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Öz

Günümüzde multimedya içerik üretimi büyük bir hızla artmış, bu da değerli bilgilere erişimi zorlaştırmıştır. An-
lamlı verilere ulaşımı kolaylaştırmak amacıyla veri madenciliği kritik bir hale gelmiştir ve bu süreçte önemli bir 
adım, veri boyutunun azaltılmasıdır. Özellik seçimi, veri kümesindeki ilgisiz, gürültülü veya eksik verilerin çıka-
rılmasıyla veri boyutunu küçülterek, veri analizinde kullanılan yöntemlerin daha hızlı ve verimli çalışmasını sağ-
lar. Bu çalışmada, doğadan ilham alınan meta-sezgisel algoritmalar kullanılarak özellik seçimi gerçekleştirilmiştir. 
Belirlenen özellikler, makine öğrenimi algoritmaları ve yapay sinir ağları ile müzik verilerini şarkı popülerliğine 
göre sınıflandırmak için kullanılmıştır. Müzik veri seti üzerinde yapılan iyileştirmeler ile sınıflandırma başarımı 
%3.2 oranında artırılmış ve sonuç olarak %88 doğruluk elde edilmiştir. Kullanılan yöntemler karşılaştırmalı olarak 
sunulmuş ve elde edilen bulgular değerlendirilmiştir.

Anahtar kelimeler: Yapay sinir ağları, Metasezgisel algoritmalar, Özellik seçimi, Sınıflandırma

Abstract

In today’s world, the rapid increase in multimedia content production has made accessing valuable information 
more challenging. Data mining has become critical to facilitate access to meaningful data, and an important step in 
this process is reducing the size of the data. Feature selection reduces the data size by eliminating irrelevant, noisy, 
or missing data from the dataset, allowing the methods used in data analysis to operate faster and more efficiently. 
In this study, feature selection was performed using nature-inspired metaheuristic algorithms. The selected fea-
tures were used to classify music data by song popularity with machine learning algorithms and artificial neural 
networks. Improvements made on the dataset increased classification performance by 3.2%, achieving an accuracy 
of 88%. The methods used were presented comparatively, and the findings were evaluated.
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1. INTRODUCTION

In today’s world, music is present in every as-
pect of human life. With the growing influence 
of the entertainment industry, the volume of 
music data produced is increasing over time, 
making it difficult for listeners to access all this 
data [1]. Without a good method for discovering 
music, a significant portion of the music produ-
ced may go unnoticed. As multimedia content 
expands and digital libraries continue to grow, 
information retrieval and access are becoming 
increasingly important. The aim for this work 
is to tackle the challenge of extracting valuable 
insights from audio datasets. By using feature se-
lection with metaheuristic algorithms, the study 
attempts to improve computational efficiency 
and enhance the accuracy of music popularity 
prediction models.

Music data consists of several audio files. To 
analyze an audio file, it is first necessary to de-
termine the type of information provided [2]. 
Much research has been conducted on music, 
speech, and sound. However, studies on songs 
are relatively fewer and still ongoing. Informa-
tion about songs, such as lyrics, genre, and era, 
is shared online. Digital music serves as a source 
for information such as artist, track name, and 
year. Many operations can be performed using 
this information. Examples of this include track 
classification and song recommendation systems 
[3].

Recently, research on feature selection has inc-
reased for various reasons [4]. This is due to the 
development of new applications dealing with 
large amounts of data, such as data mining, 
medical data processing, and multimedia infor-
mation retrieval. Feature selection is efficiently 
and widely used in classification systems [5]. 
Identifying distinctive features enhances recog-
nition success. In classification using selected fe-
atures, fewer operations are required, noisy and 
irrelevant features are removed from the origi-
nal data, classification success is improved, and 
classification based on features becomes easier to 
interpret. Training time is reduced, fewer mea-
surements are made, and less memory is used. 
These factors provide meaningful and easier 
classification.

This article is organized into several key secti-
ons that provide a comprehensive overview of 
the research. The Related Works section reviews 
existing literature on feature selection and ca-
tegorization, identifying domains and advan-
cements. The Metaheuristic Algorithms section 
outlines the specific algorithms used, explaining 
their principles and selection criteria. The Mate-
rial and Methods section details the dataset and 
experimental procedures to ensure transparency 
and reproducibility. In the Results and Discus-
sion section, findings are presented. Finally, the 
Conclusion summarizes the key contributions 
and suggests directions for future research in fe-
ature selection using metaheuristic methods.

2. RELATED WORKS

This section provides a thorough review of the 
contributions from numerous works on me-
ta-heuristic algorithms and feature selection in 
many fields. The contributions in meta-heuristic 
algorithms cover a wide range of applications. 
For example, Tayarani et al. (2014) provided 
a state-of-the-art overview of meta-heuristic 
strategies for vehicle engine design [6], while 
methodologies outlining their advantages and 
disadvantages in dealing with reactive power 
planning difficulties [7] were discussed by Sha-
heen et al. (2018). The use of meta-heuristics in 
parallel computing scheduling, along with obs-
tacles and future research prospects [8], was fo-
cused on by Memeti et al. (2018). Furthermore, 
the significance of meta-heuristic strategies in 
academic scheduling difficulties  [9] was inves-
tigated by Teoh et al. (2015), and a comparative 
analysis of five techniques —ACO, PSO, GA, BA, 
and LCA— was conducted by  Kalra and Singh 
(2015) to demonstrate their effectiveness in task 
scheduling for grid and cloud frameworks [10].

In the domain of feature selection, the applica-
tion of feature selection in mobile malware de-
tection was examined by Feizollah et al. (2015), 
providing a detailed overview of its significance 
[11]. Feature selection strategies used in senti-
ment analysis and their application in opinion 
mining [12] were briefly reviewed by Asghar et 
al. (2014). Finally, Saeys et al. (2007) concentra-
ted on bioinformatics, offering a basic taxonomy 
of feature selection approaches and discussing 
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their usefulness in both classic and developing 
bioinformatics applications [13].

Recent studies using metaheuristic methods in 
the field of music are generally based on music 
generation [14-16]. This work stands out by app-
lying nature-inspired meta-heuristic algorithms 
specifically for feature selection in music data, 
focusing on song popularity prediction. Unlike 
previous studies that cover various fields, this 
research targets a unique challenge in the music 
domain.

3. METAHEURISTIC ALGORITHMS

The term metaheuristic refers to an algorithmic 
framework that provides guidance or strategies 
for the development of different heuristic optimi-
zation algorithms, independent of the problem 
at hand [17]. This term is also used to describe 
the specific application of a heuristic optimiza-
tion algorithm to a given problem. Technically, 
the term metaheuristic was first introduced by 
Fred Glover in 1986, combining the Greek word 
“meta” with “heuristic,” meaning higher-level 
heuristic [18].

A higher-level heuristic approach involves met-
hods that perform a probabilistic yet conscious 
search in the solution space [19]. These metho-
ds generate new solutions by starting from the 
set of solutions created at each step. Thus, by 
searching near the points that are closest to the 
optimum in the search space, they aim to reach 
the optimal solution while avoiding local optima 
selection [20].

Metaheuristic methods are techniques that direct 
the search process. They aim to explore the sear-
ch space efficiently to obtain the best or near-op-
timal results. These methods span from local se-
arch techniques to complex learning processes. 
Typically, they offer an approximate solution 
that is non-deterministic. They are not limited to 
solving a specific problem but provide solutions 
to different types of problems. They are desig-
ned in a way that prevents convergence to local 
solutions in the search space.

For metaheuristic algorithms to produce good 
results, it is essential that the fundamental con-
cepts of the method are well adapted to the 

problem. There are many types of metaheuristic 
algorithms [21]. Algorithms inspired by nature 
imitate the behavior patterns of living beings in 
natural environments. Some are population-ba-
sed, while others are individual-based. Their ob-
jective functions can be either static or dynamic. 
They can be classified based on whether or not 
they use neighborhood structures or memory. 
These methods are seen as the nature-inspired 
extensions of classical heuristic algorithms. The 
variety of algorithms has increased as they have 
been developed for optimization purposes based 
on various scientific fields.

3.1. Ant Colony Algorithm

Ant Colony Optimization (ACO) is a metaheu-
ristic method developed to solve difficult optimi-
zation problems. It is inspired by the behavior 
of real ants, which use the pheromone hormo-
ne they secrete in their natural environment as 
a means of communication [22]. Similar to the 
biological example, this optimization method is 
based on the indirect communication established 
through pheromone trails in an artificial ant co-
lony. Pheromones serve as distributed, numeri-
cal information that ants use to probabilistically 
generate solutions to a problem, reflecting their 
search experience and adapting during the exe-
cution of the algorithm.

Real ants perform complex tasks, such as finding 
the shortest path to food sources and transpor-
ting the obtained food back to the nest, through 
collective behavior. The ant colony algorithm 
mimics the principle of how an ant colony can 
find the shortest path between two points using 
a simple communication mechanism [23]. The-
re is a path that ants with poor vision can travel 
between the nest and the food source. During 
their trips, ants leave a chemical trail (phero-
mone) on the ground. Pheromone is a volatile 
substance with a distinct smell. This trail plays a 
role in guiding other ants toward the target point 
[24]. As the amount of pheromone on a certain 
path increases, the probability of ants choosing 
that path also increases. 
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Figure 1. An ant colony searching for the best path 
between food and the nest [25]

Additionally, this chemical substance has a di-
minishing effect over time as it evaporates, and 
the amount of this substance secreted by an ant 
depends on the amount of food in the environ-
ment. As shown in Figure 1, when faced with 
an obstacle, each ant has an equal probability of 
choosing either the left or right path. Since the 
left trail is shorter than the right one and requ-
ires less travel time, the ant will leave a higher 
amount of pheromone. The more ants use a path, 
the more pheromone accumulates on that path. 
Thus, the shortest path is eventually determined.

3.2. Particle Swarm Optimization

Particle Swarm Optimization (PSO) is another 
population-based, stochastic metaheuristic opti-
mization method inspired by swarm intelligence 
[26]. It imitates the behaviors exhibited by natu-
ral organisms, such as birds and fish, when se-
arching for a place with sufficient food. In these 
swarms, coordinated behaviors in Figure 2 using 
local movements emerge without any central 
control. PSO has been successfully designed to 
solve continuous optimization problems.

Figure-2. Geometrical illustration for PSO algorithm 
[27]

3.3. Simulated Annealing

In computer science, particularly in the field of 
optimization, one of the algorithms used is inspi-
red by the annealing process applied during iron 
processing, which involves heating the iron and 
then allowing it to cool. The goal of the Simula-
ted Annealing (SA) algorithm is to achieve ove-
rall improvement for any given problem [28]. In 
other words, it aims to find the global minimum 
or maximum value of any function or measure.

3.4. Genetic Algorithms

Genetic Algorithms (GA) are a very popular class 
of evolutionary algorithms. A GA typically app-
lies a crossover operator to two solutions, which 
plays a significant role, and a mutation operator 
that randomly alters individual content to incre-
ase diversity [29]. GA use probabilistic selection, 
which is proportional selection. The replacement 
that determines selection is generational, mea-
ning parents are systematically replaced by the-
ir offspring. The crossover operator is based on 
n-point or uniform crossover, while the mutati-
on operator alters bits [30]. A fixed probability is 
applied to the mutation operator.

The main search components for designing an 
evolutionary algorithm are: gene representation, 
population initialization, objective (fitness) func-
tion, selection, mutation and crossover for repro-
duction, generational replacement, and stopping 
criteria in Figure 3.



119

Kuantum Teknolojileri ve Enformatik Araştırmaları, Volume/Cilt: 2, Issue/Sayı: 3, Year/Yıl:2024

Figure 3. Genetic algorithm flowchart [31]

4. MATERIAL AND METHODS

4.1. Music Dataset

The open library used in this research, created 
by the Echo Nest company in collaboration with 
LabROSA, a laboratory for intelligent machine 
listening, aims to gather data on approximately 
one million contemporary and popular songs 
under the name Million Song Dataset [32]. The 
data includes standard information about son-
gs, such as the artist’s name, album, and year of 
release. Additionally, it contains more advanced 
information, such as the length of the song, the 
number of musical bars, and the fade-out dura-
tion.

The Million Song Dataset will be analyzed for 
classification purposes. The original dataset is 
280GB in size and consists of one million tracks. 
In this study, a subset of 10.000 pieces has been 
used to reduce computational costs. The reduced 
dataset consists of 22 features, including artist 
name, title, duration, and tempo.

In the original dataset, there is a song popularity 
feature. The “song_hotttnesss” tag represents 
the song popularity. However, this feature does 
not include values   for approximately 4.500 son-
gs, which is almost half of the total number of 
data entries. Therefore, the BillBoard Top 100 list 

is used to determine popularity. If a song reaches 
the BillBoard Top 100 at least once, it is defined 
as a hit song. Of the 10.000 songs in the dataset, 
1.192 songs are classified as popular songs. Po-
pular tracks are represented by 1, while non-po-
pular ones are represented by 0.

As shown in Figures 4 and 5, artist similarities 
and song loudness are related to the song’s po-
pularity. The similarity between artists shows a 
positive correlation, as expected. However, surp-
risingly, song loudness exhibits a negative cor-
relation with popularity. It was anticipated that 
more popular songs would be louder, but this 
appears to be the opposite, as the overall average 
loudness of songs tends to be slightly higher. In 
Figure 5, loudness is plotted on the x-axis, whi-
le popularity is plotted on the y-axis. The reason 
more popular songs seem to be quieter could be 
due to the presence of exceptionally loud songs 
in the data, which lowers the overall popularity 
average of the songs.

Figure 4. Artist similarity-popularity distribution 
graph
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Figure 5. Loudness-popularity distribution graph

Data preprocessing has been performed on the 
music dataset to achieve more efficient results. 
Textual data, such as song titles and artist loca-
tions, has been removed from the feature set, 
allowing for the extraction of numerical data in 
Table 3 that can be computed using algorithms. 
The data numbers entered in the rows are given 
as count. Cells with no value in the dataset are 
entered as NaN. The means, standard deviations 
and minimum-maximum values   of these data 
are presented in the table.

The data under the “year” tag, which stores the 
release year of pieces, shows an imbalance due 
to the high frequency of pieces with unknown 
release years, where a value of 0 was entered. 
To prevent this distribution from causing de-
viations, the year feature column was removed 
from the processed data. After data cleaning, a 
dataset with 16 numeric features and a target co-
lumn (popularity class) was obtained. In its final 
state, the data consists of 16x10001 inputs and 
1x100001 target. Based on this information, the 
comma-separated values (.csv) file on which fe-
ature selection will be performed was converted 
into formats (.mat, .arff) suitable for the software 
used.

4.2. Feature Selection

Feature selection is the process of determining 
a subset that represents a dataset and isolating 
the variables that best express this data [33]. This 
process selects the best k features from n featu-
res by scanning them according to the algorithm 
being used, thereby reducing the number of fe-

atures and providing various benefits in prob-
lem-solving. Feature selection reduces the size 
of the attribute set, allowing the algorithm used 
for data analysis to run faster. It improves data 
quality by isolating noisy or incomplete data and 
prevents complexity by simplifying the dataset 
[34]. Additionally, it provides storage savings by 
reducing the data size.

Feature selection processes have been carried 
out using algorithms designed with MATLAB 
2018a software, which enables effective and fast 
mathematical computations in areas such as sta-
tistics, optimization, and numerical analysis [35]. 
To measure classification performance, desired 
features were extracted using ACO, PSO, SA, 
and GA metaheuristic methods.

The Ant Colony Optimization algorithm was 
used to reduce the dimensionality by perfor-
ming feature extraction on data containing in-
puts and targets. In the application phase, the 
desired number of features was specified as 4. 
The problem was defined, and a fitness function 
was created. The parameter values to be used in 
ant colony optimization were entered in Table 1.

Table 1. ACO parameter values

Parameter Value
Number of ants (population) 50

Initial pheromone value 1
Pheromone trail information (alpha) 1

Heuristic parameter (beta) 1
Evaporation rate 0.05

In the feature selection process, a matrix is first 
created to store the tour, cost, and output va-
lues of 50 ants. In the loop, which will run for 
the number of iterations determined at the start, 
the feature where the tour will begin is random-
ly selected, starting with the first ant. Then, the 
probability of this ant moving to other features 
is calculated. Positions are subjected to roulette 
wheel selection based on pheromone values, and 
the next feature the ant will visit is determined 
[36]. Once the ant completes its tour, the obtai-
ned values are sent to the fitness function, and 
the cost value is calculated. The order of features 
in the ant’s tour, the cost value of the tour, and 
the structure containing the desired number of 
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Table 3. Basic statistics on numerical data

Feature Count Mean Std. dev. Min. Max. 
artist_familiarity 9997 0.565 0.16 0 1 
artist_hotttnesss 10001 0.386 0.144 0 1.083 
artist_latitude 3742 37.157 15.599 -41.281 69.651 
artist_longitude 3742 -63.934 50.508 -162.44 174.77 
duration 10001 238.512 114.133 1.044 1819.8 
end_of_fade_in 10001 0.759 1.868 0 43.119 
key 10001 5.276 3.554 0 11 
key_confidence 10001 0.45 0.275 0 1 
loudness 10001 -10.485 5.4 -51.643 0.566 
mode 10001 0.691 0.462 0 1 
mode_confidence 10001 0.478 0.191 0 1 
song_hotttnesss 5649 0.343 0.247 0 1 
start_of_fade_out 10001 229.98 112.191 1.044 1813.4 
tempo 10001 122.921 35.186 0 262.83 
time_signature 10001 3.565 1.266 0 7 

time_signature_confidence 10001 0.51 0.373 0 1 
year 10001 935 996.651 0 2010 

features are recorded as output. Afterward, the 
pheromone values left by the ant are updated. 
The loop moves to the next ant, and the same 
processes are repeated. For each iteration, phe-
romone is evaporated by 0.05, and the best cost 
value found is recorded.

When feature selection is performed using Par-
ticle Swarm Optimization, the population size 
consists of 50 particles in total. The values of the 
Fi (phi) constants are taken as 2.05, and their sum 
is passed through the chi-square method to equ-
al the inertia weight. The damping ratio of this 
weight is 0.99. The individual and social learning 
coefficients (c1, c2) are found by multiplying the 
Fi constants with the value obtained from the 
chi-square formula. Velocity limits are set, and 
the minimum limit is adjusted to be the negative 
of the maximum limit.

In Simulated Annealing, initial positions are 
determined using a random permutation func-
tion, which returns a random vector composed 
of the entered features. The positions found are 
evaluated using the fitness function, and the best 
solution is assigned. A list containing as many 
elements as the number of iterations is created to 
store the best cost values. The initial temperature 
is set to 10. In the main loop, which runs for the 

total number of iterations of the Simulated An-
nealing process, there is an inner loop that runs 
for the number of sub-iterations. A new solution 
is generated using the neighbor generation fun-
ction. In this function, the swap, return, and join 
rates are applied as 0.2, 0.5, and 0.3, respectively. 
These rates are subjected to roulette wheel selec-
tion, and based on the result, one of these opera-
tions is applied to the initially determined tour. 
After determining the new tour in this way, the 
cost value for this tour is calculated. If the found 
value is better, the solution is updated. Once the 
sub-iteration is completed, the best cost value is 
retained in the loop for the main iteration, and 
the temperature is updated based on the cooling 
rate.

When using a Genetic Algorithm for feature se-
lection, the initial phase was initiated after defi-
ning the parameters found in Table 2. An empty 
structure was defined to hold the positions and 
costs of the individuals. An array containing as 
many elements as the population size of indivi-
duals was created. In the loop, which runs for 
the number of individuals, genes consisting of 
bits were assigned to the elements using a disc-
rete uniform distribution. The individuals were 
evaluated using the fitness function, and the ob-
tained values were recorded. All individuals in 
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the population were ranked according to their 
fitness. The best solution was recorded, and an 
array was created to hold the cost values.

Table 2. Parameters used in genetic algorithm

nPop=50 Population size
pc=0.7 Crossover percentage

nc=2*round(pc*nPop/2) Number of offspring
pm=0.3 Mutation percentage

nm=round(pm*nPop) Number of mutants
mu=0.1 Mutation rate
beta=8 Selection pressure

4.3. Classification Algorithms

The data classification problem has countless 
applications across a wide range of data mining 
fields [37]. This is because the problem attempts 
to learn the relationship between a set of featu-
re variables and a target variable of interest. In 
practice, since many issues can be expressed as 
relationships between features and target variab-
les, this model provides broad applicability. The 
concept of classification simply involves distri-
buting data among various classes defined on a 
dataset. Classification algorithms learn this dist-
ribution pattern from the given training set and 
then attempt to classify correctly when test data 
arrives, for which the class is not specified.

Classification algorithms typically consist of 
two stages: the training phase, in which a mo-
del is constructed from training examples, and 
the testing phase, which is used to assign labels 
to unlabeled test examples. The values that spe-
cify these classes on the dataset are referred to as 
label names and are used during both training 
and testing to determine the class of the data. In 
some cases, the training phase may be entirely 
skipped, and classification is performed direct-
ly based on the relationship between training 
examples and test examples. Instance-based 
methods, such as nearest neighbor classifiers, are 
an example of such a scenario [38]. Even in these 
cases, a preprocessing stage may be carried out 
to ensure efficiency during the testing phase.

The output of a classification algorithm can be 
presented in one of two ways. In one, a direct la-
bel is found for the test example. In the other, a 
numerical score is returned for each class label 

and the combination with the test example. This 
numerical score can be converted into a separate 
label by selecting the class with the highest score 
for a test example. The advantage of this scoring 
system is that it allows for the comparison of the 
tendency of different test examples to belong to 
a certain importance class and enables their ran-
king when necessary.

To test the classification performance of the obta-
ined features, various classifiers were used. The 
open-source Weka 3 machine learning software, 
which contains many different clustering and 
classification algorithms and enables data mi-
ning applications, was utilized.

4.3.1. Naive Bayes Classifier

The Naive Bayes classifier (NB) is a classification 
technique based on Bayes’ Theorem, named after 
the English mathematician Thomas Bayes, which 
assumes independence among predictions [39]. 
In simple terms, it assumes that the presence of 
a particular feature in a class is independent of 
the presence of any other feature. Even if these 
features are dependent on each other or on the 
presence of other features, all of these features 
contribute to the probabilities independently 
[40]. The Naive Bayes model is easy to construct 
and is particularly useful for very large datasets. 
Along with its simplicity, it is known to perform 
better than even highly complex classification 
methods.
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construct and is particularly useful for very large datasets. 
Along with its simplicity, it is known to perform better than 
even highly complex classification methods. 

𝑃𝑃𝑃𝑃(𝑐𝑐𝑐𝑐|𝑥𝑥𝑥𝑥) = 𝑃𝑃𝑃𝑃(𝑐𝑐𝑐𝑐|𝑥𝑥𝑥𝑥)𝑃𝑃𝑃𝑃(𝑐𝑐𝑐𝑐)
𝑃𝑃𝑃𝑃(𝑥𝑥𝑥𝑥)

   (1) 

𝑃𝑃𝑃𝑃(𝑐𝑐𝑐𝑐|𝑥𝑥𝑥𝑥) = 𝑃𝑃𝑃𝑃(𝑥𝑥𝑥𝑥1|𝑐𝑐𝑐𝑐) × … × 𝑃𝑃𝑃𝑃(𝑥𝑥𝑥𝑥𝑛𝑛𝑛𝑛|𝑐𝑐𝑐𝑐) × 𝑃𝑃𝑃𝑃(𝑐𝑐𝑐𝑐)             (2) 

 P(c|x) The asymptotic probability distribution of a 
given predictor for a class 

 P(c) The prior probability distribution for a 
parameter or parameter vector 

 P(x|c) The likelihood function of a given class 
 P(x) The prior probability of the predictor 

4.3.2 K-Nearest Neighbors 

The K-Nearest Neighbor (KNN) algorithms are a classification 
algorithm proposed by T. M. Cover and P. E. Hart in 1967 [41]. 
It takes multiple labeled points and uses them to learn how to 
label other points. To label a new point, it looks at the k 
nearest labeled points to that new point and uses the labels 

of these neighbors. Therefore, the label that appears most 
frequently among the neighbors becomes the label for the 
new point. 

When determining the neighborhood condition, the distance 
of a point from other points is considered [42]. Typically, 
three different distance functions are used for distance 
calculations: 

 Euclidean Distance 

𝑑𝑑𝑑𝑑(𝑥𝑥𝑥𝑥,𝑦𝑦𝑦𝑦) = �∑ (𝑥𝑥𝑥𝑥𝑖𝑖𝑖𝑖 − 𝑦𝑦𝑦𝑦𝑖𝑖𝑖𝑖)2𝑘𝑘𝑘𝑘
𝑖𝑖𝑖𝑖𝑖1                                           (3)                                             

 Manhattan Distance 

𝑑𝑑𝑑𝑑(𝑥𝑥𝑥𝑥,𝑦𝑦𝑦𝑦) = ∑ |𝑥𝑥𝑥𝑥𝑖𝑖𝑖𝑖 − 𝑦𝑦𝑦𝑦𝑖𝑖𝑖𝑖|𝑘𝑘𝑘𝑘
𝑖𝑖𝑖𝑖𝑖1                                                           (4) 

 Minkowski Distance 

𝑑𝑑𝑑𝑑(𝑥𝑥𝑥𝑥,𝑦𝑦𝑦𝑦) = �∑ (|𝑥𝑥𝑥𝑥𝑖𝑖𝑖𝑖 − 𝑦𝑦𝑦𝑦𝑖𝑖𝑖𝑖|)𝑞𝑞𝑞𝑞𝑘𝑘𝑘𝑘
𝑖𝑖𝑖𝑖𝑖1 �

1
𝑞𝑞𝑞𝑞                                          (5) 

IBk (Instance Based Learner), a derivative of KNN, is a pattern 
recognition method that classifies test data based on the 
nearest training examples in the feature space [43]. This 
algorithm performs classification based on the class of the k 
nearest neighbors. In the IBk algorithm, the classification of a 
vector is done using known class vectors. In this study, the 
value of k indicating the neighborhood was set to 3. The linear 
search algorithm was used in the neighbor finding process 
[44]. 

4.3.3 Decision Tree 

A decision tree creates classification or regression models in 
the form of a tree structure [45]. As it divides a dataset into 
smaller subsets, a corresponding decision tree is developed 
step by step. The result is a tree with decision nodes and leaf 
nodes. A decision node has two or more branches, while a leaf 
node represents a classification or decision. The top decision 
node in the tree corresponds to the best prediction and is 
called the root node. Decision trees can handle both 
categorical and numerical data. The J48 decision tree, based 
on the C4.5 algorithm, was used in this study [46]. J48 utilizes 
information gain for attribute selection and includes pruning 
techniques to mitigate overfitting, ensuring robust model 
performance. 

4.3.4 Support Vector Machines 

It is possible to separate labeled groups located in a plane by 
drawing a boundary between them. The location where this 
decision boundary is drawn should be the point that is 
farthest from the members of the groups. Support Vector 
Machines (SVM) determine these boundaries. This method 
was developed in 1995 by Vladimir Vapnik, Bernhard Boser, 
and Isabelle Guyon [47]. Today, SVM is used in various 
classification problems, ranging from face recognition 
systems to text categorization. SMO (Sequential Minimal 
Optimization) is an algorithm that operates by using John 
Platt's sequential minimal optimization algorithm to train a 
support vector classifier [48]. 

 

 

  (1)

              (2)

•	P(c|x) The asymptotic probability distribution 
of a given predictor for a class

•	P(c) The prior probability distribution for a pa-
rameter or parameter vector

•	P(x|c) The likelihood function of a given class

•	P(x) The prior probability of the predictor

4.3.2 K-Nearest Neighbors

The K-Nearest Neighbor (KNN) algorithms are a 
classification algorithm proposed by T. M. Cover 
and P. E. Hart in 1967 [41]. It takes multiple la-
beled points and uses them to learn how to label 
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other points. To label a new point, it looks at the 
k nearest labeled points to that new point and 
uses the labels of these neighbors. Therefore, the 
label that appears most frequently among the ne-
ighbors becomes the label for the new point.

When determining the neighborhood condition, 
the distance of a point from other points is con-
sidered [42]. Typically, three different distance 
functions are used for distance calculations:

•	 Euclidean Distance

labels to unlabeled test examples. The values that specify 
these classes on the dataset are referred to as label names 
and are used during both training and testing to determine 
the class of the data. In some cases, the training phase may 
be entirely skipped, and classification is performed directly 
based on the relationship between training examples and test 
examples. Instance-based methods, such as nearest neighbor 
classifiers, are an example of such a scenario [38]. Even in 
these cases, a preprocessing stage may be carried out to 
ensure efficiency during the testing phase. 

The output of a classification algorithm can be presented in 
one of two ways. In one, a direct label is found for the test 
example. In the other, a numerical score is returned for each 
class label and the combination with the test example. This 
numerical score can be converted into a separate label by 
selecting the class with the highest score for a test example. 
The advantage of this scoring system is that it allows for the 
comparison of the tendency of different test examples to 
belong to a certain importance class and enables their ranking 
when necessary. 

To test the classification performance of the obtained 
features, various classifiers were used. The open-source 
Weka 3 machine learning software, which contains many 
different clustering and classification algorithms and enables 
data mining applications, was utilized. 

4.3.1 Naive Bayes Classifier 

The Naive Bayes classifier (NB) is a classification technique 
based on Bayes' Theorem, named after the English 
mathematician Thomas Bayes, which assumes independence 
among predictions [39]. In simple terms, it assumes that the 
presence of a particular feature in a class is independent of 
the presence of any other feature. Even if these features are 
dependent on each other or on the presence of other 
features, all of these features contribute to the probabilities 
independently [40]. The Naive Bayes model is easy to 
construct and is particularly useful for very large datasets. 
Along with its simplicity, it is known to perform better than 
even highly complex classification methods. 

𝑃𝑃𝑃𝑃(𝑐𝑐𝑐𝑐|𝑥𝑥𝑥𝑥) = 𝑃𝑃𝑃𝑃(𝑐𝑐𝑐𝑐|𝑥𝑥𝑥𝑥)𝑃𝑃𝑃𝑃(𝑐𝑐𝑐𝑐)
𝑃𝑃𝑃𝑃(𝑥𝑥𝑥𝑥)

   (1) 

𝑃𝑃𝑃𝑃(𝑐𝑐𝑐𝑐|𝑥𝑥𝑥𝑥) = 𝑃𝑃𝑃𝑃(𝑥𝑥𝑥𝑥1|𝑐𝑐𝑐𝑐) × … × 𝑃𝑃𝑃𝑃(𝑥𝑥𝑥𝑥𝑛𝑛𝑛𝑛|𝑐𝑐𝑐𝑐) × 𝑃𝑃𝑃𝑃(𝑐𝑐𝑐𝑐)             (2) 

 P(c|x) The asymptotic probability distribution of a 
given predictor for a class 

 P(c) The prior probability distribution for a 
parameter or parameter vector 

 P(x|c) The likelihood function of a given class 
 P(x) The prior probability of the predictor 

4.3.2 K-Nearest Neighbors 

The K-Nearest Neighbor (KNN) algorithms are a classification 
algorithm proposed by T. M. Cover and P. E. Hart in 1967 [41]. 
It takes multiple labeled points and uses them to learn how to 
label other points. To label a new point, it looks at the k 
nearest labeled points to that new point and uses the labels 

of these neighbors. Therefore, the label that appears most 
frequently among the neighbors becomes the label for the 
new point. 

When determining the neighborhood condition, the distance 
of a point from other points is considered [42]. Typically, 
three different distance functions are used for distance 
calculations: 

 Euclidean Distance 

𝑑𝑑𝑑𝑑(𝑥𝑥𝑥𝑥,𝑦𝑦𝑦𝑦) = �∑ (𝑥𝑥𝑥𝑥𝑖𝑖𝑖𝑖 − 𝑦𝑦𝑦𝑦𝑖𝑖𝑖𝑖)2𝑘𝑘𝑘𝑘
𝑖𝑖𝑖𝑖𝑖1                                           (3)                                             

 Manhattan Distance 

𝑑𝑑𝑑𝑑(𝑥𝑥𝑥𝑥,𝑦𝑦𝑦𝑦) = ∑ |𝑥𝑥𝑥𝑥𝑖𝑖𝑖𝑖 − 𝑦𝑦𝑦𝑦𝑖𝑖𝑖𝑖|𝑘𝑘𝑘𝑘
𝑖𝑖𝑖𝑖𝑖1                                                           (4) 

 Minkowski Distance 

𝑑𝑑𝑑𝑑(𝑥𝑥𝑥𝑥,𝑦𝑦𝑦𝑦) = �∑ (|𝑥𝑥𝑥𝑥𝑖𝑖𝑖𝑖 − 𝑦𝑦𝑦𝑦𝑖𝑖𝑖𝑖|)𝑞𝑞𝑞𝑞𝑘𝑘𝑘𝑘
𝑖𝑖𝑖𝑖𝑖1 �

1
𝑞𝑞𝑞𝑞                                          (5) 

IBk (Instance Based Learner), a derivative of KNN, is a pattern 
recognition method that classifies test data based on the 
nearest training examples in the feature space [43]. This 
algorithm performs classification based on the class of the k 
nearest neighbors. In the IBk algorithm, the classification of a 
vector is done using known class vectors. In this study, the 
value of k indicating the neighborhood was set to 3. The linear 
search algorithm was used in the neighbor finding process 
[44]. 

4.3.3 Decision Tree 

A decision tree creates classification or regression models in 
the form of a tree structure [45]. As it divides a dataset into 
smaller subsets, a corresponding decision tree is developed 
step by step. The result is a tree with decision nodes and leaf 
nodes. A decision node has two or more branches, while a leaf 
node represents a classification or decision. The top decision 
node in the tree corresponds to the best prediction and is 
called the root node. Decision trees can handle both 
categorical and numerical data. The J48 decision tree, based 
on the C4.5 algorithm, was used in this study [46]. J48 utilizes 
information gain for attribute selection and includes pruning 
techniques to mitigate overfitting, ensuring robust model 
performance. 

4.3.4 Support Vector Machines 

It is possible to separate labeled groups located in a plane by 
drawing a boundary between them. The location where this 
decision boundary is drawn should be the point that is 
farthest from the members of the groups. Support Vector 
Machines (SVM) determine these boundaries. This method 
was developed in 1995 by Vladimir Vapnik, Bernhard Boser, 
and Isabelle Guyon [47]. Today, SVM is used in various 
classification problems, ranging from face recognition 
systems to text categorization. SMO (Sequential Minimal 
Optimization) is an algorithm that operates by using John 
Platt's sequential minimal optimization algorithm to train a 
support vector classifier [48]. 

 

 

                                    (3)                                            

•	Manhattan Distance

labels to unlabeled test examples. The values that specify 
these classes on the dataset are referred to as label names 
and are used during both training and testing to determine 
the class of the data. In some cases, the training phase may 
be entirely skipped, and classification is performed directly 
based on the relationship between training examples and test 
examples. Instance-based methods, such as nearest neighbor 
classifiers, are an example of such a scenario [38]. Even in 
these cases, a preprocessing stage may be carried out to 
ensure efficiency during the testing phase. 

The output of a classification algorithm can be presented in 
one of two ways. In one, a direct label is found for the test 
example. In the other, a numerical score is returned for each 
class label and the combination with the test example. This 
numerical score can be converted into a separate label by 
selecting the class with the highest score for a test example. 
The advantage of this scoring system is that it allows for the 
comparison of the tendency of different test examples to 
belong to a certain importance class and enables their ranking 
when necessary. 

To test the classification performance of the obtained 
features, various classifiers were used. The open-source 
Weka 3 machine learning software, which contains many 
different clustering and classification algorithms and enables 
data mining applications, was utilized. 

4.3.1 Naive Bayes Classifier 

The Naive Bayes classifier (NB) is a classification technique 
based on Bayes' Theorem, named after the English 
mathematician Thomas Bayes, which assumes independence 
among predictions [39]. In simple terms, it assumes that the 
presence of a particular feature in a class is independent of 
the presence of any other feature. Even if these features are 
dependent on each other or on the presence of other 
features, all of these features contribute to the probabilities 
independently [40]. The Naive Bayes model is easy to 
construct and is particularly useful for very large datasets. 
Along with its simplicity, it is known to perform better than 
even highly complex classification methods. 

𝑃𝑃𝑃𝑃(𝑐𝑐𝑐𝑐|𝑥𝑥𝑥𝑥) = 𝑃𝑃𝑃𝑃(𝑐𝑐𝑐𝑐|𝑥𝑥𝑥𝑥)𝑃𝑃𝑃𝑃(𝑐𝑐𝑐𝑐)
𝑃𝑃𝑃𝑃(𝑥𝑥𝑥𝑥)

   (1) 

𝑃𝑃𝑃𝑃(𝑐𝑐𝑐𝑐|𝑥𝑥𝑥𝑥) = 𝑃𝑃𝑃𝑃(𝑥𝑥𝑥𝑥1|𝑐𝑐𝑐𝑐) × … × 𝑃𝑃𝑃𝑃(𝑥𝑥𝑥𝑥𝑛𝑛𝑛𝑛|𝑐𝑐𝑐𝑐) × 𝑃𝑃𝑃𝑃(𝑐𝑐𝑐𝑐)             (2) 

 P(c|x) The asymptotic probability distribution of a 
given predictor for a class 

 P(c) The prior probability distribution for a 
parameter or parameter vector 

 P(x|c) The likelihood function of a given class 
 P(x) The prior probability of the predictor 

4.3.2 K-Nearest Neighbors 

The K-Nearest Neighbor (KNN) algorithms are a classification 
algorithm proposed by T. M. Cover and P. E. Hart in 1967 [41]. 
It takes multiple labeled points and uses them to learn how to 
label other points. To label a new point, it looks at the k 
nearest labeled points to that new point and uses the labels 

of these neighbors. Therefore, the label that appears most 
frequently among the neighbors becomes the label for the 
new point. 

When determining the neighborhood condition, the distance 
of a point from other points is considered [42]. Typically, 
three different distance functions are used for distance 
calculations: 

 Euclidean Distance 

𝑑𝑑𝑑𝑑(𝑥𝑥𝑥𝑥,𝑦𝑦𝑦𝑦) = �∑ (𝑥𝑥𝑥𝑥𝑖𝑖𝑖𝑖 − 𝑦𝑦𝑦𝑦𝑖𝑖𝑖𝑖)2𝑘𝑘𝑘𝑘
𝑖𝑖𝑖𝑖𝑖1                                           (3)                                             

 Manhattan Distance 

𝑑𝑑𝑑𝑑(𝑥𝑥𝑥𝑥,𝑦𝑦𝑦𝑦) = ∑ |𝑥𝑥𝑥𝑥𝑖𝑖𝑖𝑖 − 𝑦𝑦𝑦𝑦𝑖𝑖𝑖𝑖|𝑘𝑘𝑘𝑘
𝑖𝑖𝑖𝑖𝑖1                                                           (4) 

 Minkowski Distance 

𝑑𝑑𝑑𝑑(𝑥𝑥𝑥𝑥,𝑦𝑦𝑦𝑦) = �∑ (|𝑥𝑥𝑥𝑥𝑖𝑖𝑖𝑖 − 𝑦𝑦𝑦𝑦𝑖𝑖𝑖𝑖|)𝑞𝑞𝑞𝑞𝑘𝑘𝑘𝑘
𝑖𝑖𝑖𝑖𝑖1 �

1
𝑞𝑞𝑞𝑞                                          (5) 

IBk (Instance Based Learner), a derivative of KNN, is a pattern 
recognition method that classifies test data based on the 
nearest training examples in the feature space [43]. This 
algorithm performs classification based on the class of the k 
nearest neighbors. In the IBk algorithm, the classification of a 
vector is done using known class vectors. In this study, the 
value of k indicating the neighborhood was set to 3. The linear 
search algorithm was used in the neighbor finding process 
[44]. 

4.3.3 Decision Tree 

A decision tree creates classification or regression models in 
the form of a tree structure [45]. As it divides a dataset into 
smaller subsets, a corresponding decision tree is developed 
step by step. The result is a tree with decision nodes and leaf 
nodes. A decision node has two or more branches, while a leaf 
node represents a classification or decision. The top decision 
node in the tree corresponds to the best prediction and is 
called the root node. Decision trees can handle both 
categorical and numerical data. The J48 decision tree, based 
on the C4.5 algorithm, was used in this study [46]. J48 utilizes 
information gain for attribute selection and includes pruning 
techniques to mitigate overfitting, ensuring robust model 
performance. 

4.3.4 Support Vector Machines 

It is possible to separate labeled groups located in a plane by 
drawing a boundary between them. The location where this 
decision boundary is drawn should be the point that is 
farthest from the members of the groups. Support Vector 
Machines (SVM) determine these boundaries. This method 
was developed in 1995 by Vladimir Vapnik, Bernhard Boser, 
and Isabelle Guyon [47]. Today, SVM is used in various 
classification problems, ranging from face recognition 
systems to text categorization. SMO (Sequential Minimal 
Optimization) is an algorithm that operates by using John 
Platt's sequential minimal optimization algorithm to train a 
support vector classifier [48]. 

 

 

                                                   (4)

•	Minkowski Distance

labels to unlabeled test examples. The values that specify 
these classes on the dataset are referred to as label names 
and are used during both training and testing to determine 
the class of the data. In some cases, the training phase may 
be entirely skipped, and classification is performed directly 
based on the relationship between training examples and test 
examples. Instance-based methods, such as nearest neighbor 
classifiers, are an example of such a scenario [38]. Even in 
these cases, a preprocessing stage may be carried out to 
ensure efficiency during the testing phase. 

The output of a classification algorithm can be presented in 
one of two ways. In one, a direct label is found for the test 
example. In the other, a numerical score is returned for each 
class label and the combination with the test example. This 
numerical score can be converted into a separate label by 
selecting the class with the highest score for a test example. 
The advantage of this scoring system is that it allows for the 
comparison of the tendency of different test examples to 
belong to a certain importance class and enables their ranking 
when necessary. 

To test the classification performance of the obtained 
features, various classifiers were used. The open-source 
Weka 3 machine learning software, which contains many 
different clustering and classification algorithms and enables 
data mining applications, was utilized. 

4.3.1 Naive Bayes Classifier 

The Naive Bayes classifier (NB) is a classification technique 
based on Bayes' Theorem, named after the English 
mathematician Thomas Bayes, which assumes independence 
among predictions [39]. In simple terms, it assumes that the 
presence of a particular feature in a class is independent of 
the presence of any other feature. Even if these features are 
dependent on each other or on the presence of other 
features, all of these features contribute to the probabilities 
independently [40]. The Naive Bayes model is easy to 
construct and is particularly useful for very large datasets. 
Along with its simplicity, it is known to perform better than 
even highly complex classification methods. 

𝑃𝑃𝑃𝑃(𝑐𝑐𝑐𝑐|𝑥𝑥𝑥𝑥) = 𝑃𝑃𝑃𝑃(𝑐𝑐𝑐𝑐|𝑥𝑥𝑥𝑥)𝑃𝑃𝑃𝑃(𝑐𝑐𝑐𝑐)
𝑃𝑃𝑃𝑃(𝑥𝑥𝑥𝑥)

   (1) 

𝑃𝑃𝑃𝑃(𝑐𝑐𝑐𝑐|𝑥𝑥𝑥𝑥) = 𝑃𝑃𝑃𝑃(𝑥𝑥𝑥𝑥1|𝑐𝑐𝑐𝑐) × … × 𝑃𝑃𝑃𝑃(𝑥𝑥𝑥𝑥𝑛𝑛𝑛𝑛|𝑐𝑐𝑐𝑐) × 𝑃𝑃𝑃𝑃(𝑐𝑐𝑐𝑐)             (2) 

 P(c|x) The asymptotic probability distribution of a 
given predictor for a class 

 P(c) The prior probability distribution for a 
parameter or parameter vector 

 P(x|c) The likelihood function of a given class 
 P(x) The prior probability of the predictor 

4.3.2 K-Nearest Neighbors 

The K-Nearest Neighbor (KNN) algorithms are a classification 
algorithm proposed by T. M. Cover and P. E. Hart in 1967 [41]. 
It takes multiple labeled points and uses them to learn how to 
label other points. To label a new point, it looks at the k 
nearest labeled points to that new point and uses the labels 

of these neighbors. Therefore, the label that appears most 
frequently among the neighbors becomes the label for the 
new point. 

When determining the neighborhood condition, the distance 
of a point from other points is considered [42]. Typically, 
three different distance functions are used for distance 
calculations: 

 Euclidean Distance 

𝑑𝑑𝑑𝑑(𝑥𝑥𝑥𝑥,𝑦𝑦𝑦𝑦) = �∑ (𝑥𝑥𝑥𝑥𝑖𝑖𝑖𝑖 − 𝑦𝑦𝑦𝑦𝑖𝑖𝑖𝑖)2𝑘𝑘𝑘𝑘
𝑖𝑖𝑖𝑖𝑖1                                           (3)                                             

 Manhattan Distance 

𝑑𝑑𝑑𝑑(𝑥𝑥𝑥𝑥,𝑦𝑦𝑦𝑦) = ∑ |𝑥𝑥𝑥𝑥𝑖𝑖𝑖𝑖 − 𝑦𝑦𝑦𝑦𝑖𝑖𝑖𝑖|𝑘𝑘𝑘𝑘
𝑖𝑖𝑖𝑖𝑖1                                                           (4) 

 Minkowski Distance 

𝑑𝑑𝑑𝑑(𝑥𝑥𝑥𝑥,𝑦𝑦𝑦𝑦) = �∑ (|𝑥𝑥𝑥𝑥𝑖𝑖𝑖𝑖 − 𝑦𝑦𝑦𝑦𝑖𝑖𝑖𝑖|)𝑞𝑞𝑞𝑞𝑘𝑘𝑘𝑘
𝑖𝑖𝑖𝑖𝑖1 �

1
𝑞𝑞𝑞𝑞                                          (5) 

IBk (Instance Based Learner), a derivative of KNN, is a pattern 
recognition method that classifies test data based on the 
nearest training examples in the feature space [43]. This 
algorithm performs classification based on the class of the k 
nearest neighbors. In the IBk algorithm, the classification of a 
vector is done using known class vectors. In this study, the 
value of k indicating the neighborhood was set to 3. The linear 
search algorithm was used in the neighbor finding process 
[44]. 

4.3.3 Decision Tree 

A decision tree creates classification or regression models in 
the form of a tree structure [45]. As it divides a dataset into 
smaller subsets, a corresponding decision tree is developed 
step by step. The result is a tree with decision nodes and leaf 
nodes. A decision node has two or more branches, while a leaf 
node represents a classification or decision. The top decision 
node in the tree corresponds to the best prediction and is 
called the root node. Decision trees can handle both 
categorical and numerical data. The J48 decision tree, based 
on the C4.5 algorithm, was used in this study [46]. J48 utilizes 
information gain for attribute selection and includes pruning 
techniques to mitigate overfitting, ensuring robust model 
performance. 

4.3.4 Support Vector Machines 

It is possible to separate labeled groups located in a plane by 
drawing a boundary between them. The location where this 
decision boundary is drawn should be the point that is 
farthest from the members of the groups. Support Vector 
Machines (SVM) determine these boundaries. This method 
was developed in 1995 by Vladimir Vapnik, Bernhard Boser, 
and Isabelle Guyon [47]. Today, SVM is used in various 
classification problems, ranging from face recognition 
systems to text categorization. SMO (Sequential Minimal 
Optimization) is an algorithm that operates by using John 
Platt's sequential minimal optimization algorithm to train a 
support vector classifier [48]. 
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tree, based on the C4.5 algorithm, was used in 
this study [46]. J48 utilizes information gain for 
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4.3.4. Support Vector Machines

It is possible to separate labeled groups loca-
ted in a plane by drawing a boundary between 
them. The location where this decision boun-
dary is drawn should be the point that is farthest 
from the members of the groups. Support Vector 
Machines (SVM) determine these boundaries. 
This method was developed in 1995 by Vladi-
mir Vapnik, Bernhard Boser, and Isabelle Guyon 
[47]. Today, SVM is used in various classification 
problems, ranging from face recognition systems 
to text categorization. SMO (Sequential Minimal 
Optimization) is an algorithm that operates by 
using John Platt’s sequential minimal optimiza-
tion algorithm to train a support vector classifier 
[48].

4.3.5. Artificial Neural Networks

Artificial neural networks are developed by 
drawing inspiration from the way nerve system 
cells function in living organisms [49]. Their aim 
is to impart the learning ability of a living brain 
to computers. A neural network consists of units 
(neurons) organized in layers that transform an 
input vector into an output. Each unit receives 
an input, applies a typically nonlinear function 
to it, and then passes the output to the next layer. 
Networks are generally defined to feed forward 
[50]. A unit feeds its output to all units in the next 
layer but does not transmit feedback to the pre-
vious layer. Weights are applied to the signals 
that pass from one unit to another, and these we-
ights are adjusted during the training phase to 
adapt the artificial neural network to the specific 
problem at hand [51].
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Figure 6. A Multi-layer Perceptron with 10 hidden 
layers

The most commonly used model of artificial neu-
ral networks is the Multi-layer Perceptron (MLP) 
[52]. Multilayer artificial neurons fundamentally 
consist of three parts in Figure 6. The input layer 
does not perform any information processing; it 
simply receives information and transmits it to 
the hidden layers. Each element in the input la-
yer is connected to all processing units in the hid-
den layer. In this part, the information from the 
input layer is processed. A single hidden layer 
can solve many problems, but multiple hidden 
layers can also be utilized. The number of hidden 
layers varies depending on the type of problem. 
The output layer processes the information co-
ming from the hidden layer and transmits it to 
the outside.
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Here: 

b = bias, x = neuron input, w = weights, n = number of inputs 
from the previous layer, i = counter from 0 to n. 

In artificial neural networks, the values of the inputs are 
multiplied by the weights of the connections, and the results 
are combined to find the net input of the network [53]. Once 
the net inputs are passed through an activation function, the 
net output of the network is obtained. 

During the classification process, 10-fold cross-validation was 
used. Cross-validation divides the dataset into 10 random 
subsets, using 9 for testing and 1 for training. This process is 

repeated 10 times until all permutations are used for training 
and testing. 

4.4 Performance Metrics 

The most commonly used method for measuring 
classification performance is accuracy. It is calculated by 
dividing the number of correctly classified instances by the 
total number of instances. 

𝐴𝐴𝐴𝐴 = (𝑇𝑇𝑇𝑇𝑃𝑃𝑃𝑃+𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇)
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TP (True Positive): This is used when the value in the test data 
matches the class predicted by the model. The classification 
is correct. 

FN (False Negative): This occurs when the value in the test 
data is different from the class produced by the model, where 
a positive instance is incorrectly classified as negative. The 
classification is incorrect. 

FP (False Positive): This occurs when the actual value is 
negative but is incorrectly classified as positive. 

TN (True Negative): This is when the value is correctly 
classified as negative when it is actually negative. 

Precision is the ratio of the number of true positives (TP) 
predicted as positive to the total number of instances 
predicted as class 1. 

𝑃𝑃𝑃𝑃 = 𝑇𝑇𝑇𝑇𝑃𝑃𝑃𝑃
(𝑇𝑇𝑇𝑇𝑃𝑃𝑃𝑃+𝐹𝐹𝐹𝐹𝑃𝑃𝑃𝑃)
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The metric that indicates how many of all positive classes 
were correctly predicted is defined as sensitivity. 

𝑅𝑅𝑅𝑅 = 𝑇𝑇𝑇𝑇𝑃𝑃𝑃𝑃
(𝑇𝑇𝑇𝑇𝑃𝑃𝑃𝑃+𝐹𝐹𝐹𝐹𝑇𝑇𝑇𝑇)
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In cases where sensitivity and precision metrics are not 
sufficient to produce meaningful results, it is necessary to 
evaluate these two metrics together. Therefore, the F-
measure has been defined. This metric is the harmonic mean 
of precision and sensitivity. 

𝐹𝐹𝐹𝐹 = 2𝑅𝑅𝑅𝑅𝑃𝑃𝑃𝑃
(𝑅𝑅𝑅𝑅+𝑃𝑃𝑃𝑃)

           (10) 

5. Results and Discussion 
Through studies conducted using metaheuristic methods, 
feature selection was performed on the data in the music 
dataset to enhance classification performance. The most 
important features for the classification process were 
identified. A current dataset containing features that 
meaningfully represent the data was created, and the data 
was classified according to track popularity using various 
classifiers. It was observed that the artist_hotttnesss label, 
which represents artist popularity, was a significant feature in 
all the algorithms used. This indicates that an artist's 
recognition is an important factor in a song's popularity. 
Furthermore, it was concluded that the features tempo and 
loudness, which indicate the track's tempo and volume, are 
significant factors in determining song popularity. After 100 
iterations, the lowest error value in Table 4 was achieved 
using the ant colony algorithm. 
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5. RESULTS AND DISCUSSION

Through studies conducted using metaheuristic 
methods, feature selection was performed on the 
data in the music dataset to enhance classifica-
tion performance. The most important features 
for the classification process were identified. A 
current dataset containing features that meanin-
gfully represent the data was created, and the 
data was classified according to track popularity 
using various classifiers. It was observed that the 
artist_hotttnesss label, which represents artist 
popularity, was a significant feature in all the 
algorithms used. This indicates that an artist’s 
recognition is an important factor in a song’s po-
pularity. Furthermore, it was concluded that the 
features tempo and loudness, which indicate the 
track’s tempo and volume, are significant factors 
in determining song popularity. After 100 itera-
tions, the lowest error value in Table 4 was achie-
ved using the ant colony algorithm.

The results obtained from classification using 
different classifiers were compared after featu-
re selection was performed using metaheuristic 
methods, as well as without feature selection. 

Initially, the best performance in the classificati-
on of raw data was achieved with the SMO algo-
rithm among five different classifiers. According 
to Table 5, it was observed that the success rate 
increased after feature selection using metaheu-
ristic methods compared to the raw dataset. In 
classifications using fewer features, the success 
rates of decision trees, Naive Bayes, kNN, and 
artificial neural networks increased compared to 
the previous state of the data, while there was 
no change in the success rate for classifications 
performed with support vector machines. Based 
on these results, the highest success obtained th-
rough feature selection was achieved with the 
J48 algorithm, which is a decision tree algorithm. 
The highest performance increase compared to 
the raw dataset was 3.23%, which was obtained 
using features selected by a genetic algorithm 
and the Naive Bayes classifier. The error rates 
obtained with this classifier are presented in Tab-
le 6. 

Table 4. Algorithm comparison results according to iteration number

Method Iteration Feature Set Min. Error

ACO
20

artist_hotttnesss, 

loudness, mode, 

mode_confidence 0.10172

50

artist_hotttnesss, 

loudness, tempo, time_signature_confidence 0.10153
100 artist_hotttnesss, loudness, tempo, start_of_fade_out 0.10109

PSO

20

artist_hotttnesss, 

loudness, tempo, key 0.10122

50

artist_hotttnesss, 

artist_familiarity, tempo, 

start_of_fade_out 0.10113
100 artist_hotttnesss, duration, tempo, end_of_fade_in 0.10119

SA

20 artist_hotttnesss, loudness, duration, time_signature 0.10227

50

artist_hotttnesss, 

loudness, key, mode 0.10193
100 artist_hotttnesss, loudness, key, mode_confidence 0.10149

GA
20 artist_hotttnesss 0.10541
50 artist_hotttnesss 0.10517

100 artist_hotttnesss 0.10507
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Table 5. Classification results

Classifier Raw

(%)

ACO

(%)

PSO 

(%)

SA

(%) 

GA 

(%)
IBk 84.53 84.96 85.04 84.83 85.48 
NB 84.77 87.86 87.75 87.97 88.00
MLP 87.74 88.08 88.02 88.04 88.07
J48 88.02 88.08 88.08 88.08 88.08 
SMO 88.08 88.08 88.08 88.08 88.08

Table 6. Naive Bayes classifier error rates

Metric ACO PSO SA GA
TP Rate 0.879 0.878 0.880 0.880
FP Rate 0.862    0.858    0.867    0.871    
Precision 0.820      0.817      0.823      0.823      
Recall 0.879    0.878    0.880    0.880    
F-Measure 0.829      0.829      0.828      0.827      

6. CONCLUSION

This study addresses the significant issue of 
improving machine learning classification per-
formance through the use of efficient feature 
selection techniques. Finding the most relevant 
features in multimedia datasets is crucial, espe-
cially when it comes to music data analysis. In 
order to improve the accuracy and efficiency 
of predictive models, this research attempts to 
enhance the feature selection process by inves-
tigating different nature-inspired metaheuristic 
algorithms. 

The results of this study show that using four 
different metaheuristic techniques greatly im-
proves the ability to extract relevant features 
from the dataset. It has been demonstrated th-
rough comparative evaluations that these me-
taheuristic techniques not only improve classi-
fication accuracy but also make model training 
more effective. Furthermore, the use of artificial 
neural networks to assess the appropriateness of 
particular features highlights the potential for 
synergy between machine learning classification 
methods and reliable feature selection processes.

In future studies, the speed performance of the 
currently applied algorithms can be tested. It ap-
pears feasible to make improvements in terms 
of time and cost with different parameter valu-
es. Furthermore, it is believed that new studies 

could be conducted to measure the success of 
other metaheuristic algorithms in feature selec-
tion. The use of hybrid versions of heuristic opti-
mization methods is also recommended for this 
purpose.
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