
115

Kuantum Teknolojileri ve Enformatik Araştırmaları, Volume/Cilt: 2, Issue/Sayı: 3, Year/Yıl:2024

Meta-Sezgisel Yöntemler ile Müzik Popülarite
Sınıflandırması için Özellik Seçimi
Feature Selection with Meta-Heuristics for Music Popularity
Classification

Abdurrahim Hüseyin Ezirmik1 İdiris Dağ2

1 Balıkesir Üniversitesi, Bilgisayar Mühendisliği Bölümü, Balıkesir, Türkiye, e-mail: huseyin.ezirmik@balikesir.edu.tr
2 Eskişehir Osmangazi Üniversitesi, Bilgisayar Mühendisliği Bölümü, Eskişehir, Türkiye, e-mail: idag@ogu.edu.tr

RESEARCH ARTICLE / ARAŞTIRMA MAKALESİ

Corresponding Author/ Sorumlu Yazar:
Abdurrahim Hüseyin Ezirmik
E-mail: huseyin.ezirmik@balikesir.edu.tr

Citation/Atıf: EZİRMİK, A. H. & DAĞ, İ. (2024). Meta-Sezgisel Yöntemler ile Müzik Popülarite Sınıflandırması için Özellik Seçimi. Kuantum
Teknolojileri ve Enformatik Araştırmaları. 2(3): 115-128, DOI: 10.70447/ktve.2573

KUANTUM TEKNOLOJİLERİ VE ENFORMATİK ARAŞTIRMALARI
Volume / Cilt: 2, Issue / Sayı: 3, 2024, pp. 115-128
E - ISSN: 3023-4735
URL: https://journals.gen.tr/index.php/jqtair/
DOI: https://doi.org/10.70447/ktve.2573

Bu çalışma, Creative Commons Atıf 4.0 Uluslararası
Lisansı ile lisanslanmıştır.
This work is licensed under a Creative Commons
Attribution 4.0 International License.

Received / Geliş: 12.10.2024
Acccepted / Kabul: 25.10.2024

Öz

Günümüzde multimedya içerik üretimi büyük bir hızla artmış, bu da değerli bilgilere erişimi zorlaştırmıştır. An-
lamlı verilere ulaşımı kolaylaştırmak amacıyla veri madenciliği kritik bir hale gelmiştir ve bu süreçte önemli bir
adım, veri boyutunun azaltılmasıdır. Özellik seçimi, veri kümesindeki ilgisiz, gürültülü veya eksik verilerin çıka-
rılmasıyla veri boyutunu küçülterek, veri analizinde kullanılan yöntemlerin daha hızlı ve verimli çalışmasını sağ-
lar. Bu çalışmada, doğadan ilham alınan meta-sezgisel algoritmalar kullanılarak özellik seçimi gerçekleştirilmiştir.
Belirlenen özellikler, makine öğrenimi algoritmaları ve yapay sinir ağları ile müzik verilerini şarkı popülerliğine
göre sınıflandırmak için kullanılmıştır. Müzik veri seti üzerinde yapılan iyileştirmeler ile sınıflandırma başarımı
%3.2 oranında artırılmış ve sonuç olarak %88 doğruluk elde edilmiştir. Kullanılan yöntemler karşılaştırmalı olarak
sunulmuş ve elde edilen bulgular değerlendirilmiştir.

Anahtar kelimeler: Yapay sinir ağları, Metasezgisel algoritmalar, Özellik seçimi, Sınıflandırma

Abstract

In today’s world, the rapid increase in multimedia content production has made accessing valuable information
more challenging. Data mining has become critical to facilitate access to meaningful data, and an important step in
this process is reducing the size of the data. Feature selection reduces the data size by eliminating irrelevant, noisy,
or missing data from the dataset, allowing the methods used in data analysis to operate faster and more efficiently.
In this study, feature selection was performed using nature-inspired metaheuristic algorithms. The selected fea-
tures were used to classify music data by song popularity with machine learning algorithms and artificial neural
networks. Improvements made on the dataset increased classification performance by 3.2%, achieving an accuracy
of 88%. The methods used were presented comparatively, and the findings were evaluated.

Keywords: Artificial neural networks, Metaheuristic algorithms, Feature selection, Classification

https://orcid.org/0000-0002-1154-1537
https://orcid.org/ 0000-0002-2056-4968

116

Ezirmik & Dağ

1. INTRODUCTION

In today’s world, music is present in every as-
pect of human life. With the growing influence
of the entertainment industry, the volume of
music data produced is increasing over time,
making it difficult for listeners to access all this
data [1]. Without a good method for discovering
music, a significant portion of the music produ-
ced may go unnoticed. As multimedia content
expands and digital libraries continue to grow,
information retrieval and access are becoming
increasingly important. The aim for this work
is to tackle the challenge of extracting valuable
insights from audio datasets. By using feature se-
lection with metaheuristic algorithms, the study
attempts to improve computational efficiency
and enhance the accuracy of music popularity
prediction models.

Music data consists of several audio files. To
analyze an audio file, it is first necessary to de-
termine the type of information provided [2].
Much research has been conducted on music,
speech, and sound. However, studies on songs
are relatively fewer and still ongoing. Informa-
tion about songs, such as lyrics, genre, and era,
is shared online. Digital music serves as a source
for information such as artist, track name, and
year. Many operations can be performed using
this information. Examples of this include track
classification and song recommendation systems
[3].

Recently, research on feature selection has inc-
reased for various reasons [4]. This is due to the
development of new applications dealing with
large amounts of data, such as data mining,
medical data processing, and multimedia infor-
mation retrieval. Feature selection is efficiently
and widely used in classification systems [5].
Identifying distinctive features enhances recog-
nition success. In classification using selected fe-
atures, fewer operations are required, noisy and
irrelevant features are removed from the origi-
nal data, classification success is improved, and
classification based on features becomes easier to
interpret. Training time is reduced, fewer mea-
surements are made, and less memory is used.
These factors provide meaningful and easier
classification.

This article is organized into several key secti-
ons that provide a comprehensive overview of
the research. The Related Works section reviews
existing literature on feature selection and ca-
tegorization, identifying domains and advan-
cements. The Metaheuristic Algorithms section
outlines the specific algorithms used, explaining
their principles and selection criteria. The Mate-
rial and Methods section details the dataset and
experimental procedures to ensure transparency
and reproducibility. In the Results and Discus-
sion section, findings are presented. Finally, the
Conclusion summarizes the key contributions
and suggests directions for future research in fe-
ature selection using metaheuristic methods.

2. RELATED WORKS

This section provides a thorough review of the
contributions from numerous works on me-
ta-heuristic algorithms and feature selection in
many fields. The contributions in meta-heuristic
algorithms cover a wide range of applications.
For example, Tayarani et al. (2014) provided
a state-of-the-art overview of meta-heuristic
strategies for vehicle engine design [6], while
methodologies outlining their advantages and
disadvantages in dealing with reactive power
planning difficulties [7] were discussed by Sha-
heen et al. (2018). The use of meta-heuristics in
parallel computing scheduling, along with obs-
tacles and future research prospects [8], was fo-
cused on by Memeti et al. (2018). Furthermore,
the significance of meta-heuristic strategies in
academic scheduling difficulties [9] was inves-
tigated by Teoh et al. (2015), and a comparative
analysis of five techniques —ACO, PSO, GA, BA,
and LCA— was conducted by Kalra and Singh
(2015) to demonstrate their effectiveness in task
scheduling for grid and cloud frameworks [10].

In the domain of feature selection, the applica-
tion of feature selection in mobile malware de-
tection was examined by Feizollah et al. (2015),
providing a detailed overview of its significance
[11]. Feature selection strategies used in senti-
ment analysis and their application in opinion
mining [12] were briefly reviewed by Asghar et
al. (2014). Finally, Saeys et al. (2007) concentra-
ted on bioinformatics, offering a basic taxonomy
of feature selection approaches and discussing

117

Kuantum Teknolojileri ve Enformatik Araştırmaları, Volume/Cilt: 2, Issue/Sayı: 3, Year/Yıl:2024

their usefulness in both classic and developing
bioinformatics applications [13].

Recent studies using metaheuristic methods in
the field of music are generally based on music
generation [14-16]. This work stands out by app-
lying nature-inspired meta-heuristic algorithms
specifically for feature selection in music data,
focusing on song popularity prediction. Unlike
previous studies that cover various fields, this
research targets a unique challenge in the music
domain.

3. METAHEURISTIC ALGORITHMS

The term metaheuristic refers to an algorithmic
framework that provides guidance or strategies
for the development of different heuristic optimi-
zation algorithms, independent of the problem
at hand [17]. This term is also used to describe
the specific application of a heuristic optimiza-
tion algorithm to a given problem. Technically,
the term metaheuristic was first introduced by
Fred Glover in 1986, combining the Greek word
“meta” with “heuristic,” meaning higher-level
heuristic [18].

A higher-level heuristic approach involves met-
hods that perform a probabilistic yet conscious
search in the solution space [19]. These metho-
ds generate new solutions by starting from the
set of solutions created at each step. Thus, by
searching near the points that are closest to the
optimum in the search space, they aim to reach
the optimal solution while avoiding local optima
selection [20].

Metaheuristic methods are techniques that direct
the search process. They aim to explore the sear-
ch space efficiently to obtain the best or near-op-
timal results. These methods span from local se-
arch techniques to complex learning processes.
Typically, they offer an approximate solution
that is non-deterministic. They are not limited to
solving a specific problem but provide solutions
to different types of problems. They are desig-
ned in a way that prevents convergence to local
solutions in the search space.

For metaheuristic algorithms to produce good
results, it is essential that the fundamental con-
cepts of the method are well adapted to the

problem. There are many types of metaheuristic
algorithms [21]. Algorithms inspired by nature
imitate the behavior patterns of living beings in
natural environments. Some are population-ba-
sed, while others are individual-based. Their ob-
jective functions can be either static or dynamic.
They can be classified based on whether or not
they use neighborhood structures or memory.
These methods are seen as the nature-inspired
extensions of classical heuristic algorithms. The
variety of algorithms has increased as they have
been developed for optimization purposes based
on various scientific fields.

3.1. Ant Colony Algorithm

Ant Colony Optimization (ACO) is a metaheu-
ristic method developed to solve difficult optimi-
zation problems. It is inspired by the behavior
of real ants, which use the pheromone hormo-
ne they secrete in their natural environment as
a means of communication [22]. Similar to the
biological example, this optimization method is
based on the indirect communication established
through pheromone trails in an artificial ant co-
lony. Pheromones serve as distributed, numeri-
cal information that ants use to probabilistically
generate solutions to a problem, reflecting their
search experience and adapting during the exe-
cution of the algorithm.

Real ants perform complex tasks, such as finding
the shortest path to food sources and transpor-
ting the obtained food back to the nest, through
collective behavior. The ant colony algorithm
mimics the principle of how an ant colony can
find the shortest path between two points using
a simple communication mechanism [23]. The-
re is a path that ants with poor vision can travel
between the nest and the food source. During
their trips, ants leave a chemical trail (phero-
mone) on the ground. Pheromone is a volatile
substance with a distinct smell. This trail plays a
role in guiding other ants toward the target point
[24]. As the amount of pheromone on a certain
path increases, the probability of ants choosing
that path also increases.

118

Ezirmik & Dağ

Figure 1. An ant colony searching for the best path
between food and the nest [25]

Additionally, this chemical substance has a di-
minishing effect over time as it evaporates, and
the amount of this substance secreted by an ant
depends on the amount of food in the environ-
ment. As shown in Figure 1, when faced with
an obstacle, each ant has an equal probability of
choosing either the left or right path. Since the
left trail is shorter than the right one and requ-
ires less travel time, the ant will leave a higher
amount of pheromone. The more ants use a path,
the more pheromone accumulates on that path.
Thus, the shortest path is eventually determined.

3.2. Particle Swarm Optimization

Particle Swarm Optimization (PSO) is another
population-based, stochastic metaheuristic opti-
mization method inspired by swarm intelligence
[26]. It imitates the behaviors exhibited by natu-
ral organisms, such as birds and fish, when se-
arching for a place with sufficient food. In these
swarms, coordinated behaviors in Figure 2 using
local movements emerge without any central
control. PSO has been successfully designed to
solve continuous optimization problems.

Figure-2. Geometrical illustration for PSO algorithm
[27]

3.3. Simulated Annealing

In computer science, particularly in the field of
optimization, one of the algorithms used is inspi-
red by the annealing process applied during iron
processing, which involves heating the iron and
then allowing it to cool. The goal of the Simula-
ted Annealing (SA) algorithm is to achieve ove-
rall improvement for any given problem [28]. In
other words, it aims to find the global minimum
or maximum value of any function or measure.

3.4. Genetic Algorithms

Genetic Algorithms (GA) are a very popular class
of evolutionary algorithms. A GA typically app-
lies a crossover operator to two solutions, which
plays a significant role, and a mutation operator
that randomly alters individual content to incre-
ase diversity [29]. GA use probabilistic selection,
which is proportional selection. The replacement
that determines selection is generational, mea-
ning parents are systematically replaced by the-
ir offspring. The crossover operator is based on
n-point or uniform crossover, while the mutati-
on operator alters bits [30]. A fixed probability is
applied to the mutation operator.

The main search components for designing an
evolutionary algorithm are: gene representation,
population initialization, objective (fitness) func-
tion, selection, mutation and crossover for repro-
duction, generational replacement, and stopping
criteria in Figure 3.

119

Kuantum Teknolojileri ve Enformatik Araştırmaları, Volume/Cilt: 2, Issue/Sayı: 3, Year/Yıl:2024

Figure 3. Genetic algorithm flowchart [31]

4. MATERIAL AND METHODS

4.1. Music Dataset

The open library used in this research, created
by the Echo Nest company in collaboration with
LabROSA, a laboratory for intelligent machine
listening, aims to gather data on approximately
one million contemporary and popular songs
under the name Million Song Dataset [32]. The
data includes standard information about son-
gs, such as the artist’s name, album, and year of
release. Additionally, it contains more advanced
information, such as the length of the song, the
number of musical bars, and the fade-out dura-
tion.

The Million Song Dataset will be analyzed for
classification purposes. The original dataset is
280GB in size and consists of one million tracks.
In this study, a subset of 10.000 pieces has been
used to reduce computational costs. The reduced
dataset consists of 22 features, including artist
name, title, duration, and tempo.

In the original dataset, there is a song popularity
feature. The “song_hotttnesss” tag represents
the song popularity. However, this feature does
not include values for approximately 4.500 son-
gs, which is almost half of the total number of
data entries. Therefore, the BillBoard Top 100 list

is used to determine popularity. If a song reaches
the BillBoard Top 100 at least once, it is defined
as a hit song. Of the 10.000 songs in the dataset,
1.192 songs are classified as popular songs. Po-
pular tracks are represented by 1, while non-po-
pular ones are represented by 0.

As shown in Figures 4 and 5, artist similarities
and song loudness are related to the song’s po-
pularity. The similarity between artists shows a
positive correlation, as expected. However, surp-
risingly, song loudness exhibits a negative cor-
relation with popularity. It was anticipated that
more popular songs would be louder, but this
appears to be the opposite, as the overall average
loudness of songs tends to be slightly higher. In
Figure 5, loudness is plotted on the x-axis, whi-
le popularity is plotted on the y-axis. The reason
more popular songs seem to be quieter could be
due to the presence of exceptionally loud songs
in the data, which lowers the overall popularity
average of the songs.

Figure 4. Artist similarity-popularity distribution
graph

120

Ezirmik & Dağ

Figure 5. Loudness-popularity distribution graph

Data preprocessing has been performed on the
music dataset to achieve more efficient results.
Textual data, such as song titles and artist loca-
tions, has been removed from the feature set,
allowing for the extraction of numerical data in
Table 3 that can be computed using algorithms.
The data numbers entered in the rows are given
as count. Cells with no value in the dataset are
entered as NaN. The means, standard deviations
and minimum-maximum values of these data
are presented in the table.

The data under the “year” tag, which stores the
release year of pieces, shows an imbalance due
to the high frequency of pieces with unknown
release years, where a value of 0 was entered.
To prevent this distribution from causing de-
viations, the year feature column was removed
from the processed data. After data cleaning, a
dataset with 16 numeric features and a target co-
lumn (popularity class) was obtained. In its final
state, the data consists of 16x10001 inputs and
1x100001 target. Based on this information, the
comma-separated values (.csv) file on which fe-
ature selection will be performed was converted
into formats (.mat, .arff) suitable for the software
used.

4.2. Feature Selection

Feature selection is the process of determining
a subset that represents a dataset and isolating
the variables that best express this data [33]. This
process selects the best k features from n featu-
res by scanning them according to the algorithm
being used, thereby reducing the number of fe-

atures and providing various benefits in prob-
lem-solving. Feature selection reduces the size
of the attribute set, allowing the algorithm used
for data analysis to run faster. It improves data
quality by isolating noisy or incomplete data and
prevents complexity by simplifying the dataset
[34]. Additionally, it provides storage savings by
reducing the data size.

Feature selection processes have been carried
out using algorithms designed with MATLAB
2018a software, which enables effective and fast
mathematical computations in areas such as sta-
tistics, optimization, and numerical analysis [35].
To measure classification performance, desired
features were extracted using ACO, PSO, SA,
and GA metaheuristic methods.

The Ant Colony Optimization algorithm was
used to reduce the dimensionality by perfor-
ming feature extraction on data containing in-
puts and targets. In the application phase, the
desired number of features was specified as 4.
The problem was defined, and a fitness function
was created. The parameter values to be used in
ant colony optimization were entered in Table 1.

Table 1. ACO parameter values

Parameter Value
Number of ants (population) 50

Initial pheromone value 1
Pheromone trail information (alpha) 1

Heuristic parameter (beta) 1
Evaporation rate 0.05

In the feature selection process, a matrix is first
created to store the tour, cost, and output va-
lues of 50 ants. In the loop, which will run for
the number of iterations determined at the start,
the feature where the tour will begin is random-
ly selected, starting with the first ant. Then, the
probability of this ant moving to other features
is calculated. Positions are subjected to roulette
wheel selection based on pheromone values, and
the next feature the ant will visit is determined
[36]. Once the ant completes its tour, the obtai-
ned values are sent to the fitness function, and
the cost value is calculated. The order of features
in the ant’s tour, the cost value of the tour, and
the structure containing the desired number of

121

Kuantum Teknolojileri ve Enformatik Araştırmaları, Volume/Cilt: 2, Issue/Sayı: 3, Year/Yıl:2024

Table 3. Basic statistics on numerical data

Feature Count Mean Std. dev. Min. Max.
artist_familiarity 9997 0.565 0.16 0 1
artist_hotttnesss 10001 0.386 0.144 0 1.083
artist_latitude 3742 37.157 15.599 -41.281 69.651
artist_longitude 3742 -63.934 50.508 -162.44 174.77
duration 10001 238.512 114.133 1.044 1819.8
end_of_fade_in 10001 0.759 1.868 0 43.119
key 10001 5.276 3.554 0 11
key_confidence 10001 0.45 0.275 0 1
loudness 10001 -10.485 5.4 -51.643 0.566
mode 10001 0.691 0.462 0 1
mode_confidence 10001 0.478 0.191 0 1
song_hotttnesss 5649 0.343 0.247 0 1
start_of_fade_out 10001 229.98 112.191 1.044 1813.4
tempo 10001 122.921 35.186 0 262.83
time_signature 10001 3.565 1.266 0 7

time_signature_confidence 10001 0.51 0.373 0 1
year 10001 935 996.651 0 2010

features are recorded as output. Afterward, the
pheromone values left by the ant are updated.
The loop moves to the next ant, and the same
processes are repeated. For each iteration, phe-
romone is evaporated by 0.05, and the best cost
value found is recorded.

When feature selection is performed using Par-
ticle Swarm Optimization, the population size
consists of 50 particles in total. The values of the
Fi (phi) constants are taken as 2.05, and their sum
is passed through the chi-square method to equ-
al the inertia weight. The damping ratio of this
weight is 0.99. The individual and social learning
coefficients (c1, c2) are found by multiplying the
Fi constants with the value obtained from the
chi-square formula. Velocity limits are set, and
the minimum limit is adjusted to be the negative
of the maximum limit.

In Simulated Annealing, initial positions are
determined using a random permutation func-
tion, which returns a random vector composed
of the entered features. The positions found are
evaluated using the fitness function, and the best
solution is assigned. A list containing as many
elements as the number of iterations is created to
store the best cost values. The initial temperature
is set to 10. In the main loop, which runs for the

total number of iterations of the Simulated An-
nealing process, there is an inner loop that runs
for the number of sub-iterations. A new solution
is generated using the neighbor generation fun-
ction. In this function, the swap, return, and join
rates are applied as 0.2, 0.5, and 0.3, respectively.
These rates are subjected to roulette wheel selec-
tion, and based on the result, one of these opera-
tions is applied to the initially determined tour.
After determining the new tour in this way, the
cost value for this tour is calculated. If the found
value is better, the solution is updated. Once the
sub-iteration is completed, the best cost value is
retained in the loop for the main iteration, and
the temperature is updated based on the cooling
rate.

When using a Genetic Algorithm for feature se-
lection, the initial phase was initiated after defi-
ning the parameters found in Table 2. An empty
structure was defined to hold the positions and
costs of the individuals. An array containing as
many elements as the population size of indivi-
duals was created. In the loop, which runs for
the number of individuals, genes consisting of
bits were assigned to the elements using a disc-
rete uniform distribution. The individuals were
evaluated using the fitness function, and the ob-
tained values were recorded. All individuals in

122

Ezirmik & Dağ

the population were ranked according to their
fitness. The best solution was recorded, and an
array was created to hold the cost values.

Table 2. Parameters used in genetic algorithm

nPop=50 Population size
pc=0.7 Crossover percentage

nc=2*round(pc*nPop/2) Number of offspring
pm=0.3 Mutation percentage

nm=round(pm*nPop) Number of mutants
mu=0.1 Mutation rate
beta=8 Selection pressure

4.3. Classification Algorithms

The data classification problem has countless
applications across a wide range of data mining
fields [37]. This is because the problem attempts
to learn the relationship between a set of featu-
re variables and a target variable of interest. In
practice, since many issues can be expressed as
relationships between features and target variab-
les, this model provides broad applicability. The
concept of classification simply involves distri-
buting data among various classes defined on a
dataset. Classification algorithms learn this dist-
ribution pattern from the given training set and
then attempt to classify correctly when test data
arrives, for which the class is not specified.

Classification algorithms typically consist of
two stages: the training phase, in which a mo-
del is constructed from training examples, and
the testing phase, which is used to assign labels
to unlabeled test examples. The values that spe-
cify these classes on the dataset are referred to as
label names and are used during both training
and testing to determine the class of the data. In
some cases, the training phase may be entirely
skipped, and classification is performed direct-
ly based on the relationship between training
examples and test examples. Instance-based
methods, such as nearest neighbor classifiers, are
an example of such a scenario [38]. Even in these
cases, a preprocessing stage may be carried out
to ensure efficiency during the testing phase.

The output of a classification algorithm can be
presented in one of two ways. In one, a direct la-
bel is found for the test example. In the other, a
numerical score is returned for each class label

and the combination with the test example. This
numerical score can be converted into a separate
label by selecting the class with the highest score
for a test example. The advantage of this scoring
system is that it allows for the comparison of the
tendency of different test examples to belong to
a certain importance class and enables their ran-
king when necessary.

To test the classification performance of the obta-
ined features, various classifiers were used. The
open-source Weka 3 machine learning software,
which contains many different clustering and
classification algorithms and enables data mi-
ning applications, was utilized.

4.3.1. Naive Bayes Classifier

The Naive Bayes classifier (NB) is a classification
technique based on Bayes’ Theorem, named after
the English mathematician Thomas Bayes, which
assumes independence among predictions [39].
In simple terms, it assumes that the presence of
a particular feature in a class is independent of
the presence of any other feature. Even if these
features are dependent on each other or on the
presence of other features, all of these features
contribute to the probabilities independently
[40]. The Naive Bayes model is easy to construct
and is particularly useful for very large datasets.
Along with its simplicity, it is known to perform
better than even highly complex classification
methods.

labels to unlabeled test examples. The values that specify
these classes on the dataset are referred to as label names
and are used during both training and testing to determine
the class of the data. In some cases, the training phase may
be entirely skipped, and classification is performed directly
based on the relationship between training examples and test
examples. Instance-based methods, such as nearest neighbor
classifiers, are an example of such a scenario [38]. Even in
these cases, a preprocessing stage may be carried out to
ensure efficiency during the testing phase.

The output of a classification algorithm can be presented in
one of two ways. In one, a direct label is found for the test
example. In the other, a numerical score is returned for each
class label and the combination with the test example. This
numerical score can be converted into a separate label by
selecting the class with the highest score for a test example.
The advantage of this scoring system is that it allows for the
comparison of the tendency of different test examples to
belong to a certain importance class and enables their ranking
when necessary.

To test the classification performance of the obtained
features, various classifiers were used. The open-source
Weka 3 machine learning software, which contains many
different clustering and classification algorithms and enables
data mining applications, was utilized.

4.3.1 Naive Bayes Classifier

The Naive Bayes classifier (NB) is a classification technique
based on Bayes' Theorem, named after the English
mathematician Thomas Bayes, which assumes independence
among predictions [39]. In simple terms, it assumes that the
presence of a particular feature in a class is independent of
the presence of any other feature. Even if these features are
dependent on each other or on the presence of other
features, all of these features contribute to the probabilities
independently [40]. The Naive Bayes model is easy to
construct and is particularly useful for very large datasets.
Along with its simplicity, it is known to perform better than
even highly complex classification methods.

𝑃𝑃𝑃𝑃(𝑐𝑐𝑐𝑐|𝑥𝑥𝑥𝑥) = 𝑃𝑃𝑃𝑃(𝑐𝑐𝑐𝑐|𝑥𝑥𝑥𝑥)𝑃𝑃𝑃𝑃(𝑐𝑐𝑐𝑐)
𝑃𝑃𝑃𝑃(𝑥𝑥𝑥𝑥)

 (1)

𝑃𝑃𝑃𝑃(𝑐𝑐𝑐𝑐|𝑥𝑥𝑥𝑥) = 𝑃𝑃𝑃𝑃(𝑥𝑥𝑥𝑥1|𝑐𝑐𝑐𝑐) × … × 𝑃𝑃𝑃𝑃(𝑥𝑥𝑥𝑥𝑛𝑛𝑛𝑛|𝑐𝑐𝑐𝑐) × 𝑃𝑃𝑃𝑃(𝑐𝑐𝑐𝑐) (2)

 P(c|x) The asymptotic probability distribution of a
given predictor for a class

 P(c) The prior probability distribution for a
parameter or parameter vector

 P(x|c) The likelihood function of a given class
 P(x) The prior probability of the predictor

4.3.2 K-Nearest Neighbors

The K-Nearest Neighbor (KNN) algorithms are a classification
algorithm proposed by T. M. Cover and P. E. Hart in 1967 [41].
It takes multiple labeled points and uses them to learn how to
label other points. To label a new point, it looks at the k
nearest labeled points to that new point and uses the labels

of these neighbors. Therefore, the label that appears most
frequently among the neighbors becomes the label for the
new point.

When determining the neighborhood condition, the distance
of a point from other points is considered [42]. Typically,
three different distance functions are used for distance
calculations:

 Euclidean Distance

𝑑𝑑𝑑𝑑(𝑥𝑥𝑥𝑥,𝑦𝑦𝑦𝑦) = �∑ (𝑥𝑥𝑥𝑥𝑖𝑖𝑖𝑖 − 𝑦𝑦𝑦𝑦𝑖𝑖𝑖𝑖)2𝑘𝑘𝑘𝑘
𝑖𝑖𝑖𝑖𝑖1 (3)

 Manhattan Distance

𝑑𝑑𝑑𝑑(𝑥𝑥𝑥𝑥,𝑦𝑦𝑦𝑦) = ∑ |𝑥𝑥𝑥𝑥𝑖𝑖𝑖𝑖 − 𝑦𝑦𝑦𝑦𝑖𝑖𝑖𝑖|𝑘𝑘𝑘𝑘
𝑖𝑖𝑖𝑖𝑖1 (4)

 Minkowski Distance

𝑑𝑑𝑑𝑑(𝑥𝑥𝑥𝑥,𝑦𝑦𝑦𝑦) = �∑ (|𝑥𝑥𝑥𝑥𝑖𝑖𝑖𝑖 − 𝑦𝑦𝑦𝑦𝑖𝑖𝑖𝑖|)𝑞𝑞𝑞𝑞𝑘𝑘𝑘𝑘
𝑖𝑖𝑖𝑖𝑖1 �

1
𝑞𝑞𝑞𝑞 (5)

IBk (Instance Based Learner), a derivative of KNN, is a pattern
recognition method that classifies test data based on the
nearest training examples in the feature space [43]. This
algorithm performs classification based on the class of the k
nearest neighbors. In the IBk algorithm, the classification of a
vector is done using known class vectors. In this study, the
value of k indicating the neighborhood was set to 3. The linear
search algorithm was used in the neighbor finding process
[44].

4.3.3 Decision Tree

A decision tree creates classification or regression models in
the form of a tree structure [45]. As it divides a dataset into
smaller subsets, a corresponding decision tree is developed
step by step. The result is a tree with decision nodes and leaf
nodes. A decision node has two or more branches, while a leaf
node represents a classification or decision. The top decision
node in the tree corresponds to the best prediction and is
called the root node. Decision trees can handle both
categorical and numerical data. The J48 decision tree, based
on the C4.5 algorithm, was used in this study [46]. J48 utilizes
information gain for attribute selection and includes pruning
techniques to mitigate overfitting, ensuring robust model
performance.

4.3.4 Support Vector Machines

It is possible to separate labeled groups located in a plane by
drawing a boundary between them. The location where this
decision boundary is drawn should be the point that is
farthest from the members of the groups. Support Vector
Machines (SVM) determine these boundaries. This method
was developed in 1995 by Vladimir Vapnik, Bernhard Boser,
and Isabelle Guyon [47]. Today, SVM is used in various
classification problems, ranging from face recognition
systems to text categorization. SMO (Sequential Minimal
Optimization) is an algorithm that operates by using John
Platt's sequential minimal optimization algorithm to train a
support vector classifier [48].

 (1)

 (2)

•	P(c|x) The asymptotic probability distribution
of a given predictor for a class

•	P(c) The prior probability distribution for a pa-
rameter or parameter vector

•	P(x|c) The likelihood function of a given class

•	P(x) The prior probability of the predictor

4.3.2 K-Nearest Neighbors

The K-Nearest Neighbor (KNN) algorithms are a
classification algorithm proposed by T. M. Cover
and P. E. Hart in 1967 [41]. It takes multiple la-
beled points and uses them to learn how to label

123

Kuantum Teknolojileri ve Enformatik Araştırmaları, Volume/Cilt: 2, Issue/Sayı: 3, Year/Yıl:2024

other points. To label a new point, it looks at the
k nearest labeled points to that new point and
uses the labels of these neighbors. Therefore, the
label that appears most frequently among the ne-
ighbors becomes the label for the new point.

When determining the neighborhood condition,
the distance of a point from other points is con-
sidered [42]. Typically, three different distance
functions are used for distance calculations:

•	 Euclidean Distance

labels to unlabeled test examples. The values that specify
these classes on the dataset are referred to as label names
and are used during both training and testing to determine
the class of the data. In some cases, the training phase may
be entirely skipped, and classification is performed directly
based on the relationship between training examples and test
examples. Instance-based methods, such as nearest neighbor
classifiers, are an example of such a scenario [38]. Even in
these cases, a preprocessing stage may be carried out to
ensure efficiency during the testing phase.

The output of a classification algorithm can be presented in
one of two ways. In one, a direct label is found for the test
example. In the other, a numerical score is returned for each
class label and the combination with the test example. This
numerical score can be converted into a separate label by
selecting the class with the highest score for a test example.
The advantage of this scoring system is that it allows for the
comparison of the tendency of different test examples to
belong to a certain importance class and enables their ranking
when necessary.

To test the classification performance of the obtained
features, various classifiers were used. The open-source
Weka 3 machine learning software, which contains many
different clustering and classification algorithms and enables
data mining applications, was utilized.

4.3.1 Naive Bayes Classifier

The Naive Bayes classifier (NB) is a classification technique
based on Bayes' Theorem, named after the English
mathematician Thomas Bayes, which assumes independence
among predictions [39]. In simple terms, it assumes that the
presence of a particular feature in a class is independent of
the presence of any other feature. Even if these features are
dependent on each other or on the presence of other
features, all of these features contribute to the probabilities
independently [40]. The Naive Bayes model is easy to
construct and is particularly useful for very large datasets.
Along with its simplicity, it is known to perform better than
even highly complex classification methods.

𝑃𝑃𝑃𝑃(𝑐𝑐𝑐𝑐|𝑥𝑥𝑥𝑥) = 𝑃𝑃𝑃𝑃(𝑐𝑐𝑐𝑐|𝑥𝑥𝑥𝑥)𝑃𝑃𝑃𝑃(𝑐𝑐𝑐𝑐)
𝑃𝑃𝑃𝑃(𝑥𝑥𝑥𝑥)

 (1)

𝑃𝑃𝑃𝑃(𝑐𝑐𝑐𝑐|𝑥𝑥𝑥𝑥) = 𝑃𝑃𝑃𝑃(𝑥𝑥𝑥𝑥1|𝑐𝑐𝑐𝑐) × … × 𝑃𝑃𝑃𝑃(𝑥𝑥𝑥𝑥𝑛𝑛𝑛𝑛|𝑐𝑐𝑐𝑐) × 𝑃𝑃𝑃𝑃(𝑐𝑐𝑐𝑐) (2)

 P(c|x) The asymptotic probability distribution of a
given predictor for a class

 P(c) The prior probability distribution for a
parameter or parameter vector

 P(x|c) The likelihood function of a given class
 P(x) The prior probability of the predictor

4.3.2 K-Nearest Neighbors

The K-Nearest Neighbor (KNN) algorithms are a classification
algorithm proposed by T. M. Cover and P. E. Hart in 1967 [41].
It takes multiple labeled points and uses them to learn how to
label other points. To label a new point, it looks at the k
nearest labeled points to that new point and uses the labels

of these neighbors. Therefore, the label that appears most
frequently among the neighbors becomes the label for the
new point.

When determining the neighborhood condition, the distance
of a point from other points is considered [42]. Typically,
three different distance functions are used for distance
calculations:

 Euclidean Distance

𝑑𝑑𝑑𝑑(𝑥𝑥𝑥𝑥,𝑦𝑦𝑦𝑦) = �∑ (𝑥𝑥𝑥𝑥𝑖𝑖𝑖𝑖 − 𝑦𝑦𝑦𝑦𝑖𝑖𝑖𝑖)2𝑘𝑘𝑘𝑘
𝑖𝑖𝑖𝑖𝑖1 (3)

 Manhattan Distance

𝑑𝑑𝑑𝑑(𝑥𝑥𝑥𝑥,𝑦𝑦𝑦𝑦) = ∑ |𝑥𝑥𝑥𝑥𝑖𝑖𝑖𝑖 − 𝑦𝑦𝑦𝑦𝑖𝑖𝑖𝑖|𝑘𝑘𝑘𝑘
𝑖𝑖𝑖𝑖𝑖1 (4)

 Minkowski Distance

𝑑𝑑𝑑𝑑(𝑥𝑥𝑥𝑥,𝑦𝑦𝑦𝑦) = �∑ (|𝑥𝑥𝑥𝑥𝑖𝑖𝑖𝑖 − 𝑦𝑦𝑦𝑦𝑖𝑖𝑖𝑖|)𝑞𝑞𝑞𝑞𝑘𝑘𝑘𝑘
𝑖𝑖𝑖𝑖𝑖1 �

1
𝑞𝑞𝑞𝑞 (5)

IBk (Instance Based Learner), a derivative of KNN, is a pattern
recognition method that classifies test data based on the
nearest training examples in the feature space [43]. This
algorithm performs classification based on the class of the k
nearest neighbors. In the IBk algorithm, the classification of a
vector is done using known class vectors. In this study, the
value of k indicating the neighborhood was set to 3. The linear
search algorithm was used in the neighbor finding process
[44].

4.3.3 Decision Tree

A decision tree creates classification or regression models in
the form of a tree structure [45]. As it divides a dataset into
smaller subsets, a corresponding decision tree is developed
step by step. The result is a tree with decision nodes and leaf
nodes. A decision node has two or more branches, while a leaf
node represents a classification or decision. The top decision
node in the tree corresponds to the best prediction and is
called the root node. Decision trees can handle both
categorical and numerical data. The J48 decision tree, based
on the C4.5 algorithm, was used in this study [46]. J48 utilizes
information gain for attribute selection and includes pruning
techniques to mitigate overfitting, ensuring robust model
performance.

4.3.4 Support Vector Machines

It is possible to separate labeled groups located in a plane by
drawing a boundary between them. The location where this
decision boundary is drawn should be the point that is
farthest from the members of the groups. Support Vector
Machines (SVM) determine these boundaries. This method
was developed in 1995 by Vladimir Vapnik, Bernhard Boser,
and Isabelle Guyon [47]. Today, SVM is used in various
classification problems, ranging from face recognition
systems to text categorization. SMO (Sequential Minimal
Optimization) is an algorithm that operates by using John
Platt's sequential minimal optimization algorithm to train a
support vector classifier [48].

 (3)

•	Manhattan Distance

labels to unlabeled test examples. The values that specify
these classes on the dataset are referred to as label names
and are used during both training and testing to determine
the class of the data. In some cases, the training phase may
be entirely skipped, and classification is performed directly
based on the relationship between training examples and test
examples. Instance-based methods, such as nearest neighbor
classifiers, are an example of such a scenario [38]. Even in
these cases, a preprocessing stage may be carried out to
ensure efficiency during the testing phase.

The output of a classification algorithm can be presented in
one of two ways. In one, a direct label is found for the test
example. In the other, a numerical score is returned for each
class label and the combination with the test example. This
numerical score can be converted into a separate label by
selecting the class with the highest score for a test example.
The advantage of this scoring system is that it allows for the
comparison of the tendency of different test examples to
belong to a certain importance class and enables their ranking
when necessary.

To test the classification performance of the obtained
features, various classifiers were used. The open-source
Weka 3 machine learning software, which contains many
different clustering and classification algorithms and enables
data mining applications, was utilized.

4.3.1 Naive Bayes Classifier

The Naive Bayes classifier (NB) is a classification technique
based on Bayes' Theorem, named after the English
mathematician Thomas Bayes, which assumes independence
among predictions [39]. In simple terms, it assumes that the
presence of a particular feature in a class is independent of
the presence of any other feature. Even if these features are
dependent on each other or on the presence of other
features, all of these features contribute to the probabilities
independently [40]. The Naive Bayes model is easy to
construct and is particularly useful for very large datasets.
Along with its simplicity, it is known to perform better than
even highly complex classification methods.

𝑃𝑃𝑃𝑃(𝑐𝑐𝑐𝑐|𝑥𝑥𝑥𝑥) = 𝑃𝑃𝑃𝑃(𝑐𝑐𝑐𝑐|𝑥𝑥𝑥𝑥)𝑃𝑃𝑃𝑃(𝑐𝑐𝑐𝑐)
𝑃𝑃𝑃𝑃(𝑥𝑥𝑥𝑥)

 (1)

𝑃𝑃𝑃𝑃(𝑐𝑐𝑐𝑐|𝑥𝑥𝑥𝑥) = 𝑃𝑃𝑃𝑃(𝑥𝑥𝑥𝑥1|𝑐𝑐𝑐𝑐) × … × 𝑃𝑃𝑃𝑃(𝑥𝑥𝑥𝑥𝑛𝑛𝑛𝑛|𝑐𝑐𝑐𝑐) × 𝑃𝑃𝑃𝑃(𝑐𝑐𝑐𝑐) (2)

 P(c|x) The asymptotic probability distribution of a
given predictor for a class

 P(c) The prior probability distribution for a
parameter or parameter vector

 P(x|c) The likelihood function of a given class
 P(x) The prior probability of the predictor

4.3.2 K-Nearest Neighbors

The K-Nearest Neighbor (KNN) algorithms are a classification
algorithm proposed by T. M. Cover and P. E. Hart in 1967 [41].
It takes multiple labeled points and uses them to learn how to
label other points. To label a new point, it looks at the k
nearest labeled points to that new point and uses the labels

of these neighbors. Therefore, the label that appears most
frequently among the neighbors becomes the label for the
new point.

When determining the neighborhood condition, the distance
of a point from other points is considered [42]. Typically,
three different distance functions are used for distance
calculations:

 Euclidean Distance

𝑑𝑑𝑑𝑑(𝑥𝑥𝑥𝑥,𝑦𝑦𝑦𝑦) = �∑ (𝑥𝑥𝑥𝑥𝑖𝑖𝑖𝑖 − 𝑦𝑦𝑦𝑦𝑖𝑖𝑖𝑖)2𝑘𝑘𝑘𝑘
𝑖𝑖𝑖𝑖𝑖1 (3)

 Manhattan Distance

𝑑𝑑𝑑𝑑(𝑥𝑥𝑥𝑥,𝑦𝑦𝑦𝑦) = ∑ |𝑥𝑥𝑥𝑥𝑖𝑖𝑖𝑖 − 𝑦𝑦𝑦𝑦𝑖𝑖𝑖𝑖|𝑘𝑘𝑘𝑘
𝑖𝑖𝑖𝑖𝑖1 (4)

 Minkowski Distance

𝑑𝑑𝑑𝑑(𝑥𝑥𝑥𝑥,𝑦𝑦𝑦𝑦) = �∑ (|𝑥𝑥𝑥𝑥𝑖𝑖𝑖𝑖 − 𝑦𝑦𝑦𝑦𝑖𝑖𝑖𝑖|)𝑞𝑞𝑞𝑞𝑘𝑘𝑘𝑘
𝑖𝑖𝑖𝑖𝑖1 �

1
𝑞𝑞𝑞𝑞 (5)

IBk (Instance Based Learner), a derivative of KNN, is a pattern
recognition method that classifies test data based on the
nearest training examples in the feature space [43]. This
algorithm performs classification based on the class of the k
nearest neighbors. In the IBk algorithm, the classification of a
vector is done using known class vectors. In this study, the
value of k indicating the neighborhood was set to 3. The linear
search algorithm was used in the neighbor finding process
[44].

4.3.3 Decision Tree

A decision tree creates classification or regression models in
the form of a tree structure [45]. As it divides a dataset into
smaller subsets, a corresponding decision tree is developed
step by step. The result is a tree with decision nodes and leaf
nodes. A decision node has two or more branches, while a leaf
node represents a classification or decision. The top decision
node in the tree corresponds to the best prediction and is
called the root node. Decision trees can handle both
categorical and numerical data. The J48 decision tree, based
on the C4.5 algorithm, was used in this study [46]. J48 utilizes
information gain for attribute selection and includes pruning
techniques to mitigate overfitting, ensuring robust model
performance.

4.3.4 Support Vector Machines

It is possible to separate labeled groups located in a plane by
drawing a boundary between them. The location where this
decision boundary is drawn should be the point that is
farthest from the members of the groups. Support Vector
Machines (SVM) determine these boundaries. This method
was developed in 1995 by Vladimir Vapnik, Bernhard Boser,
and Isabelle Guyon [47]. Today, SVM is used in various
classification problems, ranging from face recognition
systems to text categorization. SMO (Sequential Minimal
Optimization) is an algorithm that operates by using John
Platt's sequential minimal optimization algorithm to train a
support vector classifier [48].

 (4)

•	Minkowski Distance

labels to unlabeled test examples. The values that specify
these classes on the dataset are referred to as label names
and are used during both training and testing to determine
the class of the data. In some cases, the training phase may
be entirely skipped, and classification is performed directly
based on the relationship between training examples and test
examples. Instance-based methods, such as nearest neighbor
classifiers, are an example of such a scenario [38]. Even in
these cases, a preprocessing stage may be carried out to
ensure efficiency during the testing phase.

The output of a classification algorithm can be presented in
one of two ways. In one, a direct label is found for the test
example. In the other, a numerical score is returned for each
class label and the combination with the test example. This
numerical score can be converted into a separate label by
selecting the class with the highest score for a test example.
The advantage of this scoring system is that it allows for the
comparison of the tendency of different test examples to
belong to a certain importance class and enables their ranking
when necessary.

To test the classification performance of the obtained
features, various classifiers were used. The open-source
Weka 3 machine learning software, which contains many
different clustering and classification algorithms and enables
data mining applications, was utilized.

4.3.1 Naive Bayes Classifier

The Naive Bayes classifier (NB) is a classification technique
based on Bayes' Theorem, named after the English
mathematician Thomas Bayes, which assumes independence
among predictions [39]. In simple terms, it assumes that the
presence of a particular feature in a class is independent of
the presence of any other feature. Even if these features are
dependent on each other or on the presence of other
features, all of these features contribute to the probabilities
independently [40]. The Naive Bayes model is easy to
construct and is particularly useful for very large datasets.
Along with its simplicity, it is known to perform better than
even highly complex classification methods.

𝑃𝑃𝑃𝑃(𝑐𝑐𝑐𝑐|𝑥𝑥𝑥𝑥) = 𝑃𝑃𝑃𝑃(𝑐𝑐𝑐𝑐|𝑥𝑥𝑥𝑥)𝑃𝑃𝑃𝑃(𝑐𝑐𝑐𝑐)
𝑃𝑃𝑃𝑃(𝑥𝑥𝑥𝑥)

 (1)

𝑃𝑃𝑃𝑃(𝑐𝑐𝑐𝑐|𝑥𝑥𝑥𝑥) = 𝑃𝑃𝑃𝑃(𝑥𝑥𝑥𝑥1|𝑐𝑐𝑐𝑐) × … × 𝑃𝑃𝑃𝑃(𝑥𝑥𝑥𝑥𝑛𝑛𝑛𝑛|𝑐𝑐𝑐𝑐) × 𝑃𝑃𝑃𝑃(𝑐𝑐𝑐𝑐) (2)

 P(c|x) The asymptotic probability distribution of a
given predictor for a class

 P(c) The prior probability distribution for a
parameter or parameter vector

 P(x|c) The likelihood function of a given class
 P(x) The prior probability of the predictor

4.3.2 K-Nearest Neighbors

The K-Nearest Neighbor (KNN) algorithms are a classification
algorithm proposed by T. M. Cover and P. E. Hart in 1967 [41].
It takes multiple labeled points and uses them to learn how to
label other points. To label a new point, it looks at the k
nearest labeled points to that new point and uses the labels

of these neighbors. Therefore, the label that appears most
frequently among the neighbors becomes the label for the
new point.

When determining the neighborhood condition, the distance
of a point from other points is considered [42]. Typically,
three different distance functions are used for distance
calculations:

 Euclidean Distance

𝑑𝑑𝑑𝑑(𝑥𝑥𝑥𝑥,𝑦𝑦𝑦𝑦) = �∑ (𝑥𝑥𝑥𝑥𝑖𝑖𝑖𝑖 − 𝑦𝑦𝑦𝑦𝑖𝑖𝑖𝑖)2𝑘𝑘𝑘𝑘
𝑖𝑖𝑖𝑖𝑖1 (3)

 Manhattan Distance

𝑑𝑑𝑑𝑑(𝑥𝑥𝑥𝑥,𝑦𝑦𝑦𝑦) = ∑ |𝑥𝑥𝑥𝑥𝑖𝑖𝑖𝑖 − 𝑦𝑦𝑦𝑦𝑖𝑖𝑖𝑖|𝑘𝑘𝑘𝑘
𝑖𝑖𝑖𝑖𝑖1 (4)

 Minkowski Distance

𝑑𝑑𝑑𝑑(𝑥𝑥𝑥𝑥,𝑦𝑦𝑦𝑦) = �∑ (|𝑥𝑥𝑥𝑥𝑖𝑖𝑖𝑖 − 𝑦𝑦𝑦𝑦𝑖𝑖𝑖𝑖|)𝑞𝑞𝑞𝑞𝑘𝑘𝑘𝑘
𝑖𝑖𝑖𝑖𝑖1 �

1
𝑞𝑞𝑞𝑞 (5)

IBk (Instance Based Learner), a derivative of KNN, is a pattern
recognition method that classifies test data based on the
nearest training examples in the feature space [43]. This
algorithm performs classification based on the class of the k
nearest neighbors. In the IBk algorithm, the classification of a
vector is done using known class vectors. In this study, the
value of k indicating the neighborhood was set to 3. The linear
search algorithm was used in the neighbor finding process
[44].

4.3.3 Decision Tree

A decision tree creates classification or regression models in
the form of a tree structure [45]. As it divides a dataset into
smaller subsets, a corresponding decision tree is developed
step by step. The result is a tree with decision nodes and leaf
nodes. A decision node has two or more branches, while a leaf
node represents a classification or decision. The top decision
node in the tree corresponds to the best prediction and is
called the root node. Decision trees can handle both
categorical and numerical data. The J48 decision tree, based
on the C4.5 algorithm, was used in this study [46]. J48 utilizes
information gain for attribute selection and includes pruning
techniques to mitigate overfitting, ensuring robust model
performance.

4.3.4 Support Vector Machines

It is possible to separate labeled groups located in a plane by
drawing a boundary between them. The location where this
decision boundary is drawn should be the point that is
farthest from the members of the groups. Support Vector
Machines (SVM) determine these boundaries. This method
was developed in 1995 by Vladimir Vapnik, Bernhard Boser,
and Isabelle Guyon [47]. Today, SVM is used in various
classification problems, ranging from face recognition
systems to text categorization. SMO (Sequential Minimal
Optimization) is an algorithm that operates by using John
Platt's sequential minimal optimization algorithm to train a
support vector classifier [48].

 (5)

IBk (Instance Based Learner), a derivative of
KNN, is a pattern recognition method that clas-
sifies test data based on the nearest training
examples in the feature space [43]. This algorit-
hm performs classification based on the class of
the k nearest neighbors. In the IBk algorithm, the
classification of a vector is done using known
class vectors. In this study, the value of k indica-
ting the neighborhood was set to 3. The linear se-
arch algorithm was used in the neighbor finding
process [44].

4.3.3. Decision Tree

A decision tree creates classification or regres-
sion models in the form of a tree structure [45].
As it divides a dataset into smaller subsets, a
corresponding decision tree is developed step
by step. The result is a tree with decision nodes
and leaf nodes. A decision node has two or more
branches, while a leaf node represents a classifi-
cation or decision. The top decision node in the
tree corresponds to the best prediction and is cal-
led the root node. Decision trees can handle both
categorical and numerical data. The J48 decision
tree, based on the C4.5 algorithm, was used in
this study [46]. J48 utilizes information gain for
attribute selection and includes pruning tech-
niques to mitigate overfitting, ensuring robust
model performance.

4.3.4. Support Vector Machines

It is possible to separate labeled groups loca-
ted in a plane by drawing a boundary between
them. The location where this decision boun-
dary is drawn should be the point that is farthest
from the members of the groups. Support Vector
Machines (SVM) determine these boundaries.
This method was developed in 1995 by Vladi-
mir Vapnik, Bernhard Boser, and Isabelle Guyon
[47]. Today, SVM is used in various classification
problems, ranging from face recognition systems
to text categorization. SMO (Sequential Minimal
Optimization) is an algorithm that operates by
using John Platt’s sequential minimal optimiza-
tion algorithm to train a support vector classifier
[48].

4.3.5. Artificial Neural Networks

Artificial neural networks are developed by
drawing inspiration from the way nerve system
cells function in living organisms [49]. Their aim
is to impart the learning ability of a living brain
to computers. A neural network consists of units
(neurons) organized in layers that transform an
input vector into an output. Each unit receives
an input, applies a typically nonlinear function
to it, and then passes the output to the next layer.
Networks are generally defined to feed forward
[50]. A unit feeds its output to all units in the next
layer but does not transmit feedback to the pre-
vious layer. Weights are applied to the signals
that pass from one unit to another, and these we-
ights are adjusted during the training phase to
adapt the artificial neural network to the specific
problem at hand [51].

124

Ezirmik & Dağ

Figure 6. A Multi-layer Perceptron with 10 hidden
layers

The most commonly used model of artificial neu-
ral networks is the Multi-layer Perceptron (MLP)
[52]. Multilayer artificial neurons fundamentally
consist of three parts in Figure 6. The input layer
does not perform any information processing; it
simply receives information and transmits it to
the hidden layers. Each element in the input la-
yer is connected to all processing units in the hid-
den layer. In this part, the information from the
input layer is processed. A single hidden layer
can solve many problems, but multiple hidden
layers can also be utilized. The number of hidden
layers varies depending on the type of problem.
The output layer processes the information co-
ming from the hidden layer and transmits it to
the outside.

4.3.5 Artificial Neural Networks

Artificial neural networks are developed by drawing
inspiration from the way nerve system cells function in living
organisms [49]. Their aim is to impart the learning ability of a
living brain to computers. A neural network consists of units
(neurons) organized in layers that transform an input vector
into an output. Each unit receives an input, applies a typically
nonlinear function to it, and then passes the output to the
next layer. Networks are generally defined to feed forward
[50]. A unit feeds its output to all units in the next layer but
does not transmit feedback to the previous layer. Weights are
applied to the signals that pass from one unit to another, and
these weights are adjusted during the training phase to adapt
the artificial neural network to the specific problem at hand
[51].

Figure-6: A Multi-layer Perceptron with 10 hidden layers

The most commonly used model of artificial neural networks
is the Multi-layer Perceptron (MLP) [52]. Multilayer artificial
neurons fundamentally consist of three parts in Figure 6. The
input layer does not perform any information processing; it
simply receives information and transmits it to the hidden
layers. Each element in the input layer is connected to all
processing units in the hidden layer. In this part, the
information from the input layer is processed. A single hidden
layer can solve many problems, but multiple hidden layers
can also be utilized. The number of hidden layers varies
depending on the type of problem. The output layer
processes the information coming from the hidden layer and
transmits it to the outside.

𝑓𝑓𝑓𝑓(𝑥𝑥𝑥𝑥) = 𝑏𝑏𝑏𝑏 + ∑ (𝑥𝑥𝑥𝑥𝑖𝑖𝑖𝑖𝑛𝑛𝑛𝑛
𝑖𝑖𝑖𝑖=1 𝑤𝑤𝑤𝑤𝑖𝑖𝑖𝑖) (6)

Here:

b = bias, x = neuron input, w = weights, n = number of inputs
from the previous layer, i = counter from 0 to n.

In artificial neural networks, the values of the inputs are
multiplied by the weights of the connections, and the results
are combined to find the net input of the network [53]. Once
the net inputs are passed through an activation function, the
net output of the network is obtained.

During the classification process, 10-fold cross-validation was
used. Cross-validation divides the dataset into 10 random
subsets, using 9 for testing and 1 for training. This process is

repeated 10 times until all permutations are used for training
and testing.

4.4 Performance Metrics

The most commonly used method for measuring
classification performance is accuracy. It is calculated by
dividing the number of correctly classified instances by the
total number of instances.

𝐴𝐴𝐴𝐴 = (𝑇𝑇𝑇𝑇𝑃𝑃𝑃𝑃+𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇)
(𝑇𝑇𝑇𝑇𝑃𝑃𝑃𝑃+𝐹𝐹𝐹𝐹𝑃𝑃𝑃𝑃+𝐹𝐹𝐹𝐹𝑇𝑇𝑇𝑇+𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇)

 (7)

TP (True Positive): This is used when the value in the test data
matches the class predicted by the model. The classification
is correct.

FN (False Negative): This occurs when the value in the test
data is different from the class produced by the model, where
a positive instance is incorrectly classified as negative. The
classification is incorrect.

FP (False Positive): This occurs when the actual value is
negative but is incorrectly classified as positive.

TN (True Negative): This is when the value is correctly
classified as negative when it is actually negative.

Precision is the ratio of the number of true positives (TP)
predicted as positive to the total number of instances
predicted as class 1.

𝑃𝑃𝑃𝑃 = 𝑇𝑇𝑇𝑇𝑃𝑃𝑃𝑃
(𝑇𝑇𝑇𝑇𝑃𝑃𝑃𝑃+𝐹𝐹𝐹𝐹𝑃𝑃𝑃𝑃)

 (8)

The metric that indicates how many of all positive classes
were correctly predicted is defined as sensitivity.

𝑅𝑅𝑅𝑅 = 𝑇𝑇𝑇𝑇𝑃𝑃𝑃𝑃
(𝑇𝑇𝑇𝑇𝑃𝑃𝑃𝑃+𝐹𝐹𝐹𝐹𝑇𝑇𝑇𝑇)

 (9)

In cases where sensitivity and precision metrics are not
sufficient to produce meaningful results, it is necessary to
evaluate these two metrics together. Therefore, the F-
measure has been defined. This metric is the harmonic mean
of precision and sensitivity.

𝐹𝐹𝐹𝐹 = 2𝑅𝑅𝑅𝑅𝑃𝑃𝑃𝑃
(𝑅𝑅𝑅𝑅+𝑃𝑃𝑃𝑃)

 (10)

5. Results and Discussion
Through studies conducted using metaheuristic methods,
feature selection was performed on the data in the music
dataset to enhance classification performance. The most
important features for the classification process were
identified. A current dataset containing features that
meaningfully represent the data was created, and the data
was classified according to track popularity using various
classifiers. It was observed that the artist_hotttnesss label,
which represents artist popularity, was a significant feature in
all the algorithms used. This indicates that an artist's
recognition is an important factor in a song's popularity.
Furthermore, it was concluded that the features tempo and
loudness, which indicate the track's tempo and volume, are
significant factors in determining song popularity. After 100
iterations, the lowest error value in Table 4 was achieved
using the ant colony algorithm.

 (6)

Here:

b = bias, x = neuron input, w = weights, n = num-
ber of inputs from the previous layer, i = counter
from 0 to n.

In artificial neural networks, the values of the in-
puts are multiplied by the weights of the conne-
ctions, and the results are combined to find the
net input of the network [53]. Once the net inputs
are passed through an activation function, the
net output of the network is obtained.

During the classification process, 10-fold
cross-validation was used. Cross-validation di-
vides the dataset into 10 random subsets, using
9 for testing and 1 for training. This process is
repeated 10 times until all permutations are used
for training and testing.

4.4 Performance Metrics

The most commonly used method for measuring
classification performance is accuracy. It is calcu-
lated by dividing the number of correctly classi-
fied instances by the total number of instances.

4.3.5 Artificial Neural Networks

Artificial neural networks are developed by drawing
inspiration from the way nerve system cells function in living
organisms [49]. Their aim is to impart the learning ability of a
living brain to computers. A neural network consists of units
(neurons) organized in layers that transform an input vector
into an output. Each unit receives an input, applies a typically
nonlinear function to it, and then passes the output to the
next layer. Networks are generally defined to feed forward
[50]. A unit feeds its output to all units in the next layer but
does not transmit feedback to the previous layer. Weights are
applied to the signals that pass from one unit to another, and
these weights are adjusted during the training phase to adapt
the artificial neural network to the specific problem at hand
[51].

Figure-6: A Multi-layer Perceptron with 10 hidden layers

The most commonly used model of artificial neural networks
is the Multi-layer Perceptron (MLP) [52]. Multilayer artificial
neurons fundamentally consist of three parts in Figure 6. The
input layer does not perform any information processing; it
simply receives information and transmits it to the hidden
layers. Each element in the input layer is connected to all
processing units in the hidden layer. In this part, the
information from the input layer is processed. A single hidden
layer can solve many problems, but multiple hidden layers
can also be utilized. The number of hidden layers varies
depending on the type of problem. The output layer
processes the information coming from the hidden layer and
transmits it to the outside.

𝑓𝑓𝑓𝑓(𝑥𝑥𝑥𝑥) = 𝑏𝑏𝑏𝑏 + ∑ (𝑥𝑥𝑥𝑥𝑖𝑖𝑖𝑖𝑛𝑛𝑛𝑛
𝑖𝑖𝑖𝑖=1 𝑤𝑤𝑤𝑤𝑖𝑖𝑖𝑖) (6)

Here:

b = bias, x = neuron input, w = weights, n = number of inputs
from the previous layer, i = counter from 0 to n.

In artificial neural networks, the values of the inputs are
multiplied by the weights of the connections, and the results
are combined to find the net input of the network [53]. Once
the net inputs are passed through an activation function, the
net output of the network is obtained.

During the classification process, 10-fold cross-validation was
used. Cross-validation divides the dataset into 10 random
subsets, using 9 for testing and 1 for training. This process is

repeated 10 times until all permutations are used for training
and testing.

4.4 Performance Metrics

The most commonly used method for measuring
classification performance is accuracy. It is calculated by
dividing the number of correctly classified instances by the
total number of instances.

𝐴𝐴𝐴𝐴 = (𝑇𝑇𝑇𝑇𝑃𝑃𝑃𝑃+𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇)
(𝑇𝑇𝑇𝑇𝑃𝑃𝑃𝑃+𝐹𝐹𝐹𝐹𝑃𝑃𝑃𝑃+𝐹𝐹𝐹𝐹𝑇𝑇𝑇𝑇+𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇)

 (7)

TP (True Positive): This is used when the value in the test data
matches the class predicted by the model. The classification
is correct.

FN (False Negative): This occurs when the value in the test
data is different from the class produced by the model, where
a positive instance is incorrectly classified as negative. The
classification is incorrect.

FP (False Positive): This occurs when the actual value is
negative but is incorrectly classified as positive.

TN (True Negative): This is when the value is correctly
classified as negative when it is actually negative.

Precision is the ratio of the number of true positives (TP)
predicted as positive to the total number of instances
predicted as class 1.

𝑃𝑃𝑃𝑃 = 𝑇𝑇𝑇𝑇𝑃𝑃𝑃𝑃
(𝑇𝑇𝑇𝑇𝑃𝑃𝑃𝑃+𝐹𝐹𝐹𝐹𝑃𝑃𝑃𝑃)

 (8)

The metric that indicates how many of all positive classes
were correctly predicted is defined as sensitivity.

𝑅𝑅𝑅𝑅 = 𝑇𝑇𝑇𝑇𝑃𝑃𝑃𝑃
(𝑇𝑇𝑇𝑇𝑃𝑃𝑃𝑃+𝐹𝐹𝐹𝐹𝑇𝑇𝑇𝑇)

 (9)

In cases where sensitivity and precision metrics are not
sufficient to produce meaningful results, it is necessary to
evaluate these two metrics together. Therefore, the F-
measure has been defined. This metric is the harmonic mean
of precision and sensitivity.

𝐹𝐹𝐹𝐹 = 2𝑅𝑅𝑅𝑅𝑃𝑃𝑃𝑃
(𝑅𝑅𝑅𝑅+𝑃𝑃𝑃𝑃)

 (10)

5. Results and Discussion
Through studies conducted using metaheuristic methods,
feature selection was performed on the data in the music
dataset to enhance classification performance. The most
important features for the classification process were
identified. A current dataset containing features that
meaningfully represent the data was created, and the data
was classified according to track popularity using various
classifiers. It was observed that the artist_hotttnesss label,
which represents artist popularity, was a significant feature in
all the algorithms used. This indicates that an artist's
recognition is an important factor in a song's popularity.
Furthermore, it was concluded that the features tempo and
loudness, which indicate the track's tempo and volume, are
significant factors in determining song popularity. After 100
iterations, the lowest error value in Table 4 was achieved
using the ant colony algorithm.

 (7)

TP (True Positive): This is used when the value
in the test data matches the class predicted by the
model. The classification is correct.

FN (False Negative): This occurs when the value
in the test data is different from the class produ-
ced by the model, where a positive instance is in-
correctly classified as negative. The classification
is incorrect.

FP (False Positive): This occurs when the actual
value is negative but is incorrectly classified as
positive.

TN (True Negative): This is when the value is
correctly classified as negative when it is actual-
ly negative.

Precision is the ratio of the number of true positi-
ves (TP) predicted as positive to the total number
of instances predicted as class 1.

4.3.5 Artificial Neural Networks

Artificial neural networks are developed by drawing
inspiration from the way nerve system cells function in living
organisms [49]. Their aim is to impart the learning ability of a
living brain to computers. A neural network consists of units
(neurons) organized in layers that transform an input vector
into an output. Each unit receives an input, applies a typically
nonlinear function to it, and then passes the output to the
next layer. Networks are generally defined to feed forward
[50]. A unit feeds its output to all units in the next layer but
does not transmit feedback to the previous layer. Weights are
applied to the signals that pass from one unit to another, and
these weights are adjusted during the training phase to adapt
the artificial neural network to the specific problem at hand
[51].

Figure-6: A Multi-layer Perceptron with 10 hidden layers

The most commonly used model of artificial neural networks
is the Multi-layer Perceptron (MLP) [52]. Multilayer artificial
neurons fundamentally consist of three parts in Figure 6. The
input layer does not perform any information processing; it
simply receives information and transmits it to the hidden
layers. Each element in the input layer is connected to all
processing units in the hidden layer. In this part, the
information from the input layer is processed. A single hidden
layer can solve many problems, but multiple hidden layers
can also be utilized. The number of hidden layers varies
depending on the type of problem. The output layer
processes the information coming from the hidden layer and
transmits it to the outside.

𝑓𝑓𝑓𝑓(𝑥𝑥𝑥𝑥) = 𝑏𝑏𝑏𝑏 + ∑ (𝑥𝑥𝑥𝑥𝑖𝑖𝑖𝑖𝑛𝑛𝑛𝑛
𝑖𝑖𝑖𝑖=1 𝑤𝑤𝑤𝑤𝑖𝑖𝑖𝑖) (6)

Here:

b = bias, x = neuron input, w = weights, n = number of inputs
from the previous layer, i = counter from 0 to n.

In artificial neural networks, the values of the inputs are
multiplied by the weights of the connections, and the results
are combined to find the net input of the network [53]. Once
the net inputs are passed through an activation function, the
net output of the network is obtained.

During the classification process, 10-fold cross-validation was
used. Cross-validation divides the dataset into 10 random
subsets, using 9 for testing and 1 for training. This process is

repeated 10 times until all permutations are used for training
and testing.

4.4 Performance Metrics

The most commonly used method for measuring
classification performance is accuracy. It is calculated by
dividing the number of correctly classified instances by the
total number of instances.

𝐴𝐴𝐴𝐴 = (𝑇𝑇𝑇𝑇𝑃𝑃𝑃𝑃+𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇)
(𝑇𝑇𝑇𝑇𝑃𝑃𝑃𝑃+𝐹𝐹𝐹𝐹𝑃𝑃𝑃𝑃+𝐹𝐹𝐹𝐹𝑇𝑇𝑇𝑇+𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇)

 (7)

TP (True Positive): This is used when the value in the test data
matches the class predicted by the model. The classification
is correct.

FN (False Negative): This occurs when the value in the test
data is different from the class produced by the model, where
a positive instance is incorrectly classified as negative. The
classification is incorrect.

FP (False Positive): This occurs when the actual value is
negative but is incorrectly classified as positive.

TN (True Negative): This is when the value is correctly
classified as negative when it is actually negative.

Precision is the ratio of the number of true positives (TP)
predicted as positive to the total number of instances
predicted as class 1.

𝑃𝑃𝑃𝑃 = 𝑇𝑇𝑇𝑇𝑃𝑃𝑃𝑃
(𝑇𝑇𝑇𝑇𝑃𝑃𝑃𝑃+𝐹𝐹𝐹𝐹𝑃𝑃𝑃𝑃)

 (8)

The metric that indicates how many of all positive classes
were correctly predicted is defined as sensitivity.

𝑅𝑅𝑅𝑅 = 𝑇𝑇𝑇𝑇𝑃𝑃𝑃𝑃
(𝑇𝑇𝑇𝑇𝑃𝑃𝑃𝑃+𝐹𝐹𝐹𝐹𝑇𝑇𝑇𝑇)

 (9)

In cases where sensitivity and precision metrics are not
sufficient to produce meaningful results, it is necessary to
evaluate these two metrics together. Therefore, the F-
measure has been defined. This metric is the harmonic mean
of precision and sensitivity.

𝐹𝐹𝐹𝐹 = 2𝑅𝑅𝑅𝑅𝑃𝑃𝑃𝑃
(𝑅𝑅𝑅𝑅+𝑃𝑃𝑃𝑃)

 (10)

5. Results and Discussion
Through studies conducted using metaheuristic methods,
feature selection was performed on the data in the music
dataset to enhance classification performance. The most
important features for the classification process were
identified. A current dataset containing features that
meaningfully represent the data was created, and the data
was classified according to track popularity using various
classifiers. It was observed that the artist_hotttnesss label,
which represents artist popularity, was a significant feature in
all the algorithms used. This indicates that an artist's
recognition is an important factor in a song's popularity.
Furthermore, it was concluded that the features tempo and
loudness, which indicate the track's tempo and volume, are
significant factors in determining song popularity. After 100
iterations, the lowest error value in Table 4 was achieved
using the ant colony algorithm.

 (8)

The metric that indicates how many of all positi-
ve classes were correctly predicted is defined as
sensitivity.

4.3.5 Artificial Neural Networks

Artificial neural networks are developed by drawing
inspiration from the way nerve system cells function in living
organisms [49]. Their aim is to impart the learning ability of a
living brain to computers. A neural network consists of units
(neurons) organized in layers that transform an input vector
into an output. Each unit receives an input, applies a typically
nonlinear function to it, and then passes the output to the
next layer. Networks are generally defined to feed forward
[50]. A unit feeds its output to all units in the next layer but
does not transmit feedback to the previous layer. Weights are
applied to the signals that pass from one unit to another, and
these weights are adjusted during the training phase to adapt
the artificial neural network to the specific problem at hand
[51].

Figure-6: A Multi-layer Perceptron with 10 hidden layers

The most commonly used model of artificial neural networks
is the Multi-layer Perceptron (MLP) [52]. Multilayer artificial
neurons fundamentally consist of three parts in Figure 6. The
input layer does not perform any information processing; it
simply receives information and transmits it to the hidden
layers. Each element in the input layer is connected to all
processing units in the hidden layer. In this part, the
information from the input layer is processed. A single hidden
layer can solve many problems, but multiple hidden layers
can also be utilized. The number of hidden layers varies
depending on the type of problem. The output layer
processes the information coming from the hidden layer and
transmits it to the outside.

𝑓𝑓𝑓𝑓(𝑥𝑥𝑥𝑥) = 𝑏𝑏𝑏𝑏 + ∑ (𝑥𝑥𝑥𝑥𝑖𝑖𝑖𝑖𝑛𝑛𝑛𝑛
𝑖𝑖𝑖𝑖=1 𝑤𝑤𝑤𝑤𝑖𝑖𝑖𝑖) (6)

Here:

b = bias, x = neuron input, w = weights, n = number of inputs
from the previous layer, i = counter from 0 to n.

In artificial neural networks, the values of the inputs are
multiplied by the weights of the connections, and the results
are combined to find the net input of the network [53]. Once
the net inputs are passed through an activation function, the
net output of the network is obtained.

During the classification process, 10-fold cross-validation was
used. Cross-validation divides the dataset into 10 random
subsets, using 9 for testing and 1 for training. This process is

repeated 10 times until all permutations are used for training
and testing.

4.4 Performance Metrics

The most commonly used method for measuring
classification performance is accuracy. It is calculated by
dividing the number of correctly classified instances by the
total number of instances.

𝐴𝐴𝐴𝐴 = (𝑇𝑇𝑇𝑇𝑃𝑃𝑃𝑃+𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇)
(𝑇𝑇𝑇𝑇𝑃𝑃𝑃𝑃+𝐹𝐹𝐹𝐹𝑃𝑃𝑃𝑃+𝐹𝐹𝐹𝐹𝑇𝑇𝑇𝑇+𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇)

 (7)

TP (True Positive): This is used when the value in the test data
matches the class predicted by the model. The classification
is correct.

FN (False Negative): This occurs when the value in the test
data is different from the class produced by the model, where
a positive instance is incorrectly classified as negative. The
classification is incorrect.

FP (False Positive): This occurs when the actual value is
negative but is incorrectly classified as positive.

TN (True Negative): This is when the value is correctly
classified as negative when it is actually negative.

Precision is the ratio of the number of true positives (TP)
predicted as positive to the total number of instances
predicted as class 1.

𝑃𝑃𝑃𝑃 = 𝑇𝑇𝑇𝑇𝑃𝑃𝑃𝑃
(𝑇𝑇𝑇𝑇𝑃𝑃𝑃𝑃+𝐹𝐹𝐹𝐹𝑃𝑃𝑃𝑃)

 (8)

The metric that indicates how many of all positive classes
were correctly predicted is defined as sensitivity.

𝑅𝑅𝑅𝑅 = 𝑇𝑇𝑇𝑇𝑃𝑃𝑃𝑃
(𝑇𝑇𝑇𝑇𝑃𝑃𝑃𝑃+𝐹𝐹𝐹𝐹𝑇𝑇𝑇𝑇)

 (9)

In cases where sensitivity and precision metrics are not
sufficient to produce meaningful results, it is necessary to
evaluate these two metrics together. Therefore, the F-
measure has been defined. This metric is the harmonic mean
of precision and sensitivity.

𝐹𝐹𝐹𝐹 = 2𝑅𝑅𝑅𝑅𝑃𝑃𝑃𝑃
(𝑅𝑅𝑅𝑅+𝑃𝑃𝑃𝑃)

 (10)

5. Results and Discussion
Through studies conducted using metaheuristic methods,
feature selection was performed on the data in the music
dataset to enhance classification performance. The most
important features for the classification process were
identified. A current dataset containing features that
meaningfully represent the data was created, and the data
was classified according to track popularity using various
classifiers. It was observed that the artist_hotttnesss label,
which represents artist popularity, was a significant feature in
all the algorithms used. This indicates that an artist's
recognition is an important factor in a song's popularity.
Furthermore, it was concluded that the features tempo and
loudness, which indicate the track's tempo and volume, are
significant factors in determining song popularity. After 100
iterations, the lowest error value in Table 4 was achieved
using the ant colony algorithm.

 (9)

In cases where sensitivity and precision metri-
cs are not sufficient to produce meaningful re-
sults, it is necessary to evaluate these two metrics
together. Therefore, the F-measure has been defi-
ned. This metric is the harmonic mean of precisi-
on and sensitivity.

4.3.5 Artificial Neural Networks

Artificial neural networks are developed by drawing
inspiration from the way nerve system cells function in living
organisms [49]. Their aim is to impart the learning ability of a
living brain to computers. A neural network consists of units
(neurons) organized in layers that transform an input vector
into an output. Each unit receives an input, applies a typically
nonlinear function to it, and then passes the output to the
next layer. Networks are generally defined to feed forward
[50]. A unit feeds its output to all units in the next layer but
does not transmit feedback to the previous layer. Weights are
applied to the signals that pass from one unit to another, and
these weights are adjusted during the training phase to adapt
the artificial neural network to the specific problem at hand
[51].

Figure-6: A Multi-layer Perceptron with 10 hidden layers

The most commonly used model of artificial neural networks
is the Multi-layer Perceptron (MLP) [52]. Multilayer artificial
neurons fundamentally consist of three parts in Figure 6. The
input layer does not perform any information processing; it
simply receives information and transmits it to the hidden
layers. Each element in the input layer is connected to all
processing units in the hidden layer. In this part, the
information from the input layer is processed. A single hidden
layer can solve many problems, but multiple hidden layers
can also be utilized. The number of hidden layers varies
depending on the type of problem. The output layer
processes the information coming from the hidden layer and
transmits it to the outside.

𝑓𝑓𝑓𝑓(𝑥𝑥𝑥𝑥) = 𝑏𝑏𝑏𝑏 + ∑ (𝑥𝑥𝑥𝑥𝑖𝑖𝑖𝑖𝑛𝑛𝑛𝑛
𝑖𝑖𝑖𝑖=1 𝑤𝑤𝑤𝑤𝑖𝑖𝑖𝑖) (6)

Here:

b = bias, x = neuron input, w = weights, n = number of inputs
from the previous layer, i = counter from 0 to n.

In artificial neural networks, the values of the inputs are
multiplied by the weights of the connections, and the results
are combined to find the net input of the network [53]. Once
the net inputs are passed through an activation function, the
net output of the network is obtained.

During the classification process, 10-fold cross-validation was
used. Cross-validation divides the dataset into 10 random
subsets, using 9 for testing and 1 for training. This process is

repeated 10 times until all permutations are used for training
and testing.

4.4 Performance Metrics

The most commonly used method for measuring
classification performance is accuracy. It is calculated by
dividing the number of correctly classified instances by the
total number of instances.

𝐴𝐴𝐴𝐴 = (𝑇𝑇𝑇𝑇𝑃𝑃𝑃𝑃+𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇)
(𝑇𝑇𝑇𝑇𝑃𝑃𝑃𝑃+𝐹𝐹𝐹𝐹𝑃𝑃𝑃𝑃+𝐹𝐹𝐹𝐹𝑇𝑇𝑇𝑇+𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇)

 (7)

TP (True Positive): This is used when the value in the test data
matches the class predicted by the model. The classification
is correct.

FN (False Negative): This occurs when the value in the test
data is different from the class produced by the model, where
a positive instance is incorrectly classified as negative. The
classification is incorrect.

FP (False Positive): This occurs when the actual value is
negative but is incorrectly classified as positive.

TN (True Negative): This is when the value is correctly
classified as negative when it is actually negative.

Precision is the ratio of the number of true positives (TP)
predicted as positive to the total number of instances
predicted as class 1.

𝑃𝑃𝑃𝑃 = 𝑇𝑇𝑇𝑇𝑃𝑃𝑃𝑃
(𝑇𝑇𝑇𝑇𝑃𝑃𝑃𝑃+𝐹𝐹𝐹𝐹𝑃𝑃𝑃𝑃)

 (8)

The metric that indicates how many of all positive classes
were correctly predicted is defined as sensitivity.

𝑅𝑅𝑅𝑅 = 𝑇𝑇𝑇𝑇𝑃𝑃𝑃𝑃
(𝑇𝑇𝑇𝑇𝑃𝑃𝑃𝑃+𝐹𝐹𝐹𝐹𝑇𝑇𝑇𝑇)

 (9)

In cases where sensitivity and precision metrics are not
sufficient to produce meaningful results, it is necessary to
evaluate these two metrics together. Therefore, the F-
measure has been defined. This metric is the harmonic mean
of precision and sensitivity.

𝐹𝐹𝐹𝐹 = 2𝑅𝑅𝑅𝑅𝑃𝑃𝑃𝑃
(𝑅𝑅𝑅𝑅+𝑃𝑃𝑃𝑃)

 (10)

5. Results and Discussion
Through studies conducted using metaheuristic methods,
feature selection was performed on the data in the music
dataset to enhance classification performance. The most
important features for the classification process were
identified. A current dataset containing features that
meaningfully represent the data was created, and the data
was classified according to track popularity using various
classifiers. It was observed that the artist_hotttnesss label,
which represents artist popularity, was a significant feature in
all the algorithms used. This indicates that an artist's
recognition is an important factor in a song's popularity.
Furthermore, it was concluded that the features tempo and
loudness, which indicate the track's tempo and volume, are
significant factors in determining song popularity. After 100
iterations, the lowest error value in Table 4 was achieved
using the ant colony algorithm.

 (10)

125

Kuantum Teknolojileri ve Enformatik Araştırmaları, Volume/Cilt: 2, Issue/Sayı: 3, Year/Yıl:2024

5. RESULTS AND DISCUSSION

Through studies conducted using metaheuristic
methods, feature selection was performed on the
data in the music dataset to enhance classifica-
tion performance. The most important features
for the classification process were identified. A
current dataset containing features that meanin-
gfully represent the data was created, and the
data was classified according to track popularity
using various classifiers. It was observed that the
artist_hotttnesss label, which represents artist
popularity, was a significant feature in all the
algorithms used. This indicates that an artist’s
recognition is an important factor in a song’s po-
pularity. Furthermore, it was concluded that the
features tempo and loudness, which indicate the
track’s tempo and volume, are significant factors
in determining song popularity. After 100 itera-
tions, the lowest error value in Table 4 was achie-
ved using the ant colony algorithm.

The results obtained from classification using
different classifiers were compared after featu-
re selection was performed using metaheuristic
methods, as well as without feature selection.

Initially, the best performance in the classificati-
on of raw data was achieved with the SMO algo-
rithm among five different classifiers. According
to Table 5, it was observed that the success rate
increased after feature selection using metaheu-
ristic methods compared to the raw dataset. In
classifications using fewer features, the success
rates of decision trees, Naive Bayes, kNN, and
artificial neural networks increased compared to
the previous state of the data, while there was
no change in the success rate for classifications
performed with support vector machines. Based
on these results, the highest success obtained th-
rough feature selection was achieved with the
J48 algorithm, which is a decision tree algorithm.
The highest performance increase compared to
the raw dataset was 3.23%, which was obtained
using features selected by a genetic algorithm
and the Naive Bayes classifier. The error rates
obtained with this classifier are presented in Tab-
le 6.

Table 4. Algorithm comparison results according to iteration number

Method Iteration Feature Set Min. Error

ACO
20

artist_hotttnesss,

loudness, mode,

mode_confidence 0.10172

50

artist_hotttnesss,

loudness, tempo, time_signature_confidence 0.10153
100 artist_hotttnesss, loudness, tempo, start_of_fade_out 0.10109

PSO

20

artist_hotttnesss,

loudness, tempo, key 0.10122

50

artist_hotttnesss,

artist_familiarity, tempo,

start_of_fade_out 0.10113
100 artist_hotttnesss, duration, tempo, end_of_fade_in 0.10119

SA

20 artist_hotttnesss, loudness, duration, time_signature 0.10227

50

artist_hotttnesss,

loudness, key, mode 0.10193
100 artist_hotttnesss, loudness, key, mode_confidence 0.10149

GA
20 artist_hotttnesss 0.10541
50 artist_hotttnesss 0.10517

100 artist_hotttnesss 0.10507

126

Ezirmik & Dağ

Table 5. Classification results

Classifier Raw

(%)

ACO

(%)

PSO

(%)

SA

(%)

GA

(%)
IBk 84.53 84.96 85.04 84.83 85.48
NB 84.77 87.86 87.75 87.97 88.00
MLP 87.74 88.08 88.02 88.04 88.07
J48 88.02 88.08 88.08 88.08 88.08
SMO 88.08 88.08 88.08 88.08 88.08

Table 6. Naive Bayes classifier error rates

Metric ACO PSO SA GA
TP Rate 0.879 0.878 0.880 0.880
FP Rate 0.862 0.858 0.867 0.871
Precision 0.820 0.817 0.823 0.823
Recall 0.879 0.878 0.880 0.880
F-Measure 0.829 0.829 0.828 0.827

6. CONCLUSION

This study addresses the significant issue of
improving machine learning classification per-
formance through the use of efficient feature
selection techniques. Finding the most relevant
features in multimedia datasets is crucial, espe-
cially when it comes to music data analysis. In
order to improve the accuracy and efficiency
of predictive models, this research attempts to
enhance the feature selection process by inves-
tigating different nature-inspired metaheuristic
algorithms.

The results of this study show that using four
different metaheuristic techniques greatly im-
proves the ability to extract relevant features
from the dataset. It has been demonstrated th-
rough comparative evaluations that these me-
taheuristic techniques not only improve classi-
fication accuracy but also make model training
more effective. Furthermore, the use of artificial
neural networks to assess the appropriateness of
particular features highlights the potential for
synergy between machine learning classification
methods and reliable feature selection processes.

In future studies, the speed performance of the
currently applied algorithms can be tested. It ap-
pears feasible to make improvements in terms
of time and cost with different parameter valu-
es. Furthermore, it is believed that new studies

could be conducted to measure the success of
other metaheuristic algorithms in feature selec-
tion. The use of hybrid versions of heuristic opti-
mization methods is also recommended for this
purpose.

Acknowledgments

This article has been prepared based on master’s
thesis, Meta-Heuristic Methods for Feature Selecti-
on and Categorization on Music Data [54]. I would
like to express my sincere gratitude to my thesis
advisor Prof. İdiris Dağ for his exceptional gui-
dance, insightful feedback, and unwavering sup-
port throughout this research journey.

REFERENCES

[1] M. A. Casey, R. Veltkamp, M. Goto, M. Leman,
C. Rhodes, and M. Slaney, “Content-based
music information retrieval: Current directions
and future challenges,” Proceedings of the IEEE,
vol. 96, no. 4, pp. 668-696, 2008.

[2] A. Lerch, An introduction to audio content analy-
sis: Music Information Retrieval tasks and applica-
tions. John Wiley & Sons, 2022.

[3] P. Knees and M. Schedl, “A survey of music
similarity and recommendation from music
context data,” ACM Transactions on Multimedia
Computing, Communications, and Applications
(TOMM), vol. 10, no. 1, pp. 1-21, 2013.

[4] T. Dokeroglu, A. Deniz, and H. E. Kiziloz, “A
comprehensive survey on recent metaheuris-
tics for feature selection,” Neurocomputing, vol.
494, pp. 269-296, 2022.

[5] R.-C. Chen, C. Dewi, S.-W. Huang, and R. E.
Caraka, “Selecting critical features for data
classification based on machine learning meth-
ods,” Journal of Big Data, vol. 7, no. 1, p. 52,
2020.

[6] M.-H. Tayarani-N, X. Yao, and H. Xu, “Me-
ta-heuristic algorithms in car engine design: A
literature survey,” IEEE Transactions on Evolu-
tionary Computation, vol. 19, no. 5, pp. 609-629,
2014.

[7] A. M. Shaheen, S. R. Spea, S. M. Farrag, and
M. A. Abido, “A review of meta-heuristic algo-

127

Kuantum Teknolojileri ve Enformatik Araştırmaları, Volume/Cilt: 2, Issue/Sayı: 3, Year/Yıl:2024

rithms for reactive power planning problem,”
Ain Shams Engineering Journal, vol. 9, no. 2, pp.
215-231, 2018.

[8] S. Memeti, S. Pllana, A. Binotto, J. Kołodziej,
and I. Brandic, “A review of machine learning
and meta-heuristic methods for scheduling
parallel computing systems,” in Proceedings of
the International Conference on Learning and Op-
timization Algorithms: Theory and Applications,
2018, pp. 1-6.

[9] C. K. Teoh, A. Wibowo, and M. S. Ngadiman,
“Review of state of the art for metaheuristic
techniques in Academic Scheduling Prob-
lems,” Artificial Intelligence Review, vol. 44, pp.
1-21, 2015.

[10] M. Kalra and S. Singh, “A review of meta-
heuristic scheduling techniques in cloud com-
puting,” Egyptian informatics journal, vol. 16,
no. 3, pp. 275-295, 2015.

[11] A. Feizollah, N. B. Anuar, R. Salleh, and A. W.
A. Wahab, “A review on feature selection in
mobile malware detection,” Digital investiga-
tion, vol. 13, pp. 22-37, 2015.

[12] M. Z. Asghar, A. Khan, S. Ahmad, and F. M.
Kundi, “A review of feature extraction in senti-
ment analysis,” Journal of Basic and Applied Sci-
entific Research, vol. 4, no. 3, pp. 181-186, 2014.

[13] Y. Saeys, I. Inza, and P. Larranaga, “A review of
feature selection techniques in bioinformatics,”
bioinformatics, vol. 23, no. 19, pp. 2507-2517,
2007.

[14] L. Dong, “Using deep learning and genetic al-
gorithms for melody generation and optimiza-
tion in music,” Soft Computing, vol. 27, no. 22,
pp. 17419-17433, 2023.

[15] U. Boryczka, M. Boryczka, and P. Chmielarski,
“ACO and generative art–artificial music,” Pro-
cedia Computer Science, vol. 225, pp. 2624-2633,
2023.

[16] Q. Zhu, A. Shankar, and C. Maple, “Grey wolf
optimizer based deep learning mechanism for
music composition with data analysis,” Applied
Soft Computing, vol. 153, p. 111294, 2024.

[17] J. A. Parejo, A. Ruiz-Cortés, S. Lozano, and
P. Fernandez, “Metaheuristic optimization
frameworks: a survey and benchmarking,” Soft
Computing, vol. 16, pp. 527-561, 2012.

[18] F. Glover and K. Sörensen, “Metaheuristics,”
Scholarpedia, vol. 10, no. 4, p. 6532, 2015.

[19] G. Keren and K. H. Teigen, “Yet another look at

the heuristics and biases approach,” Blackwell
handbook of judgment and decision making, pp. 89-
109, 2004.

[20] J. D. Knowles, R. A. Watson, and D. W. Corne,
“Reducing local optima in single-objective
problems by multi-objectivization,” in Interna-
tional conference on evolutionary multi-criterion
optimization, 2001, pp. 269-283: Springer.

[21] M. Abdel-Basset, L. Abdel-Fatah, and A. K.
Sangaiah, “Metaheuristic algorithms: A com-
prehensive review,” Computational intelligence
for multimedia big data on the cloud with engineer-
ing applications, pp. 185-231, 2018.

[22] M. Dorigo, M. Birattari, and T. Stutzle, “Ant
colony optimization,” IEEE computational intel-
ligence magazine, vol. 1, no. 4, pp. 28-39, 2006.

[23] M. Dorigo and T. Stützle, Ant colony optimi-
zation: overview and recent advances. Springer,
2019.

[24] E. Talbi, “Metaheuristics: From Design to Im-
plementation,” John Wiley & Sons google schola,
vol. 2, pp. 268-308, 2009.

[25] E. Flórez, W. Gómez, and L. Bautista, “An ant
colony optimization algorithm for job shop
scheduling problem,” arXiv preprint arX-
iv:1309.5110, 2013.

[26] J. Kennedy and R. Eberhart, “Particle swarm
optimization,” in Proceedings of ICNN’95-inter-
national conference on neural networks, 1995, vol.
4, pp. 1942-1948: ieee.

[27] H. Liu, X. Wang, and M. Li, “External force es-
timation for robotic manipulator base on par-
ticle swarm optimization,” International Journal
of Advanced Robotic Systems, vol. 18, no. 6, p.
17298814211063744, 2021.

[28] D. Bertsimas and J. Tsitsiklis, “Simulated an-
nealing,” Statistical science, vol. 8, no. 1, pp. 10-
15, 1993.

[29] A. Hassanat, K. Almohammadi, E. a. Alkaf-
aween, E. Abunawas, A. Hammouri, and V.
S. Prasath, “Choosing mutation and crossover
ratios for genetic algorithms—a review with a
new dynamic approach,” Information, vol. 10,
no. 12, p. 390, 2019.

[30] K. A. De Jong and W. M. Spears, “A formal
analysis of the role of multi-point crossover in
genetic algorithms,” Annals of mathematics and
Artificial intelligence, vol. 5, pp. 1-26, 1992.

[31] V. Kachitvichyanukul, “Comparison of three
evolutionary algorithms: GA, PSO, and DE,”

128

Ezirmik & Dağ

Industrial Engineering and Management Systems,
vol. 11, no. 3, pp. 215-223, 2012.

[32] T. Bertin-Mahieux, D. P. Ellis, B. Whitman, and
P. Lamere, “The million song dataset,” 2011.

[33] H. Liu and H. Motoda, Feature extraction, con-
struction and selection: A data mining perspective.
Springer Science & Business Media, 1998.

[34] W. Fan, F. Geerts, and X. Jia, “Improving data
quality: Consistency and accuracy,” 2007:
ACM.

[35] G. Ciaburro, MATLAB for machine learning.
Packt Publishing Ltd, 2017.

[36] A. Lipowski and D. Lipowska, “Roulette-wheel
selection via stochastic acceptance,” Physica A:
Statistical Mechanics and its Applications, vol.
391, no. 6, pp. 2193-2196, 2012.

[37] G. Kesavaraj and S. Sukumaran, “A study on
classification techniques in data mining,” in
2013 fourth international conference on comput-
ing, communications and networking technologies
(ICCCNT), 2013, pp. 1-7: IEEE.

[38] B. Martin, “Instance-based learning: nearest
neighbour with generalisation,” 1995.

[39] J. Joyce, “Bayes’ theorem,” 2003.

[40] M.-L. Zhang, J. M. Peña, and V. Robles, “Fea-
ture selection for multi-label naive Bayes clas-
sification,” Information Sciences, vol. 179, no. 19,
pp. 3218-3229, 2009.

[41] T. Cover and P. Hart, “Nearest neighbor pat-
tern classification,” IEEE transactions on infor-
mation theory, vol. 13, no. 1, pp. 21-27, 1967.

[42] L. E. Peterson, “K-nearest neighbor,” Scholarpe-
dia, vol. 4, no. 2, p. 1883, 2009.

[43] R. Ade and P. Deshmukh, “Instance-based vs
batch-based incremental learning approach for
students classification,” International Journal of
Computer Applications, vol. 106, no. 3, 2014.

[44] M. R. Abbasifard, B. Ghahremani, and H. Na-
deri, “A survey on nearest neighbor search
methods,” International Journal of Computer Ap-
plications, vol. 95, no. 25, 2014.

[45] W. Y. Loh, “Classification and regression
trees,” Wiley interdisciplinary reviews: data min-
ing and knowledge discovery, vol. 1, no. 1, pp. 14-
23, 2011.

[46] N. Bhargava, G. Sharma, R. Bhargava, and M.
Mathuria, “Decision tree analysis on j48 algo-
rithm for data mining,” Proceedings of interna-
tional journal of advanced research in computer sci-

ence and software engineering, vol. 3, no. 6, 2013.

[47] V. Vapnik, The nature of statistical learning theo-
ry. Springer science & business media, 2013.

[48] J. Platt, “Sequential Minimal Optimization: A
Fast Algorithm for Training Support Vector
Machines,” 1998.

[49] A. Abraham, “Artificial neural networks,”
Handbook of measuring system design, 2005.

[50] T. L. Fine, Feedforward neural network methodolo-
gy. Springer Science & Business Media, 2006.

[51] K. Jadav and M. Panchal, “Optimizing weights
of artificial neural networks using genetic algo-
rithms,” Int J Adv Res Comput Sci Electron Eng,
vol. 1, no. 10, pp. 47-51, 2012.

[52] M. Riedmiller and A. Lernen, “Multi layer per-
ceptron,” Machine Learning Lab Special Lecture,
University of Freiburg, vol. 24, 2014.

[53] S. Han, J. Pool, J. Tran, and W. Dally, “Learn-
ing both weights and connections for efficient
neural network,” Advances in neural information
processing systems, vol. 28, 2015.

[54] A. H. Ezirmik, “Meta-sezgisel yöntemler ile
müzik verisi üzerinde özellik seçimi ve katego-
rizasyon,” Eskişehir Osmangazi Üniversitesi, Fen
Bilimleri Enstitüsü, 2020.

