1.4826 1.4876 1.7335 -1.191 

. . . . . 

38 1.955 1.13 1.1547 -1.8912 

39 2.1482 1.0382 0.9745 -2.1536 

40 1.9181 0.8555 0.886 -1.9693 

 

 
Table-3: Values of the variables depending on iterations 

Iteration 
No 

Gauss-Seidel Iteration Method 

𝒖𝒖𝒖𝒖𝟏𝟏𝟏𝟏 𝒖𝒖𝒖𝒖𝟐𝟐𝟐𝟐 𝒗𝒗𝒗𝒗𝟏𝟏𝟏𝟏 𝒗𝒗𝒗𝒗𝟐𝟐𝟐𝟐 

1 2.6 1.95 1.11 -2.38 

2 2.174 0.6955 0.9959 -1.8022 

3 1.9961 1.1019 1.0188 -2.0613 

. . . . . 

9 2 1.0002 1 -2.0001 

10 2 0.9999 1 -2 

11 2 1 1 -2 

. . . . . 

39 2 1 1 -2 

40 2 1 1 -2 

 

In the following example, the solution of the system of complex linear equations given in [12] will be discussed. It is worth 
noting that during the iterative solution of this problem, as outlined in [12], a specialized storage (or compression) method 
referred to as VRC (value-row-column) was utilized for the coefficient matrix. In this study, solutions obtained through the direct 
application of Jacobi and Gauss-Seidel iteration methods to this problem will be presented. Additionally, different from the 
results reported in [12], detailed error analysis results and convergence graphs of the solutions toward the root will be provided. 

 

 

5.3. Example 3 
Let us consider the complex linear system 𝐴𝐴𝐴𝐴𝑋𝑋𝑋𝑋 = 𝐵𝐵𝐵𝐵 where matrix 𝐴𝐴𝐴𝐴 and matrix 𝐵𝐵𝐵𝐵 are as follows: 

⎣
⎢
⎢
⎢
⎡

19.73
−0.51𝑖𝑖𝑖𝑖

12.11 − 𝑖𝑖𝑖𝑖  5   
32.3 + 7𝑖𝑖𝑖𝑖  23.07 

0             0        
𝑖𝑖𝑖𝑖             0       

0  −0.51𝑖𝑖𝑖𝑖 70 + 7.3𝑖𝑖𝑖𝑖     3.95 19 + 31.83𝑖𝑖𝑖𝑖
0
0

    0          1 + 1.1𝑖𝑖𝑖𝑖
    0        0

50.17  45.51      
−9.351𝑖𝑖𝑖𝑖      55           ⎦

⎥
⎥
⎥
⎤
 (29) 

 

  

1 2.6 3.25 2.8 -1.5 

2 3.56 0.5 -0.27 -3.875 

3 0.421 -0.4 0.238 -0.725 

. . . . . 

12 1.5362 -0.0078 0.1578 -1.9098 

13 1.4826 1.4876 1.7335 -1.191 

. . . . . 

38 1.955 1.13 1.1547 -1.8912 

39 2.1482 1.0382 0.9745 -2.1536 

40 1.9181 0.8555 0.886 -1.9693 

 

 
Table-3: Values of the variables depending on iterations 

Iteration 
No 

Gauss-Seidel Iteration Method 

𝒖𝒖𝒖𝒖𝟏𝟏𝟏𝟏 𝒖𝒖𝒖𝒖𝟐𝟐𝟐𝟐 𝒗𝒗𝒗𝒗𝟏𝟏𝟏𝟏 𝒗𝒗𝒗𝒗𝟐𝟐𝟐𝟐 

1 2.6 1.95 1.11 -2.38 

2 2.174 0.6955 0.9959 -1.8022 

3 1.9961 1.1019 1.0188 -2.0613 

. . . . . 

9 2 1.0002 1 -2.0001 

10 2 0.9999 1 -2 

11 2 1 1 -2 

. . . . . 

39 2 1 1 -2 

40 2 1 1 -2 

 

In the following example, the solution of the system of complex linear equations given in [12] will be discussed. It is worth 
noting that during the iterative solution of this problem, as outlined in [12], a specialized storage (or compression) method 
referred to as VRC (value-row-column) was utilized for the coefficient matrix. In this study, solutions obtained through the direct 
application of Jacobi and Gauss-Seidel iteration methods to this problem will be presented. Additionally, different from the 
results reported in [12], detailed error analysis results and convergence graphs of the solutions toward the root will be provided. 

 

 

5.3. Example 3 
Let us consider the complex linear system 𝐴𝐴𝐴𝐴𝑋𝑋𝑋𝑋 = 𝐵𝐵𝐵𝐵 where matrix 𝐴𝐴𝐴𝐴 and matrix 𝐵𝐵𝐵𝐵 are as follows: 

⎣
⎢
⎢
⎢
⎡

19.73
−0.51𝑖𝑖𝑖𝑖

12.11 − 𝑖𝑖𝑖𝑖  5   
32.3 + 7𝑖𝑖𝑖𝑖  23.07 

0             0        
𝑖𝑖𝑖𝑖             0       

0  −0.51𝑖𝑖𝑖𝑖 70 + 7.3𝑖𝑖𝑖𝑖     3.95 19 + 31.83𝑖𝑖𝑖𝑖
0
0

    0          1 + 1.1𝑖𝑖𝑖𝑖
    0        0

50.17  45.51      
−9.351𝑖𝑖𝑖𝑖      55           ⎦

⎥
⎥
⎥
⎤
 (29) 

 

convergence graphs of the solutions toward the 
root will be provided. 

5.3. Example 3 

Let us consider the complex linear system 𝐴𝐴𝐴𝐴𝑋𝑋𝑋𝑋 = 𝐵𝐵𝐵𝐵 
where matrix 𝐴𝐴𝐴𝐴 and matrix 𝐵𝐵𝐵𝐵 are as follows: 

⎣
⎢
⎢
⎢
⎡

19.73
−0.51𝑖𝑖𝑖𝑖

12.11 − 𝑖𝑖𝑖𝑖  5   
32.3 + 7𝑖𝑖𝑖𝑖  23.07 

0             0        
𝑖𝑖𝑖𝑖             0       

0  −0.51𝑖𝑖𝑖𝑖 70 + 7.3𝑖𝑖𝑖𝑖     3.95 19 + 31
0
0

    0          1 + 1.1𝑖𝑖𝑖𝑖
    0        0

50.17  45.51      
−9.351𝑖𝑖𝑖𝑖      55           

 (29
) 

 

𝐵𝐵𝐵𝐵 =

⎣
⎢
⎢
⎢
⎡

77.38 + 8.82𝑖𝑖𝑖𝑖
157.48 + 19.8𝑖𝑖𝑖𝑖

1175.62 + 20.69𝑖𝑖𝑖𝑖
912.12 − 801.75𝑖𝑖𝑖𝑖

550 − 1060.4𝑖𝑖𝑖𝑖 ⎦
⎥
⎥
⎥
⎤
. (30) 

Accordingly, the matrices obtained from the real 
and imaginary parts of the elements of the matrix 
𝐴𝐴𝐴𝐴 ∈ ℂ5×5 are as 

𝐴𝐴𝐴𝐴ℝ

=

⎣
⎢
⎢
⎢
⎡
19.73

0
12.11 0
32.3 23.07

0         0
0         0

0 0       70 3.95     19 
0
0

0         1
0         0

50.17 45.51
0           55 ⎦

⎥
⎥
⎥
⎤
 (31) 

and 

𝐴𝐴𝐴𝐴ℂ

=

⎣
⎢
⎢
⎢
⎡

0
0.51

1 −5
−7    0

   0          0  
−1         0   

0 0.51 −7.3    0 −31.83
0
0

  0  −1.1
  0      0

0         0
9.351       0      ⎦

⎥
⎥
⎥
⎤
 (32) 

On the other hand, the matrices obtained from the 
real and imaginary parts of the elements of the 
matrix       𝐵𝐵𝐵𝐵 ∈ ℂ10×1 are as 

𝐵𝐵𝐵𝐵ℝ =

⎣
⎢
⎢
⎢
⎡

77.38
157.48

1175.62
912.12

550 ⎦
⎥
⎥
⎥
⎤
 (33) 

and 

𝐵𝐵𝐵𝐵ℂ =

⎣
⎢
⎢
⎢
⎡

8.82
19.8

20.69
−801.75
−1060.4⎦

⎥
⎥
⎥
⎤
. (34) 

The matrices 𝐴𝐴𝐴𝐴ℝ, 𝐴𝐴𝐴𝐴ℂ, 𝐵𝐵𝐵𝐵ℝ ve 𝐵𝐵𝐵𝐵ℂ are written in Eq 
(15) to obtain the system �̃�𝐴𝐴𝐴𝒳𝒳𝒳𝒳 = 𝐵𝐵𝐵𝐵 with order 10 ×
10. The exact solution of this transformed system 
is  

𝒳𝒳𝒳𝒳
= [3.3;  1 ;  5.5 ;  9 ;  10 ; −1 ;  0.17 ;  0 ;  0 ;  −17.75 ]𝑇𝑇𝑇𝑇 . 

Considering that 𝒳𝒳𝒳𝒳 = [𝑋𝑋𝑋𝑋ℝ 𝑋𝑋𝑋𝑋ℂ]𝑇𝑇𝑇𝑇 ∈ ℂ10×1 ve 𝑋𝑋𝑋𝑋 =
𝑋𝑋𝑋𝑋ℝ + 𝑖𝑖𝑖𝑖𝑋𝑋𝑋𝑋ℂ, the solution of the original system is 
obtained as follows: 

𝑋𝑋𝑋𝑋 =

⎣
⎢
⎢
⎢
⎡

3.3 − 𝑖𝑖𝑖𝑖
1 − 0.17𝑖𝑖𝑖𝑖

5.5
9

10 − 17.75𝑖𝑖𝑖𝑖⎦
⎥
⎥
⎥
⎤
 (34) 

Considering that  

𝒳𝒳𝒳𝒳 =
[𝑢𝑢𝑢𝑢1 𝑢𝑢𝑢𝑢2 𝑢𝑢𝑢𝑢3 𝑢𝑢𝑢𝑢4 𝑢𝑢𝑢𝑢5 𝑖𝑖𝑖𝑖1 𝑖𝑖𝑖𝑖2 𝑖𝑖𝑖𝑖3 𝑖𝑖𝑖𝑖4 𝑖𝑖𝑖𝑖5]𝑇𝑇𝑇𝑇, the 
numerical solution results of this problem based 
on the iteration methods Jacobi and Gauss-Seidel 
are given in  
Table-4 and Table-5. 
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Table 4. Values of the variables depending on iterations with Jacobi iteration method 

  Jacobi method 
  𝒖𝒖𝒖𝒖𝟏𝟏𝟏𝟏 𝒖𝒖𝒖𝒖𝟐𝟐𝟐𝟐 𝒖𝒖𝒖𝒖𝟑𝟑𝟑𝟑 𝒖𝒖𝒖𝒖𝟒𝟒𝟒𝟒 𝒖𝒖𝒖𝒖𝟓𝟓𝟓𝟓 𝒗𝒗𝒗𝒗𝟏𝟏𝟏𝟏 𝒗𝒗𝒗𝒗𝟐𝟐𝟐𝟐 𝒗𝒗𝒗𝒗𝟑𝟑𝟑𝟑 𝒗𝒗𝒗𝒗𝟒𝟒𝟒𝟒 𝒗𝒗𝒗𝒗𝟓𝟓𝟓𝟓 
1 3.9219 4.8755 16.7946 18.1806 10 0.447 0.613 0.2956 -15.980 -19.28 

2 0.9732 -7.4888 4.3138 8.7812 12.717 -3.9382 -1.1557 0.1674 1.1344 -16.189 

3 8.6195 1.6413 5.5118 6.5625 9.8071 -0.3164 1.8599 -1.6613 -1.3933 -17.787 
. . . . . . . . . . . 
7 3.2088 0.9627 5.5012 9.0568 10.0027 -0.9612 0.1287 0.0376 0.0317 -17.7473 

8 3.3341 0.9904 5.5015 8.9981 9.9946 -0.9773 0.1478 -0.0042 -0.0032 -17.7402 

9 3.3055 0.9935 5.5058 9.0046 10.0005 -0.9877 0.1754 -0.0003 -0.0088 -17.7502 

10 3.3032 0.9964 5.4995 8.9992 10.0015 -1.0055 0.1713 -0.0004 0.0001 -17.7491 

11 3.3016 1.0006 5.5 8.9984 10 -1.0013 0.1709 -0.0009 -0.0008 -17.75 

12 3.2989 1 5.5 8.9998 10.0001 -1.0009 0.1703 0 0 -17.7501 

13 3.2995 0.9999 5.4999 8.9997 10 -1.0007 0.1697 0 0.0001 -17.7499 
. . . . . . . . . . . 
39 3.2997 0.9998 5.5001 8.9998 10 -1.0004 0.1698 0 -0.0001 -17.7499 

40 3.2997 0.9998 5.5001 8.9998 10 -1.0004 0.1698 0 -0.0001 -17.7499 

 

Table 5. Values of the variables depending on iterations with Gauss-Seidel iteration method 

  Gauss-Seidel method 
  𝒖𝒖𝒖𝒖𝟏𝟏𝟏𝟏 𝒖𝒖𝒖𝒖𝟐𝟐𝟐𝟐 𝒖𝒖𝒖𝒖𝟑𝟑𝟑𝟑 𝒖𝒖𝒖𝒖𝟒𝟒𝟒𝟒 𝒖𝒖𝒖𝒖𝟓𝟓𝟓𝟓 𝒗𝒗𝒗𝒗𝟏𝟏𝟏𝟏 𝒗𝒗𝒗𝒗𝟐𝟐𝟐𝟐 𝒗𝒗𝒗𝒗𝟑𝟑𝟑𝟑 𝒗𝒗𝒗𝒗𝟒𝟒𝟒𝟒 𝒗𝒗𝒗𝒗𝟓𝟓𝟓𝟓 

1 3.9219 4.8755 16.7946 17.8458 10 -3.562 -0.9342 -5.9675 -16.2299 -16.2459 

2 -0.5355 -7.7685 5.0705 8.8775 12.7594 -0.6583 6.2755 -0.7663 -1.3397 -17.7707 

3 8.1779 2.5829 4.6242 6.4974 10.2278 -4.4457 0.5285 0.0805 0.0364 -18.1753 

 . . . . . . . . . . 

7 3.3207 0.9828 5.5026 9.0044 10.0003 -0.998 0.1752 -0.0032 -0.0092 -17.7491 

8 3.3091 0.9988 5.4997 8.9995 10.0016 -1.0036 0.1725 -0.0004 -0.0008 -17.7499 

9 3.3 1.0006 5.4996 8.9984 10.0001 -1.0018 0.17 0 0 -17.7501 

10 3.2992 1.0002 5.5 8.9997 10 -1.0004 0.1697 0 0.0002 -17.7499 

11 3.2995 0.9998 5.5001 8.9998 10 -1.0003 0.1698 0 -0.0001 -17.7499 

12 3.2997 0.9997 5.5001 8.9998 10 -1.0003 0.1698 0 -0.0001 -17.7499 

. . . . . . . . . . . 

39 3.2997 0.9998 5.5001 8.9998 10 -1.0004 0.1698 0 -0.0001 -17.7499 

40 3.2997 0.9998 5.5001 8.9998 10 -1.0004 0.1698 0 -0.0001 -17.7499 

 

 

 

 

6. ERROR ANALYSIS AND DISCUSSION In Example 1, the Jacobi method starts with significant 
initial errors but shows steady convergence, reaching 
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near-zero errors by the 15th iteration, though with 
oscillatory behavior. The Gauss-Seidel method, while 
starting with similar errors, achieves faster convergence, 
reducing errors to near-zero by the 9th iteration. 

In Example 2, the Jacobi method experiences larger 
initial fluctuations, with errors persisting until the 20th 
iteration despite some reduction after the 10th iteration. 
The Gauss-Seidel method, in contrast, begins with 
smaller initial errors and rapidly eliminates them, 
achieving near-zero errors by the 10th iteration. 

In Example 3, the Jacobi method results in considerable 
errors initially and fails to fully converge even after 10 
iterations. The Gauss-Seidel method, however, 
converges significantly faster, stabilizing the solution 
within the first few iterations and requiring fewer steps 
overall. 

Figures 1, 2, and 3 illustrate the error reduction per 
iteration for each method. The graphs in these figures 
clearly show that the Jacobi method (blue line) converges 
more slowly than the Gauss-Seidel method (orange line). 
The Gauss-Seidel method required fewer iterations to 
approach the solution and delivered more stable results. 

Table 6. Errors in the iteration of Jacobi and Gauss-Seidel 
methods for Example 1 

Iteration 
No 

Errors in Jacobi 
iteration 

Errors in Gauss-
Seidel iteration 

𝒖𝒖𝒖𝒖 𝒗𝒗𝒗𝒗 𝒖𝒖𝒖𝒖 𝒗𝒗𝒗𝒗 

1 2 1.5 2 -1 

2 0.75 -1 -0.5 0.25 

3 -0.5 -0.375 0.125 -0.0625 

. . . . . 

8 -0.0117 0.0156 -0.0001 0.0001 

9 0.0078 0.0059 0 0 

10 0.0029 -0.0039 0 0 

11 -0.002 -0.0015 0 0 

12 -0.0007 0.001 0 0 

13 0.0005 0.0004 0 0 

14 0.0002 -0.0002 0 0 

15 -0.0001 -1E-04 0 0 
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Iter. 
No 

Errors in Jacobi iteration Errors in Gauss-Seidel iteration 
𝒖𝒖𝒖𝒖𝟏𝟏𝟏𝟏 𝒖𝒖𝒖𝒖𝟐𝟐𝟐𝟐 𝒗𝒗𝒗𝒗𝟏𝟏𝟏𝟏 𝒗𝒗𝒗𝒗𝟐𝟐𝟐𝟐 𝒖𝒖𝒖𝒖𝟏𝟏𝟏𝟏 𝒖𝒖𝒖𝒖𝟐𝟐𝟐𝟐 𝒗𝒗𝒗𝒗𝟏𝟏𝟏𝟏 𝒗𝒗𝒗𝒗𝟐𝟐𝟐𝟐 

1 0.6 2.25 1.8 0.5 0.6 0.95 0.11 -0.38 
2 1.56 -0.5 -1.27 -1.875 0.174 -0.3045 -0.0041 0.1978 
3 -1.579 -1.4 -0.762 1.275 -0.0039 0.1019 0.0188 -0.0613 
         
7 -0.2568 1.1722 1.3322 0.8122 -0.0003 0.0017 0.0002 -0.001 
8 1.2226 0.2015 -0.327 -1.3164 0.0001 -0.0006 -1E-04 0.0004 
9 -0.7747 -1.1878 -0.892 0.3685 0 0.0002 0 -0.0001 
         
10 -0.4324 0.7945 1.015 0.8462 0 -1E-04 0 0 
. . . . . . . . . 
38 -0.045 0.13 0.1547 0.1088 0 0 0 0 
39 0.1482 0.0382 -0.0255 -0.1536 0 0 0 0 
40 -0.0819 -0.1445 -0.114 0.0307 0 0 0 0 

6. ERROR ANALYSIS AND 
DISCUSSION

In Example 1, the Jacobi method starts with 
significant initial errors but shows steady 
convergence, reaching near-zero errors by the  
iteration, though with oscillatory behavior. The 
Gauss-Seidel method, while starting with similar 
errors, achieves faster convergence, reducing 
errors to near-zero by the  iteration.

In Example 2, the Jacobi method experiences 
larger initial fluctuations, with errors persisting 
until the  iteration despite some reduction after 
the  iteration. The Gauss-Seidel method, in 
contrast, begins with smaller initial errors and 
rapidly eliminates them, achieving near-zero 
errors by the  iteration.

In Example 3, the Jacobi method results in 
considerable errors initially and fails to fully 
converge even after 10 iterations. The Gauss-
Seidel method, however, converges significantly 
faster, stabilizing the solution within the first few 
iterations and requiring fewer steps overall.

Figures 1, 2, and 3 illustrate the error reduction 
per iteration for each method. The graphs in these 
figures clearly show that the Jacobi method (blue 
line) converges more slowly than the Gauss-
Seidel method (orange line). The Gauss-Seidel 
method required fewer iterations to approach 
the solution and delivered more stable results.

Table 6. Errors in the iteration of Jacobi and Gauss-
Seidel methods for Example 1
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No

Errors in Jacobi 
iteration

Errors in Gauss-
Seidel iteration

1 2 1.5 2 -1
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. . . . .
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10 0.0029 -0.0039 0 0
11 -0.002 -0.0015 0 0
12 -0.0007 0.001 0 0
13 0.0005 0.0004 0 0
14 0.0002 -0.0002 0 0
15 -0.0001 -1E-04 0 0
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Table 8. Errors in the iteration of the Jacobi method for Example 3. 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Table 9. Errors in the iteration of the Gauss-Seidel method for Example 3 
 

 

 

 

Iter.  
No. 

Errors in Jacobi Iteration 

𝒖𝒖𝒖𝒖𝟏𝟏𝟏𝟏 𝒖𝒖𝒖𝒖𝟐𝟐𝟐𝟐 𝒖𝒖𝒖𝒖𝟑𝟑𝟑𝟑 𝒖𝒖𝒖𝒖𝟒𝟒𝟒𝟒 𝒖𝒖𝒖𝒖𝟓𝟓𝟓𝟓 𝒗𝒗𝒗𝒗𝟏𝟏𝟏𝟏 𝒗𝒗𝒗𝒗𝟐𝟐𝟐𝟐 𝒗𝒗𝒗𝒗𝟑𝟑𝟑𝟑 𝒗𝒗𝒗𝒗𝟒𝟒𝟒𝟒 𝒗𝒗𝒗𝒗𝟓𝟓𝟓𝟓 

1 0.6223 3.8758 11.2945 9.1808 0 1.4474 0.4432 0.2956 15.9806 1.5301 

2 2.3264 8.4886 1.1862 0.2186 2.717 2.9378 1.3255 0.1675 1.1345 1.5609 

3 5.3198 0.6415 0.0118 2.4373 0.1929 0.684 1.69 1.6613 1.3932 0.0372 

. . . . . . . . . . . 

7 0.0909 0.0371 0.0011 0.057 0.0027 0.0392 0.0411 0.0377 0.0318 0.0026 

8 0.0344 0.0093 0.0015 0.0017 0.0054 0.0231 0.0221 0.0041 0.0031 0.0097 

9 0.0058 0.0063 0.0057 0.0048 0.0005 0.0127 0.0056 0.0002 0.0087 0.0003 

10 0.0035 0.0033 0.0006 0.0006 0.0015 0.0052 0.0015 0.0003 0.0001 0.0008 

11 0.0019 0.0008 0 0.0013 0 0.0009 0.001 0.0009 0.0007 0.0001 

12 0.0008 0.0002 0.0001 0 0.0001 0.0006 0.0005 0.0001 0.0001 0.0002 

13 0.0002 0.0002 0.0001 0.0001 0 0.0003 0.0001 0 0.0002 0 

14 0.0001 0.0001 0 0 0 0.0001 0 0 0 0 

15 0 0 0 0 0 0 0 0 0 0 

Iter 
No. 

Errors in Gauss-Seidel Iteration 

𝒖𝒖𝒖𝒖𝟏𝟏𝟏𝟏 𝒖𝒖𝒖𝒖𝟐𝟐𝟐𝟐 𝒖𝒖𝒖𝒖𝟑𝟑𝟑𝟑 𝒖𝒖𝒖𝒖𝟒𝟒𝟒𝟒 𝒖𝒖𝒖𝒖𝟓𝟓𝟓𝟓 𝒗𝒗𝒗𝒗𝟏𝟏𝟏𝟏 𝒗𝒗𝒗𝒗𝟐𝟐𝟐𝟐 𝒗𝒗𝒗𝒗𝟑𝟑𝟑𝟑 𝒗𝒗𝒗𝒗𝟒𝟒𝟒𝟒 𝒗𝒗𝒗𝒗𝟓𝟓𝟓𝟓 
1 0.6223 3.8758 11.2945 8.846 0 2.5616 1.104 5.9674 16.2299 1.504 

2 3.8352 8.7683 0.4296 0.1223 2.7594 0.3421 6.1057 0.7662 1.3396 0.0208 

3 4.8782 1.5831 0.8759 2.5024 0.2278 3.4454 0.3587 0.0805 0.0365 0.4255 

. . . . . . . . . . . 

7 0.021 0.017 0.0025 0.0046 0.0003 0.0024 0.0054 0.0032 0.0092 0.0008 

8 0.0094 0.0009 0.0003 0.0003 0.0016 0.0033 0.0026 0.0004 0.0007 0.0001 

9 0.0003 0.0008 0.0005 0.0014 0.0001 0.0014 0.0001 0.0001 0.0001 0.0002 

10 0.0005 0.0004 0.0001 0.0001 0 0 0.0001 0.0001 0.0002 0 

11 0.0002 0 0 0 0 0.0001 0.0001 0 0 0 

12 0 0 0 0 0 0 0 0 0 0 

. . . . . . . . . . . 

15 0 0 0 0 0 0 0 0 0 0 
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Figure 1. Root convergence graphs; Example 1.  
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Figure 2. Root convergence graphs; Example 2.
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Figure 3. Root convergence graphs; Example 3.

7. CONCLUSION

This study compares the Jacobi and Gauss-
Seidel methods for solving systems of linear 
equations with complex coefficients, focusing 
on convergence speed and error reduction. 
Numerical analyses reveal that the Gauss-Seidel 
method consistently outperforms the Jacobi 
method across various system sizes, including 
small (2x2) and larger (5x5) systems. The Gauss-
Seidel method achieves faster convergence and 
greater stability, with errors diminishing to zero 
in fewer iterations, regardless of system size. 
In contrast, the Jacobi method shows slower 
convergence and fluctuating error reductions, 
particularly for larger systems.

These findings emphasize the efficiency and 
reliability of the Gauss-Seidel method for 
solving complex linear systems, particularly in 
large-scale applications where computational 
efficiency and stability are critical. While the 
Jacobi method remains applicable for smaller or 
less complex systems, the superior performance 
of the Gauss-Seidel method makes it the 
preferred choice for engineering and scientific 
computations.

Future work could explore further enhancements 
to both methods, focusing on optimizing 
their application to larger, more complex 
systems and assessing their performance in 
parallel computational environments. This 
study highlights the Gauss-Seidel method 
as an effective and practical tool for tackling 
computational challenges in linear algebra.
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