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Abstract

Investors trading in capital markets aim to maximize the returns they will obtain from this market. For this reason, 
determining the factors affecting stock returns is important for investors. The aim of this study is to examine the 
relationship between financial ratios and stock returns of companies that are listed on the BIST 30 Index as of 
2024 and traded on the stock exchange uninterruptedly between the 2016Q2-2023Q4 periods. The financial ratios 
used in the research include the current ratio, return on equity ratio, asset turnover ratio, inventory turnover ratio, 
debt/equity ratio, and debt/asset ratio. Stock returns are measured by the rate of return. The relationship between 
the return rates of stocks of companies listed on the BIST 30 index and the financial ratios of these companies 
will be examined through the panel data analysis method. In the analysis results; According to the analysis results, 
the relationship between the current ratio and inventory turnover ratios and the return rate of stocks is significant 
and negative. The relationship between return on equity ratio, asset turnover ratio and debt/equity ratio and stock 
returns is significant and positive. The relationship between debt/asset ratio and return rate is meaningless.

Keywords: Financial Ratios, Stock Returns, Panel Data Analysis, BIST 30 Index, Driscoll-Kraay Robust Standard 
Estimator
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1. INTRODUCTION

Investors trading in capital markets aim to maximize profit by using their funds effectively. To achieve this goal, 
they can invest in some capital market instruments such as stocks. Investors may want to gain two types of profits 
when investing in stocks. These include dividends and capital gains. Dividend is the profit share that investors 
receive from the businesses in which they are partners, proportion to their capital. The positive difference between 
the selling price and the buying price of any financial asset is called a capital gainp. Investors in the market can 
increase capital gains by investing in stocks with appreciation potential. In this case, factors affecting the price of 
stocks can be significant for investors.

When the financial literature is examined, it is seen that there are many factors that have significant effects on 
stock returns. The financial performance of businesses whose stocks are traded in capital markets may affect the 
market price of their stocks. The market price of shares of a business with good financial performance is likely to 
increase. Additionally, current economic conditions in the country may also affect the market prices of stocks. For 
example, an increase in deposit interest rates may cause funds in capital markets to turn towards money markets. 
This may reduce the market price of the stocks. Political factors in the country can also affect the market price 
of stocks. In general, if there are positive expectations about the future of the country, the market price of stocks 
may increase. By taking such factors into consideration, investors can increase their profits from capital markets.

The aim of this study is to determine the financial ratios that are effective on stock returns. For this purpose, the 
data of 23 different companies registered in the BIST 30 Index as of 2024 and continuously traded on the stock 
exchange between 2016Q2-2023Q4 periods are analysed. BIST 30 Index consists of 30 firms with the highest 
trading volume and market capitalisation traded in Borsa Istanbul.  Since it is thought that the results of the analyses 
to be made with the data of the companies in this index will be more meaningful, it is preferred in the study. Since 
all data of the companies traded in BIST 50 and BIST 100 Indices are not available, these indices are not preferred 
in the study. In the study, firstly, a literature review consisting of studies examining the relationship between stock 
returns and financial ratios is presented. Then, the scope of the study, hypotheses, method of analysis and research 
findings are presented. Finally, in the conclusion section, the results and recommendations obtained as a result of 
the research are given.

2. LITERATURE REVIEW

When the literature was examined, it was seen that there were many studies examining the relationship between 
financial ratios and stock returns. One of the first studies on the subject was conducted by Senchack and Martin 
in 1987. Senchack and Martin (1987) analysed the relationship between financial ratios and stock returns using 
the data of 450 firms listed on AMEX and NYSE. According to the results of the analysis, financial ratios have an 
effect on stock returns. 

Martikainen (1989) analysed the relationship between 12 different financial ratios and stock prices. According to 
the results of the study, profitability and capital structure ratios have significant effects on stock returns.

Fama and French (1992) examined the relationship between stock returns and financial ratios using data on firms 
traded on NYSE, AMEX and NASDAQ stock exchanges. According to the results of the study, market to book 
ratio is significant in explaining stock returns.

Lev and Thiagarajian (1993) examined the relationship between 12 different financial performance measures and 
stock returns. Some variables such as inventories, gross sales profit, accounts receivable were used in the study. 
According to the results of the study, there are high correlations between financial performance measures and 
stock returns.

Haugen and Baker (1996); examined the data of American companies traded in the Russell 3000 Index for the 
period 1979-1993. According to the research results, there are positive and significant relationships between stock 
returns and profitability.
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Dhatt et al. (1999) investigated the relationship between financial performance and stock returns of companies 
listed on the Korea Stock Exchange. The research used data of these companies for the years 1982-1992. Dhatt et 
al. found significant relationships between Book value/market value ratio, debt/equity ratio and total sales/market 
value ratio and stock return.

Omran and Ragap (2004) examined the data of a total of 46 companies operating in Egypt for the period 1996-
2000. In the research; the relationship between liquidity, leverage, activity and profitability ratios and stock returns 
was examined. Omran and Ragap argued that there are non-linear relationships between some financial ratios and 
stock returns.

Kalaycı and Karataş (2005) investigated the relationship between stock returns and some financial ratios by 
examining the data of firm traded on the Borsa Istanbul. Six-month financial statements for the period 1996-1997 
were used in the research. According to the results obtained in the research; significant relationships were found 
between business profitability, stock market performance and productivity rates and stock returns.

Alexakis et al. (2010) examined data from 47 different companies registered on the Athens Stock Market. In 
the research, the financial performances of these companies and the returns of their stocks were analyzed. In 
the research, companies’ data for the years 1993-2006 were examined. According to the research results; the 
relationships between profitability, asset turnover, price/earnings, market value/book value and current ratio and 
stock return are significant.

Kheradya et al. (2011) analyzed the data of 960 companies registered on the Malaysian Stock Exchange between 
2000 and 2009 to examine relationship between firm value, price/earnings and market value/book value ratios 
and stock returns. Analysis results; it has been shown that the relationship between firm value, price/earnings and 
market value/book value ratios and stock returns is significant.

Arkan (2016) investigated the financial ratios that are considered to have an impact on stock returns through data 
obtained from 15 companies operating in three different sectors registered in the Kuwait Stock Exchange between 
2005 and 2014. In his analyses, Arkan (2016) concluded that the relationship between firms’ financial performance 
and stock returns differs according to the line of business in which the firms operate.

Allozi and Obeidat (2016) analysed relationship between stock returns and financial ratios using data of 65 firms 
traded on the JSE between 2001 and 2011. Leverage and profitability ratios of companies were used as independent 
variables in the research. The results obtained by Allozi and Obeidat showed that the return on equity ratio can 
affect stock returns.

Sarı and Kırkık (2019) examined the relationship between some financial ratios and stock returns using data 
from 2006-2015 period of 20 companies registered in Borsa Istanbul and operating in the manufacturing sector. 
According to the analysis results, there are positive and significant relationships between stock returns and activity, 
liquidity and profitability ratios. Another result obtained from Sarı and Kırkık’s research is that debt ratios do not 
affect stock returns.

Patin et al. (2020) using data from 1961 US companies for the period 2001-2015, it examined the relationship 
between stock return and total asset turnover ratio. According to the results obtained in the research, there are 
positive significant relationships between stock return and total asset turnover ratio.

Uyar and Sarak (2020) investigated whether some financial ratios have an effect on stock returns, using data 
from the period 2008-2018 of a total of 81 companies traded on Borsa Istanbul and the London Stock Exchange. 
According to the research results, the ratio that has the highest power to explain the returns of stocks traded on 
Borsa Istanbul is the current asset turnover rate, and the rate that has the highest power to explain the returns of 
stocks traded on the London Stock Exchange is the return on equity ratio.

Apan and Öztel (2021) aimed to define relationship between stock return and financial performance of banks by 
using 2015-2019 data of deposit banks registered in the BIST-Bank Index. According to the results obtained by 
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Apan and Öztel, financial performance of banks does not affect stock returns.

Tekin and Bastak (2022) used data from the 2010-2018 period of companies traded in the BIST 100 Index to 
determine the internal factors affecting stock returns. According to the results of the research, negative relationships 
were found between leverage ratio, liquidity ratio, current asset turnover rate and stock return. In addition, in the 
analysis results; Positive relationships were found between current ratio, return on equity, asset turnover rate and 
stock return.

3. RESEARCH METHODOLOGY

The aim of this study is to determine some financial ratios that are thought to have an impact on the stock returns 
of enterprises. In this study, it is aimed to analyse the relationship between some financial ratios of the companies 
registered in the BIST 30 Index as of 2024 and continuously traded on the stock exchange between 2016Q2-
2023Q4 periods and the stock returns of these enterprises. Panel data analysis method was used in the study. 
In order to create a balanced panel data set, the period 2016Q2-2023Q4 was selected in the study. In case of 
going beyond the period 2016Q2-2023Q4, there may be missing data in some variables Additionally, data from 
companies operating in the financial sector were not included in the research. In this context, the data set of the 
research consists of 23 companies. In the research, from the financial ratios of the companies in question current 
ratio, return on equity, debt/ equity ratio, debt/asset ratio, asset turnover ratio and inventory turnover ratios were 
used. Stock returns are measured by the rate of return. The data used in the research was obtained from www.
fintables.com and www.finnet2000.com .

The hypotheses of this study, which was conducted to examine the relationship between financial ratios and stock 
returns, are as follows:

H1 : There are significant relationship between current ratios and stock returns of the companies registered in the 
BIST 30 index

H2 : There are significant relationship between return on equity ratios and stock returns of the companies registered 
in the BIST 30 index

H3 : There are significant relationship between debt/equity ratios and stock returns of the companies registered in 
the BIST 30 index

H4 : There are significant relationship between debt/asset ratios and stock returns of the companies registered in 
the BIST 30 index

H 5 : There are significant relationship between asset turnover ratios and stock returns of the companies registered 
in the BIST 30 index

H6 : There are significant relationship between inventory turnover ratios ratios and stock returns of the companies 
registered in the BIST 30 index.

The variables to be used for testing the research hypotheses are as follows:

Rate of Return (RoR): The dependent variable of the research is the rate of return of stocks. In the calculation of 
the rates of return, the following formula was utilised (Hallerbach, 2005; Ünlü et al., 2009):

RoRt = ln(Pt / Pt-1)              (1)

RoRt = Rate of return

http://www.fintables.com
http://www.fintables.com
http://www.finnet2000.com
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ln = Natural Logarithm

P = Stocks Prices

t = time 

Current Ratio (CR): The first independent variable of the research is the current ratio. The ratio is used to measure 
the ability of the business to pay its short-term debts on time. Companies need to keep the current ratio high in 
order to pay their short-term debts on time. The ratio is calculated as in the formula (Daryanto and Nurfadilah, 
2018:13):

CRt-1 = (Current Assetst-1 / Current Liabilitiest-1)      (2)

Return on Equity (ROE): Return on equity is a ratio that shows the extent to which the capital contributed by the 
shareholders to the company is used effectively. The expectations of company shareholders may be in favour of a 
high return on equity ratio. ROE formula (Daryanto and Nurfadilah, 2018:13):

ROEt-1 = (Net Incomet-1 / Shareholders’ Equityt-1)      (3)

Debt /Equity Ratio (D/E): The D/E ratio, which shows the ability of companies to pay their debts, also shows the 
business risk. D/E ratio formula (Colline, 2022:81):

D/Et-1 = (Total Debtt-1 / Total Equityt-1)       (4)

Debt / Asset Ratio (D/A): This ratio is a ratio that shows how much of the assets owned by the business are 
purchased with debts. A high ratio may increase the risk of the business not being able to pay its debts. D/A ratio 
formula (Doğan, 2013:181):

D/At-1 = (Total Debtt-1 / Total Assetst-1)       (5)

Asset Turnover Ratio (ATO): It is calculated as the ratio of the sales revenue realised by an enterprise in a certain 
period to the value of the enterprise assets in the same period. A high ratio indicates that the performance of the 
enterprise is good. ATO ratio formula (Utami, 2017:27):

ATOt-1 = (Salest-1 / Total Assetst-1)        (6)

Inventory Turnover Ratio (ITO): It is a performance measure that shows how many times the inventories owned 
by an enterprise are sold and renewed within a period. Shareholders may want this ratio to be above the sector 
average. ITO ratio formula (Daryanto and Nurfadilah, 2018:13):

ITOt-1 = (Cost of Goods Soldt-1 / Average Inventoryt-1)     (7)

The dependent variable of the research is the RoR. The independent variables are CR, ROE, D/E, D/A, ATO and 
ITO. Panel data analysis method will be used to obtain research findings. 

The regression model constructed to analyse the relationship between the stock returns of the companies and the 
independent variables is as follows:   

RoRit = α + β1CRit-1 + β2ROEit-1 + β3D/E it-1 + β4D/Ait-1 + β5ATOit-1 + β6ITOit-1 + εit    (8)
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i = 1,......,23

t = 1,......,30

The i in the model represent the cross-sectional units, the t represent the time series in the panel data, α is the 
constant term, β is the coefficients of the independent variables, and ε is the error term in terms of periods and units.

The data used in the research include time series and more than one horizontal cross-section unit. For this reason, it 
can be said that the data set has the characteristics of panel data. Panel data is a type of data in which different data 
belonging to more than one unit are presented together for different periods. In other words, panel data consists of n 
number of units and t number of observations corresponding to each unit (Tatoğlu , 2016: 2). In panel data, if there 
is a time series of equal length for each cross-sectional unit, there is a balanced panel; if there is no time series of 
equal length for each cross-sectional unit, there is an unbalanced panel (Çetin and Ecevit, 2010: 172).

It can be said that there are three different panel data models. These models can be listed as classical model, fixed 
effects model and random effects model. In the classical model, both constant and slope parameters are assumed 
to be homogeneous across units and time. In the fixed effects model, while the slope parameters are the same for 
all cross-sectional units, the constant term takes a different value for each cross-sectional unit. In other words, in 
the fixed effects model, unit effects are transferred to the model through the constant term. In the random effects 
model, differences between units are expressed with error terms. In the random effects model, the error term 
consists of two different components. These are residual errors and unit errors ( Tatoğlu , 2018: 37-103). The 
features, assumptions and estimation methods of each panel data model are different. For this reason, choosing the 
right model and estimation method is important for the reliability of the analysis results.

4.RESEARCH FINDINGS

In this section of the study, the relationship between some financial ratios (CR, ROE, D/E, D/A, ATO, ITO) of 
23 different companies included in the study and the stock returns of these companies will be analysed and the 
results of the analysis will be interpreted. Under this heading, first descriptive statistics regarding the variables 
will be included. Then, the correlation matrix that reveals the correlation relationship between the independent and 
dependent variables of the regression model will be presented. Then, the findings regarding the panel data analysis 
applied to the research data set will be included. Descriptive statistics of CR, ROE, D/E, D/A, ATO, ITO variables 
are as in Table 1.

Table 1. Descriptive StatisticsTable 1. Descriptive Statistics 

Variable Observation Average Standard deviation Minimum Maximum 
RoR 690 0.240886 0.152041 -0.230258 0.672085 
CR 690 1.820696 2.009182 0.35 14.91 

ROE 690 25.42965 31.96496 -85.34 199.49 
D/E 690 58.19362 20.39296 7.82 93.06 
D/A 690 29.83046 18.38473 0 70.6 
ATO 690 1.015014 0.9768557 0.04 8.01 
ITO 690 17.97203 32.9553 1.39 222.38 

Table 1, shows that the number of observations is 690 for all variables. This shows 
that the panel data set is balanced. The table shows that the standard deviations of the CR, 
ROE and ITO variables are higher than their average values. Based on this result, it can be 
said that the companies included in the research differ significantly in terms of CR, ROE and 
ITO variables. 

After the descriptive statistics of CR, ROE, D/E, D/A, ATO, ITO variables, the 
correlation matrix for these variables will be presented. The correlation relationship between 
variables can provide information about the multicollinearity problem. The correlation 
relationship between CR, ROE, D/E, D/A, ATO, ITO variables and the significance level of 
these correlation relationships are presented in Table 2. The correlation coefficient between 
the independent variables of the study can provide information about the problem of 
multicollinearity. 
Table 2. Correlation Matrix Between Variables and VIF Value 

Variables RoR CR ROE D/E D/A ATO ITO VIF 
RoR 1       - 
CR -0.2334* 1      1.87 

ROE 0.4068* -0.0099 1     1.27 
D/E 0.3104* -0.6791* 0.0343 1    2.74 
D/A 0.0740** -0.4460* -0.1155* 0.6586* 1   2.03 
ATO 0.3891* -0.1269* 0.4477* 0.1432* -0.0762** 1  1.32 
ITO 0.2497* -0.1085* -0.0794** 0.2395* 0.3658* -0.0220 1 1.16 

 Note: * 1%, ** 5%, *** 10% indicate the significance level. 

 When the correlation coefficients between the independent variables to be used in the 
analysis are examined, it is seen that they are below the critical value (0.8) recommended by 
Gujarati and Porter (2009). Since there is no high correlation between all variables, the 
multicollinearity problem is expected not to distort the results (Tuan and Borak, 2020: 388). 
In addition, VIF values of the independent variables used in the study are given in the Table 2. 
If the VIF value is greater than 10, it can be said that there is a multicollinearity problem 
between independent variables (Büyükuysal and Öz, 2016:111; Topaloğlu, 2018:294; Alkan 
and Abar, 2019:7; Shrestha, 2020:40). When the table is analysed, it is seen that the VIF 
values of the independent variables used in the research are less than 10. For this reason, it 
can be said that there is no multicollinearity problem between the variables.  
 In panel data analysis, it is very important to perform some diagnostic tests to identify 
the correct estimator. The first diagnostic test applied to the data set of the research is the F 
test. As a result of the F test, the test statistic was found to be 30.82 at the 0.0000 significance 
level. When this value is compared with F(22,661) degrees of freedom in the F distribution 
table, the H0 hypothesis of the F test is rejected.  

Table 1, shows that the number of observations is 690 for all variables. This shows that the panel data set is 
balanced. The table shows that the standard deviations of the CR, ROE and ITO variables are higher than their 
average values. Based on this result, it can be said that the companies included in the research differ significantly 
in terms of CR, ROE and ITO variables.

After the descriptive statistics of CR, ROE, D/E, D/A, ATO, ITO variables, the correlation matrix for these 
variables will be presented. The correlation relationship between variables can provide information about the 
multicollinearity problem. The correlation relationship between CR, ROE, D/E, D/A, ATO, ITO variables and the 
significance level of these correlation relationships are presented in Table 2. The correlation coefficient between 
the independent variables of the study can provide information about the problem of multicollinearity.
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Table 2. Correlation Matrix Between Variables and VIF Value

Table 1. Descriptive Statistics 

Variable Observation Average Standard deviation Minimum Maximum 
RoR 690 0.240886 0.152041 -0.230258 0.672085 
CR 690 1.820696 2.009182 0.35 14.91 

ROE 690 25.42965 31.96496 -85.34 199.49 
D/E 690 58.19362 20.39296 7.82 93.06 
D/A 690 29.83046 18.38473 0 70.6 
ATO 690 1.015014 0.9768557 0.04 8.01 
ITO 690 17.97203 32.9553 1.39 222.38 

Table 1, shows that the number of observations is 690 for all variables. This shows 
that the panel data set is balanced. The table shows that the standard deviations of the CR, 
ROE and ITO variables are higher than their average values. Based on this result, it can be 
said that the companies included in the research differ significantly in terms of CR, ROE and 
ITO variables. 

After the descriptive statistics of CR, ROE, D/E, D/A, ATO, ITO variables, the 
correlation matrix for these variables will be presented. The correlation relationship between 
variables can provide information about the multicollinearity problem. The correlation 
relationship between CR, ROE, D/E, D/A, ATO, ITO variables and the significance level of 
these correlation relationships are presented in Table 2. The correlation coefficient between 
the independent variables of the study can provide information about the problem of 
multicollinearity. 
Table 2. Correlation Matrix Between Variables and VIF Value 

Variables RoR CR ROE D/E D/A ATO ITO VIF 
RoR 1       - 
CR -0.2334* 1      1.87 

ROE 0.4068* -0.0099 1     1.27 
D/E 0.3104* -0.6791* 0.0343 1    2.74 
D/A 0.0740** -0.4460* -0.1155* 0.6586* 1   2.03 
ATO 0.3891* -0.1269* 0.4477* 0.1432* -0.0762** 1  1.32 
ITO 0.2497* -0.1085* -0.0794** 0.2395* 0.3658* -0.0220 1 1.16 

 Note: * 1%, ** 5%, *** 10% indicate the significance level. 

 When the correlation coefficients between the independent variables to be used in the 
analysis are examined, it is seen that they are below the critical value (0.8) recommended by 
Gujarati and Porter (2009). Since there is no high correlation between all variables, the 
multicollinearity problem is expected not to distort the results (Tuan and Borak, 2020: 388). 
In addition, VIF values of the independent variables used in the study are given in the Table 2. 
If the VIF value is greater than 10, it can be said that there is a multicollinearity problem 
between independent variables (Büyükuysal and Öz, 2016:111; Topaloğlu, 2018:294; Alkan 
and Abar, 2019:7; Shrestha, 2020:40). When the table is analysed, it is seen that the VIF 
values of the independent variables used in the research are less than 10. For this reason, it 
can be said that there is no multicollinearity problem between the variables.  
 In panel data analysis, it is very important to perform some diagnostic tests to identify 
the correct estimator. The first diagnostic test applied to the data set of the research is the F 
test. As a result of the F test, the test statistic was found to be 30.82 at the 0.0000 significance 
level. When this value is compared with F(22,661) degrees of freedom in the F distribution 
table, the H0 hypothesis of the F test is rejected.  

Note: * 1%, ** 5%, *** 10% indicate the significance level.

When the correlation coefficients between the independent variables to be used in the analysis are examined, it 
is seen that they are below the critical value (0.8) recommended by Gujarati and Porter (2009). Since there is no 
high correlation between all variables, the multicollinearity problem is expected not to distort the results (Tuan and 
Borak, 2020: 388). In addition, VIF values of the independent variables used in the study are given in the Table 
2. If the VIF value is greater than 10, it can be said that there is a multicollinearity problem between independent 
variables (Büyükuysal and Öz, 2016:111; Topaloğlu, 2018:294; Alkan and Abar, 2019:7; Shrestha, 2020:40). 
When the table is analysed, it is seen that the VIF values of the independent variables used in the research are less 
than 10. For this reason, it can be said that there is no multicollinearity problem between the variables. 

In panel data analysis, it is very important to perform some diagnostic tests to identify the correct estimator. The 
first diagnostic test applied to the data set of the research is the F test. As a result of the F test, the test statistic was 
found to be 30.82 at the 0.0000 significance level. When this value is compared with F(22,661) degrees of freedom 
in the F distribution table, the H0 hypothesis of the F test is rejected. 

Another test that should be applied to the data set of the study in order to determine the correct panel data model is 
the LM test. The LM test applied to the data set of this research was found to be 1185.15 at the 0.0000 significance 
level. When this value is compared with the chi-square table, the H0 hypothesis of the LM test is rejected. 

As a result of both tests, the H0 hypotheses of the said tests were rejected. Therefore, the Hausman test was 
needed to select the panel data model suitable for the research data set. The Hausman test applied to determine the 
appropriate panel data model for the data set of the study yielded a test statistic of 14.48 at a significance level of 
0.0257. Considering the obtained test statistics and significance value, the H0 hypothesis of the Hausman test was 
not accepted. As a result of the diagnostic tests applied to the data set, it was concluded that the fixed effects model 
was appropriate.

The fixed effects model has some assumptions. Assumptions need to be tested to determine the correct estimator. 
One of the assumptions of the fixed effects model is homoskedasticity. Modified Wald Test is used to test this 
assumption. As a result of the Modified Wald Test, the test statistic was 403.31 at the 0.0000 significance level. 
This result obtained as a result of the analysis shows that the H0 hypothesis of the test is not accepted. Based on 
this, it can be said that the model to be used in the research is heteroskedastic.

Baltagi-Wu Locally Best Invariant Test was used to test the non-autocorrelation assumption. As a result of the test, 
Modified Bhargava et al. Durbin-Watson test statistic was found to be 0.3585 and Baltagi - Wu LBI statistic was 
0.5054. According to this result, the research model contains autocorrelation. Pesaran’s cross-sectional dependence 
test was used to test the assumption of inter-unit correlation. As a result of the test, the test statistic was 47.723 at 
the 0.0000 significance level. The test statistic is above the critical value stated by Pesaran (2004). According to 
this result, there is a correlation between units in the research model. The test results to determine the panel data 
estimator applied to the research data set are given in the Table 3.
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Table 3. Analysis Results for Identifying the Correct Estimator

Another test that should be applied to the data set of the study in order to determine 
the correct panel data model is the LM test. The LM test applied to the data set of this 
research was found to be 1185.15 at the 0.0000 significance level. When this value is 
compared with the chi-square table, the H0 hypothesis of the LM test is rejected.  

As a result of both tests, the H0 hypotheses of the said tests were rejected. Therefore, 
the Hausman test was needed to select the panel data model suitable for the research data set. 
The Hausman test applied to determine the appropriate panel data model for the data set of the 
study yielded a test statistic of 14.48 at a significance level of 0.0257. Considering the 
obtained test statistics and significance value, the H0 hypothesis of the Hausman test was not 
accepted. As a result of the diagnostic tests applied to the data set, it was concluded that the 
fixed effects model was appropriate. 

The fixed effects model has some assumptions. Assumptions need to be tested to 
determine the correct estimator. One of the assumptions of the fixed effects model is 
homoskedasticity. Modified Wald Test is used to test this assumption. As a result of the 
Modified Wald Test, the test statistic was 403.31 at the 0.0000 significance level. This result 
obtained as a result of the analysis shows that the H0 hypothesis of the test is not accepted. 
Based on this, it can be said that the model to be used in the research is heteroskedastic. 

Baltagi-Wu Locally Best Invariant Test was used to test the non-autocorrelation 
assumption. As a result of the test, Modified Bhargava et al. Durbin-Watson test statistic was 
found to be 0.3585 and Baltagi - Wu LBI statistic was 0.5054. According to this result, the 
research model contains autocorrelation. Pesaran's cross-sectional dependence test was used 
to test the assumption of inter-unit correlation. As a result of the test, the test statistic was 
47.723 at the 0.0000 significance level. The test statistic is above the critical value stated by 
Pesaran (2004). According to this result, there is a correlation between units in the research 
model. The test results to determine the panel data estimator applied to the research data set 
are given in the Table 3. 
Table 3. Analysis Results for Identifying the Correct Estimator 

Tests for Model Selection Analysis Results 
F Test 30.82* 
LM Test 1185.15* 
Hausman Test 403.31** 
Autocorrelation Test  
Modified Bhargava et al. Durbin -Watson test statistic 0.3585 
Baltagi - Wu LBI test statistic 0.5054 
Heteroscedasticity Test  
Modified Wald Test Statistics 403.31* 
Cross Section Dependency Test  
Pesaran CD Test statistics 47,723* 

  Note: * 1%, ** 5%, *** 10% indicate the significance level. 

 According to the test results for model selection, the panel data model suitable for the 
research data set is the fixed effects model. According to the analysis results that tested the 
assumptions of the fixed effects model, the research model includes heteroscedasticity, 
autocorrelation and cross-sectional dependence. According to the analysis results, the 
Driscoll-Kraay robust standard estimator is suitable for analysis. Driscoll-Kraay robust 
standard estimator results are given in the Table 4. 
 

Note: * 1%, ** 5%, *** 10% indicate the significance level.

According to the test results for model selection, the panel data model suitable for the research data set is the fixed 
effects model. According to the analysis results that tested the assumptions of the fixed effects model, the research 
model includes heteroscedasticity, autocorrelation and cross-sectional dependence. According to the analysis 
results, the Driscoll-Kraay robust standard estimator is suitable for analysis. Driscoll-Kraay robust standard 
estimator results are given in the Table 4.

Table 4. Regression Analysis ResultsTable 4. Regression Analysis Results 

Independent variables Coefficient Driscoll – Kraay 
Standard Errors 

Probability Value 

CR -0.043575 0.0154034 0.008 

ROE 0.0021111 0.0002538 0.000 

D/E 0.0020991 0.0007063 0.006 

D/A 0.0012576 0.0008171 0.135 

ATO 0.0403132 0.0918383 0.000 

ITO -0.0007157 0.0003609 0.057 

Constant Term 0.0788147 0.0659417 0.242 

R 2 -value 0.3978 Number of 
Observations 

690 

F-value 0.0000 Number of Companies 23 

According to the analysis results, the F-value was found to be 0.0000. This result 
shows that the applied regression model is significant. In the analysis results, the R2 value was 
found to be 0.3978. According to the regression analysis results, the relationship between the 
independent variables CR, ROE, D/E, ATO, ITO and the dependent variable RoR is 
statistically significant. The relationship between the independent variables CR and ITO and 
dependent variables is negative. According to the results of the analyses, investors who invest 
in the stocks of enterprises with low current ratio and inventory turnover rate can earn high 
returns. The relationship between ROE, D/E, ATO and RoR is positive. According to the 
results of the analyses, the stock returns of enterprises with high return on equity, debt/equity 
and asset turnover ratios are also high. It is likely that the market price of the stocks of 
enterprises with high profitability is high. Because, high profitability can be perceived as a 
positive signal by investors. According to the net income approach, which is one of the capital 
structure policies, the higher the debt/equity ratio, the higher the firm value. The results 
obtained in the study are consistent with the net income approach. Additionally, an increase in 
the asset turnover rate may be perceived as a positive signal by capital markets. This may 
increase stock returns. According to the analysis results the H1, H2, H3, H5 and H6 hypotheses 
of the study have not been rejected. 

5. CONCLUSION 

 The aim of individuals trading in capital markets is to maximize their personal wealth. 
Individuals carry out buying and selling activities in financial markets for this purpose. 
Investors trading in the stock market can earn two types of profits. These are dividends and 
capital gains. Not all investors in the capital markets can control dividend earnings. However, 
it can increase capital gains by applying the right trading strategies. For this reason, factors 
affecting stock returns are important for investors. 
 In this study, which was conducted to examine the returns between stock returns and 
financial ratios, the data of companies registered in the BIST 30 Index as of 2024 and traded 
on the stock exchange without interruption between the periods of 2016Q2-2023Q4 were 
examined. Additionally, companies operating in the financial sector were not included in the 
data set of the research. In the research, the effects of CR, ROE, D/E and D/A ratio, ATO and 
ITO on stocks returns were examined. Panel data analysis method was used to examine the 
data of the companies included in the research. According to the analysis results applied to the 
research data set, the relationship between CO, ROE, D/A, ATO, ITO and rate of return is 

According to the analysis results, the F-value was found to be 0.0000. This result shows that the applied regression 
model is significant. In the analysis results, the R2 value was found to be 0.3978. According to the regression 
analysis results, the relationship between the independent variables CR, ROE, D/E, ATO, ITO and the dependent 
variable RoR is statistically significant. The relationship between the independent variables CR and ITO and 
dependent variables is negative. According to the results of the analyses, investors who invest in the stocks of 
enterprises with low current ratio and inventory turnover rate can earn high returns. The relationship between 
ROE, D/E, ATO and RoR is positive. According to the results of the analyses, the stock returns of enterprises with 
high return on equity, debt/equity and asset turnover ratios are also high. It is likely that the market price of the 
stocks of enterprises with high profitability is high. Because, high profitability can be perceived as a positive signal 
by investors. According to the net income approach, which is one of the capital structure policies, the higher the 
debt/equity ratio, the higher the firm value. The results obtained in the study are consistent with the net income 
approach. Additionally, an increase in the asset turnover rate may be perceived as a positive signal by capital 
markets. This may increase stock returns. According to the analysis results the H1, H2, H3, H5 and H6 hypotheses 
of the study have not been rejected.
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5. CONCLUSION

The aim of individuals trading in capital markets is to maximize their personal wealth. Individuals carry out buying 
and selling activities in financial markets for this purpose. Investors trading in the stock market can earn two types 
of profits. These are dividends and capital gains. Not all investors in the capital markets can control dividend 
earnings. However, it can increase capital gains by applying the right trading strategies. For this reason, factors 
affecting stock returns are important for investors.

In this study, which was conducted to examine the returns between stock returns and financial ratios, the data 
of companies registered in the BIST 30 Index as of 2024 and traded on the stock exchange without interruption 
between the periods of 2016Q2-2023Q4 were examined. Additionally, companies operating in the financial sector 
were not included in the data set of the research. In the research, the effects of CR, ROE, D/E and D/A ratio, ATO and 
ITO on stocks returns were examined. Panel data analysis method was used to examine the data of the companies 
included in the research. According to the analysis results applied to the research data set, the relationship between 
CO, ROE, D/A, ATO, ITO and rate of return is statistically significant. This result supports the results obtained by 
Haugen and Baker (1996), Dhatt et al. (1999), Omran and Ragap (2004), Kalaycı and Karataş (2005), Alexakis et 
al. (2010), Allozi and Obeidat (2016), Sarı and Kırkık (2019) and Tekin and Bastak (2022). The results obtained 
from the research show that financial ratios have an effect on stock returns. In subsequent studies, it can be 
examined whether the relationship between stock returns and financial ratios differs during the economic crisis. 
The relationship between liquidity ratios, operating ratios, borrowing ratios and profitability ratios of enterprises 
and stock returns can be analysed on enterprises operating in different sectors. Thus, it can be determined whether 
the relationship between these variables differs across sectors.
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Abstract

This research analyzes the dynamic relationships between the economic and political uncertainty index and the fear 
index in global markets and cryptocurrencies using the wavelet-based DCC-GARCH method, considering different 
time scales. Monthly data sets for the periods 2012–April 2024 for GEPU,VIX, and Bitcoin and April 2016–April 
2024 for Ethereum are used in the study. Findings are obtained in terms of the volatility interaction between 
cryptocurrencies (Bitcoin and Ethereum) and GEPU and VIX, as well as four different time scales representing the 
short, medium, and long term. As a result of the analysis based on raw data, it was found that there is no volatility 
interaction between cryptocurrencies and GEPU and VIX returns. However, there is a volatility interaction between 
past volatility shocks and current period volatility shocks in the 4-8 and 16-32 month investment cycle periods of 
VIX, Bitcoin, GEPU, and Ethereum  and  time scales. These results, which show that volatility shocks persist in 
both 4-month and 16-month investment cycles, have significant implications for investors and policymakers. They 
highlight the need for comprehensive information about changes in the global economy and politics, and they are 
expected to provide insights for both investors and policymakers.
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1. INTRODUCTION

The concept of investment is generally divided into capital investments and financial investments, and both methods 
aim to transform savings into capital accumulation. In this context, today’s investors prefer many alternative 
investment instruments to obtain more capital accumulation. However, recently, there has been an orientation 
towards a different investment instrument. One of these alternative investment instruments is cryptocurrencies. 
The reasons for the orientation towards cryptocurrencies are technological developments in the payments system, 
which is a necessity of the digital age that awaits us in the future, and the changing risk perception (Tuncel and 
Gürsoy, 2020:2000). 

The perception that the dollar, which was seen as the safest currency in global markets until the 2008 mortgage 
crisis, would be dethroned with the crisis, and Nakamoto, who took advantage of this gap, proposed Bitcoin in 
2008 and in the following years, different cryptocurrencies such as Ethereum and Ripple emerged. In addition to 
these cryptocurrencies, the number of cryptocurrencies in actual circulation in the cryptocurrency market is more 
than 22,000 as of March 2023, with a market capitalization exceeding 1 trillion dollars, showing a significant 
growth potential (CoinMarketCap, 2023; Aydoğdu, 2024: p.1). Cryptocurrencies, whose functions as money were 
initially discussed, have recently started to be evaluated as an investment instrument and have been accepted as an 
alternative investment instrument by a significant mass of investors. With the impact of recent developments, such 
as; the pandemic and, the Russia-Ukraine crisis, the relationship between the crypto asset market and conventional 
financial assets has become curious. Especially after the Russia-Ukraine crisis, many people worldwide have 
questioned financial markets, and decentralized currencies have become a more popular alternative. 

Volatility of financial instruments is one of the most important indicators that investors pay attention to when 
making investment decisions. In addition to the volatility in the national market, investors also follow the volatility 
in the international market. With the acceleration of globalisation, financial markets are interrelated with each 
other and a volatility occurring in one of them affects the others. Therefore, investors also take into account the 
volatility in international markets when making decisions. In this context, the VIX fear index is a volatility index 
considered by investors (Akdağ, 2019: 236).This index is a risk indicator calculated by the Chicago Options 
Exchange in the United States based on the differences between the option bid and option ask prices of stocks.

The Volatility Index is an indicator that measures anxiety and fear in the markets and is also known as the VIX 
Fear Index. Various forecasting methods have been developed to assess the uncertainties in the global economy, 
and new indexing methods have been emphasised in academic studies. In particular, index that analyse economic 
and political uncertainties stand out as methods that examine political situations as well as financial risks. The 
Global Economic Political Uncertainty Index (GEPU), which is the basis of this study, is an index developed by 
Baker et al. in 2013, representing the economies of 16 countries. This index includes national EPU index based on 
the frequency of newspaper reports on the economy, uncertainty and politics, and currently includes indices for 21 
countries. These 21 countries represent approximately 71 per cent of global output adjusted for purchasing power 
parity and 80 per cent at market exchange rates (Keser, 2022: p. 121).

Investors portfolio diversification strategies to manage financial risk may vary depending on their investment 
horizons (short, medium, and long-term). Accordingly, active investors, such as risk-seeker institutional and 
retail investors, are interested in the interactions between high-frequency (low time-scale) cryptocurrencies 
and the returns of economic and political uncertainty and fear indices, i.e., short-term fluctuations. On the other 
hand, passive investors, such as risk-averse and risk-neutral institutional and retail investors, are interested in 
the interactions between cryptocurrencies at low frequencies (high time-scale) and the returns of the economic 
political uncertainty index and the fear index, i.e., long-term fluctuations. As a result, investors from different 
groups face different risks. Studying the relationships between cryptocurrencies and the returns on the economic, 
political uncertainty, and fear indexes at different time scales is crucial for risk management. As a matter of fact, for 
investors seeking alternative investment instruments, determining the time scale in which the correlation between 
the financial assets in the portfolio is low will ensure that the investor will benefit from portfolio diversification 
(Benhmad, 2013) because a high correlation between assets in a portfolio may cause the investor to make meager 
gains in terms of risk management. The heterogeneity caused by investors with different investment horizons in the 
market may cause the spillover effects between markets to change over time and at different frequencies. However, 
studies examining the relationship between cryptocurrencies and the economic political uncertainty index and the 
fear index mainly focus on a single time scale and ignore the risks that investors may face according to different 



JAME, Volume : 4 -  Issue : 1 -  Year: 2024

15

time scales and the spillovers between these risks (Uyar and Kangalı Uyar, 2021: p. 310)

With wavelet decomposition analysis, it is possible to examine the change in the relationship between two-
time series according to time and different frequencies. Thus, the wavelet approach can help to reveal potential 
spillover effects by allowing the existence of spillover effects between cryptocurrencies and the economic political 
uncertainty index, and the fear index returns to be examined according to different time scales. There are many 
studies on cryptocurrencies in the literature. However, studies on the volatility spillovers between cryptocurrencies 
and the global economic uncertainty and fear indexes are limited. In addition, no study has been found in the 
literature that analyses the interaction between cryptocurrencies and GEPU and VIX returns according to different 
time scales. In short, such a study on cryptocurrencies, whose popularity is increasing day by day and which are at 
the centre of various debates, will be beneficial to the literature. In addition, analyses based on the combination of 
both methods can provide inferences on determining the appropriate time periods to benefit from the advantages 
of portfolio diversification.

Therefore, the purpose of this study is to examine the impact of price movements in the Global Economic Political 
Uncertainty Index (GEPU) and the Fear Index (VIX) on crypto currencies. For this purpose, in the first section, 
information on cryptocurrencies, the economic policy uncertainty index (EPI), and the fear index (VIX) are given. 
A literature review is included in the second part of the study, and studies on volatility spillovers are included. The 
third section explains information about the data used in the analysis, wavelet decomposition analysis, and the 
DCC-GARCH model theory. In the fourth section, the findings obtained are interpreted. In the last section, some 
evaluations are made as a result of these findings.

2.  LITERATURE REVIEW

Studies have carried out a comprehensive examination of the relationship between cryptocurrencies and other 
economic indicators in different time periods and using various analysis methods. These studies aimed to analyse 
the effects of economic indicators on cryptocurrency markets in detail with the variety of data sets used. However, 
all of these methods are based on a single time scale. However, recently, studies using methods that take into 
account different time scales and/or different investment horizons have also taken their place in the literature. The 
literature on the subject is presented in Table 1. 
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Imprint Aim Sampling 
Period 

Method/ 
Model Result 

Corbet vd. 

(2018) 

It aims to investigate the 
relationships and frequency 
fields between crypto 
currencies and different 
financial assets. 

Daily data set 
for the periods 
29.04.201307.
02.2014 
10.02.201430.
04.2017. 

Diebold and 
Yilmaz 
analysis 
method/Baruni
k and Krehlik 
method of 
analysis 

It is concluded that cryptocurrencies can 
provide diversification benefits for 
investors with short investment 
horizons. Moreover, time variation in 
linkages is found to reflect external 
economic and financial shocks. 

İltaş 

(2020) 

This research aims to 
examine the relationship 
between BIST 100 Index 
and economic, political, 
financial and geopolitical 
risks. 

Monthly data 
set for the 
period January 
1999-
December 
2014. 

Toda-
Yamamoto 
causality test/ 
Hacker 
Hatemi-J 
bootstrap 
causality test 

It has been concluded that economic, 
political and geopolitical risks have a 
symmetric and asymmetric causal 
relationship with stock prices in Turkey. 

 

Bakır 

(2021) 

This research aims to 
examine the relationship 
between cryptocurrencies 
and economic indicators. 

Daily data set 
for the period 
03.12.2019-
03.20.2020. 

Pedroni 
cointegration 
test 

Granger 
causality test 

As a result of the analysis, it is 
concluded that Bitcoin and Ethereum do 
not have a long-run relationship with 
some commodities and economic 
indicators. However, bidirectional and 
unidirectional causality relationships 
were found between Bitcoin and 
Ethereum and G20 stock market 
indices, some commodities and 
volatility indices. Moreover, these 
cryptocurrencies are found to have 
significant regression relationships with 
market volumes, some commodities and 
economic indicators. 

Khan vd. 

(2021) 

It aims to examine the 
relationship between global 
economic policy 
uncertainty and bitcoin 
prices. 

Monthly data 
set between 
April 2011 and 
March 2020. 

Rolling 
window 
method 

Granger 
causality 

According to the results of the analyses, 
it is determined that there is no causality 
relationship between GEPU and BCP. 
However, considering the structural 
changes, it is concluded that the full 
sample causality relationship between 
the variables may be different. 
Moreover, the finding of the rolling 
window test shows that there is 
causality in different sub-samples; both 
positive and negative bidirectional 
causality between GEPU and BCP were 
found in these sub-samples. 

Gürsoy ve 
Kılıç 

(2021) 

This research aims to 
analyse the impact of 
global economic and 
political uncertainties on 
financial markets in 
Turkey. 

Monthly data 
set for the 
period March 
2010-October 
2020. 

DCC-GARCH The analyses reveal that there is a strong 
volatility relationship between GEPU 
index, CDS premium and BIST banking 
index. 
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Sajeev and 
Afjal 
(2021) 

It is aimed to examine the 
contagion effect of Bitcoin 
on the National Stock 
Exchange, Shanghai Stock 
Exchange, London Stock 
Exchange and Dow Jones 
Industrial Average by 
analysing the volatility 
spread and correlation 
between these markets. 

Daily data set 
for the period 
March 2017-
May 2021. 

BEKK-
GARCH / 

DCC-GARCH 

The overall time-varying correlation 
between Bitcoin and stock markets is 
low, indicating that Bitcoin can be taken 
as an asset to hedge against the risk of 
these stock markets. It was also 
concluded that these stock markets 
reacted more to negative shocks than to 
positive shocks in the Bitcoin market in 
2018 and 2021. 

İmre 
(2021) 

It is aimed to examine the 
volatility interaction 
between Bitcoin and Euro 
returns. 

Daily data set 
for the period 
02 February 
2014-28 
February 2021 

BEKK-
GARCH / 

DCC-GARCH 

The analyses revealed a bidirectional 
volatility interaction between the Euro 
and Bitcoin. In addition, an asymmetry 
relationship and a positive, strong 
dynamic correlation between the two 
returns were found. 

Ghorbel 
and Jeribi 

(2021) 

It aims to analyse the 
relationships between five 
cryptocurrencies and the 
volatilities of S&P500, 
Nasdaq and VIX indices, 
oil and gold. 

Daily data set 
for the period 
01 January 
2016 - 01 April 
2020 

BEKK-
GARCH / 

DCC-GARCH 

The results of both analyses show 
evidence of a higher volatility spread 
between cryptocurrencies and a lower 
volatility spread between 
cryptocurrencies and financial assets, 
and the introduction of Bitcoin futures 
is found to have a significant impact. 

Gökalp 

(2022) 

This research aims to 
investigate the impact of 
cryptocurrency market 
developments on Borsa 
Istanbul (BIST) indices. 

Daily data set 
for the period 
01/01/2014-
31/12/2021. 

BEKK-
GARHCH/DC
C-GARCH 

According to the analysis results, a 
positive spillover effect from the 
cryptocurrency markets to indices has 
been identified. Oil prices, as one of the 
control variables, have shown a 
significant impact on volatility across 
all models. Furthermore, varying results 
were observed concerning the influence 
of the fear index. 

Keser 

(2023) 

This research aims to 
investigate the causality 
relationship between global 
economic political 
uncertainty and 
geopolitical risk and 
Bitcoin energy 
consumption. 

Monthly data 
set from May 
2011 to 
February 
2022. 

Lee-Strazich 
unit root test 

Hatemi-J 
(2012) 
causality test 

According to the analysis results, it has 
been determined that global economic 
political uncertainty and geopolitical 
risk have an impact on bitcoin energy 
consumption. It has also been concluded 
that the negative effects of global 
uncertainty and geopolitical risks are 
more dominant. 
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political uncertainties and changes in the fear index on cryptocurrencies. In this context, 
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Moreover, the non-parametric nature of the wavelet approach allows non-linear relationships between variables 
to be taken into account without any loss of information. These advantages of the wavelet approach, which is 
based on time and frequency, are the most important reasons why it is a more effective technique than time-only 
approaches. The wavelet approach was first applied in the field of economics by Ramsey and Lampart (1998a,b) 
in order to analyze the relationships with money supply (M1 and M2). In recent years, Rua and Nunes (2009), 
Jammazi and Aloui (2010), Masih etal., (2010), Ismail et al., (2016), Omane-Adjepong and Alagidede (2019), 
Uyar and Kangallı Uyar (2021), Hairudin and Mohamad (2023), Aydoğdu (2024) etc. It has been introduced to the 
literature in economics and finance by researchers such as using this approach.

In wavelet analysis, a time series can be decomposed into different time scales by applying wavelet transformation. 
Father wavelet in wavelet analysis Two basic functions are defined: mother wavelet and mother wavelet. The 
father wavelet contains the low-frequency components of the original series and shows the trend of the series; The 
mother wavelet contains the high-frequency components of the series and shows deviations from the trend, in other 
words, it reflects the details in the data (Crowley, 2007). The father  wavelet and mother wavelet can be defined as 
in equation (2) and equation (3), respectively (Ramsey and Lampart, 1998):

In wavelet analysis, a time series can be decomposed into different time scales by 
applying wavelet transformation. Father wavelet in wavelet analysis Two basic functions 
are defined: mother wavelet and mother wavelet. The father wavelet contains the low-
frequency components of the original series and shows the trend of the series; The mother 
wavelet contains the high-frequency components of the series and shows deviations from 
the trend, in other words, it reflects the details in the data (Crowley, 2007). The father  
wavelet and mother wavelet can be defined as in equation (2) and equation (3), 
respectively (Ramsey and Lampart, 1998): 

Ø𝑗𝑗𝑗𝑗,𝑘𝑘𝑘𝑘(𝑡𝑡𝑡𝑡) = 2−
1
2 Ø�2−𝑗𝑗𝑗𝑗 ∗ 𝑡𝑡𝑡𝑡 𝑡 𝑡𝑡𝑡𝑡𝑡, 𝑗𝑗𝑗𝑗 = 1,2, … , 𝐽𝐽𝐽𝐽; 𝑡𝑡𝑡𝑡 = 0,1, … , 2𝑗𝑗𝑗𝑗 𝑡 1                                       (2) 

𝜓𝜓𝜓𝜓𝑗𝑗𝑗𝑗,𝑘𝑘𝑘𝑘(𝑡𝑡𝑡𝑡) = 2−
𝑗𝑗𝑗𝑗
2𝜓𝜓𝜓𝜓�2−𝑗𝑗𝑗𝑗 ∗ 𝑡𝑡𝑡𝑡 𝑡 𝑡𝑡𝑡𝑡𝑡, 𝑗𝑗𝑗𝑗 = 1,2, … . , 𝐽𝐽𝐽𝐽; 𝑡𝑡𝑡𝑡 = 1, … . , 2𝑗𝑗𝑗𝑗 𝑡 1                                       (3) 

Wavelet functions depend on the scale or frequency parameter j and the location 
parameter k. Although 2𝑗𝑗𝑗𝑗, is called the scale, it can be treated as a measure of the width 
of the Ø𝑗𝑗𝑗𝑗,𝑘𝑘𝑘𝑘(t) function. Accordingly, as the values of j increase, the function becomes 
shorter and spreads further. The scale parameter determines the size of the wavelet, while 
the position parameter sets the location of the wavelet. A scale parameter ranging from 1 
to J means that the time series is decomposed at J different levels according to the highest 
time scale J. Ø(.) ve 𝜓𝜓𝜓𝜓(.), (-∞,∞)  are real-valued functions defined on the real axis, and 
it is assumed that these functions meet the normalization conditions defined in equations 
(4) and (5): 
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A time series such as x(t) defined at 𝐿𝐿𝐿𝐿2(𝑅𝑅𝑅𝑅)3 can be expressed in terms of wavelet functions 
as in equation (6): 
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−∞ . 𝑆𝑆𝑆𝑆𝐽𝐽𝐽𝐽,𝑘𝑘𝑘𝑘, 
are called smooth coefficients, while 𝑑𝑑𝑑𝑑𝑗𝑗𝑗𝑗,𝑘𝑘𝑘𝑘 are called detail functions. The sizes of these 
coefficients show the share of wavelet functions in the total data. In the expression in 
Equation (7); 
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When defined as x(t) time series can be re-expressed as in equation (9): 
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𝑗𝑗𝑗𝑗
2𝜓𝜓𝜓𝜓�2−𝑗𝑗𝑗𝑗 ∗ 𝑡𝑡𝑡𝑡 𝑡 𝑡𝑡𝑡𝑡𝑡, 𝑗𝑗𝑗𝑗 = 1,2, … . , 𝐽𝐽𝐽𝐽; 𝑡𝑡𝑡𝑡 = 1, … . , 2𝑗𝑗𝑗𝑗 𝑡 1                                       (3) 

Wavelet functions depend on the scale or frequency parameter j and the location 
parameter k. Although 2𝑗𝑗𝑗𝑗, is called the scale, it can be treated as a measure of the width 
of the Ø𝑗𝑗𝑗𝑗,𝑘𝑘𝑘𝑘(t) function. Accordingly, as the values of j increase, the function becomes 
shorter and spreads further. The scale parameter determines the size of the wavelet, while 
the position parameter sets the location of the wavelet. A scale parameter ranging from 1 
to J means that the time series is decomposed at J different levels according to the highest 
time scale J. Ø(.) ve 𝜓𝜓𝜓𝜓(.), (-∞,∞)  are real-valued functions defined on the real axis, and 
it is assumed that these functions meet the normalization conditions defined in equations 
(4) and (5): 

� Ø(𝑡𝑡𝑡𝑡)𝑑𝑑𝑑𝑑𝑡𝑡𝑡𝑡 = 1 
+∞

−∞

                                                                                                                           (4) 

� 𝜓𝜓𝜓𝜓(𝑡𝑡𝑡𝑡)𝑑𝑑𝑑𝑑𝑡𝑡𝑡𝑡 = 1 
+∞

−∞

                                                                                                                           (5) 

A time series such as x(t) defined at 𝐿𝐿𝐿𝐿2(𝑅𝑅𝑅𝑅)3 can be expressed in terms of wavelet functions 
as in equation (6): 

𝑥𝑥𝑥𝑥(𝑡𝑡𝑡𝑡) = � 𝑆𝑆𝑆𝑆𝐽𝐽𝐽𝐽,𝑘𝑘𝑘𝑘Ø𝐽𝐽𝐽𝐽,𝑘𝑘𝑘𝑘(𝑡𝑡𝑡𝑡)
2𝑗𝑗𝑗𝑗−1

𝑘𝑘𝑘𝑘𝑘𝑘

+ � � 𝑑𝑑𝑑𝑑𝑗𝑗𝑗𝑗,𝑘𝑘𝑘𝑘 
𝑘𝑘𝑘𝑘𝑗𝑗𝑗𝑗−1

𝑘𝑘𝑘𝑘𝑘𝑘

𝐽𝐽𝐽𝐽

𝑗𝑗𝑗𝑗𝑘1

𝜓𝜓𝜓𝜓𝑗𝑗𝑗𝑗,𝑘𝑘𝑘𝑘(𝑡𝑡𝑡𝑡)                                                                      (6) 

Here it is defined as𝑆𝑆𝑆𝑆𝐽𝐽𝐽𝐽,𝑘𝑘𝑘𝑘 = ∫ 𝑡𝑡𝑡𝑡(𝑡𝑡𝑡𝑡)Ø𝐽𝐽𝐽𝐽,𝑘𝑘𝑘𝑘(𝑡𝑡𝑡𝑡)𝑑𝑑𝑑𝑑𝑡𝑡𝑡𝑡 = 1 +∞
−∞ ve 𝑑𝑑𝑑𝑑𝑗𝑗𝑗𝑗,𝑘𝑘𝑘𝑘 = ∫ 𝑥𝑥𝑥𝑥(𝑡𝑡𝑡𝑡)𝜓𝜓𝜓𝜓𝑗𝑗𝑗𝑗,𝑘𝑘𝑘𝑘(𝑡𝑡𝑡𝑡)𝑑𝑑𝑑𝑑𝑡𝑡𝑡𝑡 = 1 +∞

−∞ . 𝑆𝑆𝑆𝑆𝐽𝐽𝐽𝐽,𝑘𝑘𝑘𝑘, 
are called smooth coefficients, while 𝑑𝑑𝑑𝑑𝑗𝑗𝑗𝑗,𝑘𝑘𝑘𝑘 are called detail functions. The sizes of these 
coefficients show the share of wavelet functions in the total data. In the expression in 
Equation (7); 

𝑆𝑆𝑆𝑆𝑡𝑡𝑡𝑡(𝑡𝑡𝑡𝑡) = � 𝑆𝑆𝑆𝑆𝐽𝐽𝐽𝐽,𝑘𝑘𝑘𝑘Ø𝐽𝐽𝐽𝐽,𝑘𝑘𝑘𝑘(𝑡𝑡𝑡𝑡)  
2𝑗𝑗𝑗𝑗−1

𝑘𝑘𝑘𝑘𝑘𝑘

                                                                                                            (7) 

ve  

𝐷𝐷𝐷𝐷𝑗𝑗𝑗𝑗(𝑡𝑡𝑡𝑡) = � 𝑑𝑑𝑑𝑑𝑗𝑗𝑗𝑗,𝑘𝑘𝑘𝑘

2𝑗𝑗𝑗𝑗−1

𝑘𝑘𝑘𝑘𝑘𝑘

𝜓𝜓𝜓𝜓𝑗𝑗𝑗𝑗,𝑘𝑘𝑘𝑘(𝑡𝑡𝑡𝑡), 𝑗𝑗𝑗𝑗 = 1,2, … . . , 𝐽𝐽𝐽𝐽                                                                                 (8) 

When defined as x(t) time series can be re-expressed as in equation (9): 

, is 
called the scale, it can be treated as a measure of the width of the 

In wavelet analysis, a time series can be decomposed into different time scales by 
applying wavelet transformation. Father wavelet in wavelet analysis Two basic functions 
are defined: mother wavelet and mother wavelet. The father wavelet contains the low-
frequency components of the original series and shows the trend of the series; The mother 
wavelet contains the high-frequency components of the series and shows deviations from 
the trend, in other words, it reflects the details in the data (Crowley, 2007). The father  
wavelet and mother wavelet can be defined as in equation (2) and equation (3), 
respectively (Ramsey and Lampart, 1998): 

Ø𝑗𝑗𝑗𝑗,𝑘𝑘𝑘𝑘(𝑡𝑡𝑡𝑡) = 2−
1
2 Ø�2−𝑗𝑗𝑗𝑗 ∗ 𝑡𝑡𝑡𝑡 𝑡 𝑡𝑡𝑡𝑡𝑡, 𝑗𝑗𝑗𝑗 = 1,2, … , 𝐽𝐽𝐽𝐽; 𝑡𝑡𝑡𝑡 = 0,1, … , 2𝑗𝑗𝑗𝑗 𝑡 1                                       (2) 

𝜓𝜓𝜓𝜓𝑗𝑗𝑗𝑗,𝑘𝑘𝑘𝑘(𝑡𝑡𝑡𝑡) = 2−
𝑗𝑗𝑗𝑗
2𝜓𝜓𝜓𝜓�2−𝑗𝑗𝑗𝑗 ∗ 𝑡𝑡𝑡𝑡 𝑡 𝑡𝑡𝑡𝑡𝑡, 𝑗𝑗𝑗𝑗 = 1,2, … . , 𝐽𝐽𝐽𝐽; 𝑡𝑡𝑡𝑡 = 1, … . , 2𝑗𝑗𝑗𝑗 𝑡 1                                       (3) 

Wavelet functions depend on the scale or frequency parameter j and the location 
parameter k. Although 2𝑗𝑗𝑗𝑗, is called the scale, it can be treated as a measure of the width 
of the Ø𝑗𝑗𝑗𝑗,𝑘𝑘𝑘𝑘(t) function. Accordingly, as the values of j increase, the function becomes 
shorter and spreads further. The scale parameter determines the size of the wavelet, while 
the position parameter sets the location of the wavelet. A scale parameter ranging from 1 
to J means that the time series is decomposed at J different levels according to the highest 
time scale J. Ø(.) ve 𝜓𝜓𝜓𝜓(.), (-∞,∞)  are real-valued functions defined on the real axis, and 
it is assumed that these functions meet the normalization conditions defined in equations 
(4) and (5): 

� Ø(𝑡𝑡𝑡𝑡)𝑑𝑑𝑑𝑑𝑡𝑡𝑡𝑡 = 1 
+∞

−∞

                                                                                                                           (4) 

� 𝜓𝜓𝜓𝜓(𝑡𝑡𝑡𝑡)𝑑𝑑𝑑𝑑𝑡𝑡𝑡𝑡 = 1 
+∞

−∞

                                                                                                                           (5) 

A time series such as x(t) defined at 𝐿𝐿𝐿𝐿2(𝑅𝑅𝑅𝑅)3 can be expressed in terms of wavelet functions 
as in equation (6): 

𝑥𝑥𝑥𝑥(𝑡𝑡𝑡𝑡) = � 𝑆𝑆𝑆𝑆𝐽𝐽𝐽𝐽,𝑘𝑘𝑘𝑘Ø𝐽𝐽𝐽𝐽,𝑘𝑘𝑘𝑘(𝑡𝑡𝑡𝑡)
2𝑗𝑗𝑗𝑗−1

𝑘𝑘𝑘𝑘𝑘𝑘

+ � � 𝑑𝑑𝑑𝑑𝑗𝑗𝑗𝑗,𝑘𝑘𝑘𝑘 
𝑘𝑘𝑘𝑘𝑗𝑗𝑗𝑗−1

𝑘𝑘𝑘𝑘𝑘𝑘

𝐽𝐽𝐽𝐽

𝑗𝑗𝑗𝑗𝑘1

𝜓𝜓𝜓𝜓𝑗𝑗𝑗𝑗,𝑘𝑘𝑘𝑘(𝑡𝑡𝑡𝑡)                                                                      (6) 

Here it is defined as𝑆𝑆𝑆𝑆𝐽𝐽𝐽𝐽,𝑘𝑘𝑘𝑘 = ∫ 𝑡𝑡𝑡𝑡(𝑡𝑡𝑡𝑡)Ø𝐽𝐽𝐽𝐽,𝑘𝑘𝑘𝑘(𝑡𝑡𝑡𝑡)𝑑𝑑𝑑𝑑𝑡𝑡𝑡𝑡 = 1 +∞
−∞ ve 𝑑𝑑𝑑𝑑𝑗𝑗𝑗𝑗,𝑘𝑘𝑘𝑘 = ∫ 𝑥𝑥𝑥𝑥(𝑡𝑡𝑡𝑡)𝜓𝜓𝜓𝜓𝑗𝑗𝑗𝑗,𝑘𝑘𝑘𝑘(𝑡𝑡𝑡𝑡)𝑑𝑑𝑑𝑑𝑡𝑡𝑡𝑡 = 1 +∞

−∞ . 𝑆𝑆𝑆𝑆𝐽𝐽𝐽𝐽,𝑘𝑘𝑘𝑘, 
are called smooth coefficients, while 𝑑𝑑𝑑𝑑𝑗𝑗𝑗𝑗,𝑘𝑘𝑘𝑘 are called detail functions. The sizes of these 
coefficients show the share of wavelet functions in the total data. In the expression in 
Equation (7); 

𝑆𝑆𝑆𝑆𝑡𝑡𝑡𝑡(𝑡𝑡𝑡𝑡) = � 𝑆𝑆𝑆𝑆𝐽𝐽𝐽𝐽,𝑘𝑘𝑘𝑘Ø𝐽𝐽𝐽𝐽,𝑘𝑘𝑘𝑘(𝑡𝑡𝑡𝑡)  
2𝑗𝑗𝑗𝑗−1

𝑘𝑘𝑘𝑘𝑘𝑘

                                                                                                            (7) 

ve  

𝐷𝐷𝐷𝐷𝑗𝑗𝑗𝑗(𝑡𝑡𝑡𝑡) = � 𝑑𝑑𝑑𝑑𝑗𝑗𝑗𝑗,𝑘𝑘𝑘𝑘

2𝑗𝑗𝑗𝑗−1

𝑘𝑘𝑘𝑘𝑘𝑘

𝜓𝜓𝜓𝜓𝑗𝑗𝑗𝑗,𝑘𝑘𝑘𝑘(𝑡𝑡𝑡𝑡), 𝑗𝑗𝑗𝑗 = 1,2, … . . , 𝐽𝐽𝐽𝐽                                                                                 (8) 

When defined as x(t) time series can be re-expressed as in equation (9): 

 function. Accordingly, as the values of j 
increase, the function becomes shorter and spreads further. The scale parameter determines the size of the wavelet, 
while the position parameter sets the location of the wavelet. A scale parameter ranging from 1 to J means that the 
time series is decomposed at J different levels according to the highest time scale J. 

In wavelet analysis, a time series can be decomposed into different time scales by 
applying wavelet transformation. Father wavelet in wavelet analysis Two basic functions 
are defined: mother wavelet and mother wavelet. The father wavelet contains the low-
frequency components of the original series and shows the trend of the series; The mother 
wavelet contains the high-frequency components of the series and shows deviations from 
the trend, in other words, it reflects the details in the data (Crowley, 2007). The father  
wavelet and mother wavelet can be defined as in equation (2) and equation (3), 
respectively (Ramsey and Lampart, 1998): 

Ø𝑗𝑗𝑗𝑗,𝑘𝑘𝑘𝑘(𝑡𝑡𝑡𝑡) = 2−
1
2 Ø�2−𝑗𝑗𝑗𝑗 ∗ 𝑡𝑡𝑡𝑡 𝑡 𝑡𝑡𝑡𝑡𝑡, 𝑗𝑗𝑗𝑗 = 1,2, … , 𝐽𝐽𝐽𝐽; 𝑡𝑡𝑡𝑡 = 0,1, … , 2𝑗𝑗𝑗𝑗 𝑡 1                                       (2) 

𝜓𝜓𝜓𝜓𝑗𝑗𝑗𝑗,𝑘𝑘𝑘𝑘(𝑡𝑡𝑡𝑡) = 2−
𝑗𝑗𝑗𝑗
2𝜓𝜓𝜓𝜓�2−𝑗𝑗𝑗𝑗 ∗ 𝑡𝑡𝑡𝑡 𝑡 𝑡𝑡𝑡𝑡𝑡, 𝑗𝑗𝑗𝑗 = 1,2, … . , 𝐽𝐽𝐽𝐽; 𝑡𝑡𝑡𝑡 = 1, … . , 2𝑗𝑗𝑗𝑗 𝑡 1                                       (3) 

Wavelet functions depend on the scale or frequency parameter j and the location 
parameter k. Although 2𝑗𝑗𝑗𝑗, is called the scale, it can be treated as a measure of the width 
of the Ø𝑗𝑗𝑗𝑗,𝑘𝑘𝑘𝑘(t) function. Accordingly, as the values of j increase, the function becomes 
shorter and spreads further. The scale parameter determines the size of the wavelet, while 
the position parameter sets the location of the wavelet. A scale parameter ranging from 1 
to J means that the time series is decomposed at J different levels according to the highest 
time scale J. Ø(.) ve 𝜓𝜓𝜓𝜓(.), (-∞,∞)  are real-valued functions defined on the real axis, and 
it is assumed that these functions meet the normalization conditions defined in equations 
(4) and (5): 

� Ø(𝑡𝑡𝑡𝑡)𝑑𝑑𝑑𝑑𝑡𝑡𝑡𝑡 = 1 
+∞

−∞

                                                                                                                           (4) 

� 𝜓𝜓𝜓𝜓(𝑡𝑡𝑡𝑡)𝑑𝑑𝑑𝑑𝑡𝑡𝑡𝑡 = 1 
+∞

−∞

                                                                                                                           (5) 

A time series such as x(t) defined at 𝐿𝐿𝐿𝐿2(𝑅𝑅𝑅𝑅)3 can be expressed in terms of wavelet functions 
as in equation (6): 

𝑥𝑥𝑥𝑥(𝑡𝑡𝑡𝑡) = � 𝑆𝑆𝑆𝑆𝐽𝐽𝐽𝐽,𝑘𝑘𝑘𝑘Ø𝐽𝐽𝐽𝐽,𝑘𝑘𝑘𝑘(𝑡𝑡𝑡𝑡)
2𝑗𝑗𝑗𝑗−1

𝑘𝑘𝑘𝑘𝑘𝑘

+ � � 𝑑𝑑𝑑𝑑𝑗𝑗𝑗𝑗,𝑘𝑘𝑘𝑘 
𝑘𝑘𝑘𝑘𝑗𝑗𝑗𝑗−1

𝑘𝑘𝑘𝑘𝑘𝑘

𝐽𝐽𝐽𝐽

𝑗𝑗𝑗𝑗𝑘1

𝜓𝜓𝜓𝜓𝑗𝑗𝑗𝑗,𝑘𝑘𝑘𝑘(𝑡𝑡𝑡𝑡)                                                                      (6) 

Here it is defined as𝑆𝑆𝑆𝑆𝐽𝐽𝐽𝐽,𝑘𝑘𝑘𝑘 = ∫ 𝑡𝑡𝑡𝑡(𝑡𝑡𝑡𝑡)Ø𝐽𝐽𝐽𝐽,𝑘𝑘𝑘𝑘(𝑡𝑡𝑡𝑡)𝑑𝑑𝑑𝑑𝑡𝑡𝑡𝑡 = 1 +∞
−∞ ve 𝑑𝑑𝑑𝑑𝑗𝑗𝑗𝑗,𝑘𝑘𝑘𝑘 = ∫ 𝑥𝑥𝑥𝑥(𝑡𝑡𝑡𝑡)𝜓𝜓𝜓𝜓𝑗𝑗𝑗𝑗,𝑘𝑘𝑘𝑘(𝑡𝑡𝑡𝑡)𝑑𝑑𝑑𝑑𝑡𝑡𝑡𝑡 = 1 +∞

−∞ . 𝑆𝑆𝑆𝑆𝐽𝐽𝐽𝐽,𝑘𝑘𝑘𝑘, 
are called smooth coefficients, while 𝑑𝑑𝑑𝑑𝑗𝑗𝑗𝑗,𝑘𝑘𝑘𝑘 are called detail functions. The sizes of these 
coefficients show the share of wavelet functions in the total data. In the expression in 
Equation (7); 

𝑆𝑆𝑆𝑆𝑡𝑡𝑡𝑡(𝑡𝑡𝑡𝑡) = � 𝑆𝑆𝑆𝑆𝐽𝐽𝐽𝐽,𝑘𝑘𝑘𝑘Ø𝐽𝐽𝐽𝐽,𝑘𝑘𝑘𝑘(𝑡𝑡𝑡𝑡)  
2𝑗𝑗𝑗𝑗−1

𝑘𝑘𝑘𝑘𝑘𝑘

                                                                                                            (7) 

ve  

𝐷𝐷𝐷𝐷𝑗𝑗𝑗𝑗(𝑡𝑡𝑡𝑡) = � 𝑑𝑑𝑑𝑑𝑗𝑗𝑗𝑗,𝑘𝑘𝑘𝑘

2𝑗𝑗𝑗𝑗−1

𝑘𝑘𝑘𝑘𝑘𝑘

𝜓𝜓𝜓𝜓𝑗𝑗𝑗𝑗,𝑘𝑘𝑘𝑘(𝑡𝑡𝑡𝑡), 𝑗𝑗𝑗𝑗 = 1,2, … . . , 𝐽𝐽𝐽𝐽                                                                                 (8) 

When defined as x(t) time series can be re-expressed as in equation (9): 

  are real-
valued functions defined on the real axis, and it is assumed that these functions meet the normalization conditions 
defined in equations (4) and (5):

In wavelet analysis, a time series can be decomposed into different time scales by 
applying wavelet transformation. Father wavelet in wavelet analysis Two basic functions 
are defined: mother wavelet and mother wavelet. The father wavelet contains the low-
frequency components of the original series and shows the trend of the series; The mother 
wavelet contains the high-frequency components of the series and shows deviations from 
the trend, in other words, it reflects the details in the data (Crowley, 2007). The father  
wavelet and mother wavelet can be defined as in equation (2) and equation (3), 
respectively (Ramsey and Lampart, 1998): 

Ø𝑗𝑗𝑗𝑗,𝑘𝑘𝑘𝑘(𝑡𝑡𝑡𝑡) = 2−
1
2 Ø�2−𝑗𝑗𝑗𝑗 ∗ 𝑡𝑡𝑡𝑡 𝑡 𝑡𝑡𝑡𝑡𝑡, 𝑗𝑗𝑗𝑗 = 1,2, … , 𝐽𝐽𝐽𝐽; 𝑡𝑡𝑡𝑡 = 0,1, … , 2𝑗𝑗𝑗𝑗 𝑡 1                                       (2) 

𝜓𝜓𝜓𝜓𝑗𝑗𝑗𝑗,𝑘𝑘𝑘𝑘(𝑡𝑡𝑡𝑡) = 2−
𝑗𝑗𝑗𝑗
2𝜓𝜓𝜓𝜓�2−𝑗𝑗𝑗𝑗 ∗ 𝑡𝑡𝑡𝑡 𝑡 𝑡𝑡𝑡𝑡𝑡, 𝑗𝑗𝑗𝑗 = 1,2, … . , 𝐽𝐽𝐽𝐽; 𝑡𝑡𝑡𝑡 = 1, … . , 2𝑗𝑗𝑗𝑗 𝑡 1                                       (3) 

Wavelet functions depend on the scale or frequency parameter j and the location 
parameter k. Although 2𝑗𝑗𝑗𝑗, is called the scale, it can be treated as a measure of the width 
of the Ø𝑗𝑗𝑗𝑗,𝑘𝑘𝑘𝑘(t) function. Accordingly, as the values of j increase, the function becomes 
shorter and spreads further. The scale parameter determines the size of the wavelet, while 
the position parameter sets the location of the wavelet. A scale parameter ranging from 1 
to J means that the time series is decomposed at J different levels according to the highest 
time scale J. Ø(.) ve 𝜓𝜓𝜓𝜓(.), (-∞,∞)  are real-valued functions defined on the real axis, and 
it is assumed that these functions meet the normalization conditions defined in equations 
(4) and (5): 

� Ø(𝑡𝑡𝑡𝑡)𝑑𝑑𝑑𝑑𝑡𝑡𝑡𝑡 = 1 
+∞

−∞

                                                                                                                           (4) 

� 𝜓𝜓𝜓𝜓(𝑡𝑡𝑡𝑡)𝑑𝑑𝑑𝑑𝑡𝑡𝑡𝑡 = 1 
+∞

−∞

                                                                                                                           (5) 

A time series such as x(t) defined at 𝐿𝐿𝐿𝐿2(𝑅𝑅𝑅𝑅)3 can be expressed in terms of wavelet functions 
as in equation (6): 

𝑥𝑥𝑥𝑥(𝑡𝑡𝑡𝑡) = � 𝑆𝑆𝑆𝑆𝐽𝐽𝐽𝐽,𝑘𝑘𝑘𝑘Ø𝐽𝐽𝐽𝐽,𝑘𝑘𝑘𝑘(𝑡𝑡𝑡𝑡)
2𝑗𝑗𝑗𝑗−1

𝑘𝑘𝑘𝑘𝑘𝑘

+ � � 𝑑𝑑𝑑𝑑𝑗𝑗𝑗𝑗,𝑘𝑘𝑘𝑘 
𝑘𝑘𝑘𝑘𝑗𝑗𝑗𝑗−1

𝑘𝑘𝑘𝑘𝑘𝑘

𝐽𝐽𝐽𝐽

𝑗𝑗𝑗𝑗𝑘1

𝜓𝜓𝜓𝜓𝑗𝑗𝑗𝑗,𝑘𝑘𝑘𝑘(𝑡𝑡𝑡𝑡)                                                                      (6) 

Here it is defined as𝑆𝑆𝑆𝑆𝐽𝐽𝐽𝐽,𝑘𝑘𝑘𝑘 = ∫ 𝑡𝑡𝑡𝑡(𝑡𝑡𝑡𝑡)Ø𝐽𝐽𝐽𝐽,𝑘𝑘𝑘𝑘(𝑡𝑡𝑡𝑡)𝑑𝑑𝑑𝑑𝑡𝑡𝑡𝑡 = 1 +∞
−∞ ve 𝑑𝑑𝑑𝑑𝑗𝑗𝑗𝑗,𝑘𝑘𝑘𝑘 = ∫ 𝑥𝑥𝑥𝑥(𝑡𝑡𝑡𝑡)𝜓𝜓𝜓𝜓𝑗𝑗𝑗𝑗,𝑘𝑘𝑘𝑘(𝑡𝑡𝑡𝑡)𝑑𝑑𝑑𝑑𝑡𝑡𝑡𝑡 = 1 +∞

−∞ . 𝑆𝑆𝑆𝑆𝐽𝐽𝐽𝐽,𝑘𝑘𝑘𝑘, 
are called smooth coefficients, while 𝑑𝑑𝑑𝑑𝑗𝑗𝑗𝑗,𝑘𝑘𝑘𝑘 are called detail functions. The sizes of these 
coefficients show the share of wavelet functions in the total data. In the expression in 
Equation (7); 

𝑆𝑆𝑆𝑆𝑡𝑡𝑡𝑡(𝑡𝑡𝑡𝑡) = � 𝑆𝑆𝑆𝑆𝐽𝐽𝐽𝐽,𝑘𝑘𝑘𝑘Ø𝐽𝐽𝐽𝐽,𝑘𝑘𝑘𝑘(𝑡𝑡𝑡𝑡)  
2𝑗𝑗𝑗𝑗−1

𝑘𝑘𝑘𝑘𝑘𝑘

                                                                                                            (7) 

ve  

𝐷𝐷𝐷𝐷𝑗𝑗𝑗𝑗(𝑡𝑡𝑡𝑡) = � 𝑑𝑑𝑑𝑑𝑗𝑗𝑗𝑗,𝑘𝑘𝑘𝑘

2𝑗𝑗𝑗𝑗−1

𝑘𝑘𝑘𝑘𝑘𝑘

𝜓𝜓𝜓𝜓𝑗𝑗𝑗𝑗,𝑘𝑘𝑘𝑘(𝑡𝑡𝑡𝑡), 𝑗𝑗𝑗𝑗 = 1,2, … . . , 𝐽𝐽𝐽𝐽                                                                                 (8) 

When defined as x(t) time series can be re-expressed as in equation (9): 

 (4)

In wavelet analysis, a time series can be decomposed into different time scales by 
applying wavelet transformation. Father wavelet in wavelet analysis Two basic functions 
are defined: mother wavelet and mother wavelet. The father wavelet contains the low-
frequency components of the original series and shows the trend of the series; The mother 
wavelet contains the high-frequency components of the series and shows deviations from 
the trend, in other words, it reflects the details in the data (Crowley, 2007). The father  
wavelet and mother wavelet can be defined as in equation (2) and equation (3), 
respectively (Ramsey and Lampart, 1998): 

Ø𝑗𝑗𝑗𝑗,𝑘𝑘𝑘𝑘(𝑡𝑡𝑡𝑡) = 2−
1
2 Ø�2−𝑗𝑗𝑗𝑗 ∗ 𝑡𝑡𝑡𝑡 𝑡 𝑡𝑡𝑡𝑡𝑡, 𝑗𝑗𝑗𝑗 = 1,2, … , 𝐽𝐽𝐽𝐽; 𝑡𝑡𝑡𝑡 = 0,1, … , 2𝑗𝑗𝑗𝑗 𝑡 1                                       (2) 

𝜓𝜓𝜓𝜓𝑗𝑗𝑗𝑗,𝑘𝑘𝑘𝑘(𝑡𝑡𝑡𝑡) = 2−
𝑗𝑗𝑗𝑗
2𝜓𝜓𝜓𝜓�2−𝑗𝑗𝑗𝑗 ∗ 𝑡𝑡𝑡𝑡 𝑡 𝑡𝑡𝑡𝑡𝑡, 𝑗𝑗𝑗𝑗 = 1,2, … . , 𝐽𝐽𝐽𝐽; 𝑡𝑡𝑡𝑡 = 1, … . , 2𝑗𝑗𝑗𝑗 𝑡 1                                       (3) 

Wavelet functions depend on the scale or frequency parameter j and the location 
parameter k. Although 2𝑗𝑗𝑗𝑗, is called the scale, it can be treated as a measure of the width 
of the Ø𝑗𝑗𝑗𝑗,𝑘𝑘𝑘𝑘(t) function. Accordingly, as the values of j increase, the function becomes 
shorter and spreads further. The scale parameter determines the size of the wavelet, while 
the position parameter sets the location of the wavelet. A scale parameter ranging from 1 
to J means that the time series is decomposed at J different levels according to the highest 
time scale J. Ø(.) ve 𝜓𝜓𝜓𝜓(.), (-∞,∞)  are real-valued functions defined on the real axis, and 
it is assumed that these functions meet the normalization conditions defined in equations 
(4) and (5): 

� Ø(𝑡𝑡𝑡𝑡)𝑑𝑑𝑑𝑑𝑡𝑡𝑡𝑡 = 1 
+∞

−∞

                                                                                                                           (4) 

� 𝜓𝜓𝜓𝜓(𝑡𝑡𝑡𝑡)𝑑𝑑𝑑𝑑𝑡𝑡𝑡𝑡 = 1 
+∞

−∞

                                                                                                                           (5) 

A time series such as x(t) defined at 𝐿𝐿𝐿𝐿2(𝑅𝑅𝑅𝑅)3 can be expressed in terms of wavelet functions 
as in equation (6): 

𝑥𝑥𝑥𝑥(𝑡𝑡𝑡𝑡) = � 𝑆𝑆𝑆𝑆𝐽𝐽𝐽𝐽,𝑘𝑘𝑘𝑘Ø𝐽𝐽𝐽𝐽,𝑘𝑘𝑘𝑘(𝑡𝑡𝑡𝑡)
2𝑗𝑗𝑗𝑗−1

𝑘𝑘𝑘𝑘𝑘𝑘

+ � � 𝑑𝑑𝑑𝑑𝑗𝑗𝑗𝑗,𝑘𝑘𝑘𝑘 
𝑘𝑘𝑘𝑘𝑗𝑗𝑗𝑗−1

𝑘𝑘𝑘𝑘𝑘𝑘

𝐽𝐽𝐽𝐽

𝑗𝑗𝑗𝑗𝑘1

𝜓𝜓𝜓𝜓𝑗𝑗𝑗𝑗,𝑘𝑘𝑘𝑘(𝑡𝑡𝑡𝑡)                                                                      (6) 

Here it is defined as𝑆𝑆𝑆𝑆𝐽𝐽𝐽𝐽,𝑘𝑘𝑘𝑘 = ∫ 𝑡𝑡𝑡𝑡(𝑡𝑡𝑡𝑡)Ø𝐽𝐽𝐽𝐽,𝑘𝑘𝑘𝑘(𝑡𝑡𝑡𝑡)𝑑𝑑𝑑𝑑𝑡𝑡𝑡𝑡 = 1 +∞
−∞ ve 𝑑𝑑𝑑𝑑𝑗𝑗𝑗𝑗,𝑘𝑘𝑘𝑘 = ∫ 𝑥𝑥𝑥𝑥(𝑡𝑡𝑡𝑡)𝜓𝜓𝜓𝜓𝑗𝑗𝑗𝑗,𝑘𝑘𝑘𝑘(𝑡𝑡𝑡𝑡)𝑑𝑑𝑑𝑑𝑡𝑡𝑡𝑡 = 1 +∞

−∞ . 𝑆𝑆𝑆𝑆𝐽𝐽𝐽𝐽,𝑘𝑘𝑘𝑘, 
are called smooth coefficients, while 𝑑𝑑𝑑𝑑𝑗𝑗𝑗𝑗,𝑘𝑘𝑘𝑘 are called detail functions. The sizes of these 
coefficients show the share of wavelet functions in the total data. In the expression in 
Equation (7); 

𝑆𝑆𝑆𝑆𝑡𝑡𝑡𝑡(𝑡𝑡𝑡𝑡) = � 𝑆𝑆𝑆𝑆𝐽𝐽𝐽𝐽,𝑘𝑘𝑘𝑘Ø𝐽𝐽𝐽𝐽,𝑘𝑘𝑘𝑘(𝑡𝑡𝑡𝑡)  
2𝑗𝑗𝑗𝑗−1

𝑘𝑘𝑘𝑘𝑘𝑘

                                                                                                            (7) 

ve  

𝐷𝐷𝐷𝐷𝑗𝑗𝑗𝑗(𝑡𝑡𝑡𝑡) = � 𝑑𝑑𝑑𝑑𝑗𝑗𝑗𝑗,𝑘𝑘𝑘𝑘

2𝑗𝑗𝑗𝑗−1

𝑘𝑘𝑘𝑘𝑘𝑘

𝜓𝜓𝜓𝜓𝑗𝑗𝑗𝑗,𝑘𝑘𝑘𝑘(𝑡𝑡𝑡𝑡), 𝑗𝑗𝑗𝑗 = 1,2, … . . , 𝐽𝐽𝐽𝐽                                                                                 (8) 

When defined as x(t) time series can be re-expressed as in equation (9): 

    (5)

A time series such as x(t) defined at  

In wavelet analysis, a time series can be decomposed into different time scales by 
applying wavelet transformation. Father wavelet in wavelet analysis Two basic functions 
are defined: mother wavelet and mother wavelet. The father wavelet contains the low-
frequency components of the original series and shows the trend of the series; The mother 
wavelet contains the high-frequency components of the series and shows deviations from 
the trend, in other words, it reflects the details in the data (Crowley, 2007). The father  
wavelet and mother wavelet can be defined as in equation (2) and equation (3), 
respectively (Ramsey and Lampart, 1998): 

Ø𝑗𝑗𝑗𝑗,𝑘𝑘𝑘𝑘(𝑡𝑡𝑡𝑡) = 2−
1
2 Ø�2−𝑗𝑗𝑗𝑗 ∗ 𝑡𝑡𝑡𝑡 𝑡 𝑡𝑡𝑡𝑡𝑡, 𝑗𝑗𝑗𝑗 = 1,2, … , 𝐽𝐽𝐽𝐽; 𝑡𝑡𝑡𝑡 = 0,1, … , 2𝑗𝑗𝑗𝑗 𝑡 1                                       (2) 

𝜓𝜓𝜓𝜓𝑗𝑗𝑗𝑗,𝑘𝑘𝑘𝑘(𝑡𝑡𝑡𝑡) = 2−
𝑗𝑗𝑗𝑗
2𝜓𝜓𝜓𝜓�2−𝑗𝑗𝑗𝑗 ∗ 𝑡𝑡𝑡𝑡 𝑡 𝑡𝑡𝑡𝑡𝑡, 𝑗𝑗𝑗𝑗 = 1,2, … . , 𝐽𝐽𝐽𝐽; 𝑡𝑡𝑡𝑡 = 1, … . , 2𝑗𝑗𝑗𝑗 𝑡 1                                       (3) 

Wavelet functions depend on the scale or frequency parameter j and the location 
parameter k. Although 2𝑗𝑗𝑗𝑗, is called the scale, it can be treated as a measure of the width 
of the Ø𝑗𝑗𝑗𝑗,𝑘𝑘𝑘𝑘(t) function. Accordingly, as the values of j increase, the function becomes 
shorter and spreads further. The scale parameter determines the size of the wavelet, while 
the position parameter sets the location of the wavelet. A scale parameter ranging from 1 
to J means that the time series is decomposed at J different levels according to the highest 
time scale J. Ø(.) ve 𝜓𝜓𝜓𝜓(.), (-∞,∞)  are real-valued functions defined on the real axis, and 
it is assumed that these functions meet the normalization conditions defined in equations 
(4) and (5): 

� Ø(𝑡𝑡𝑡𝑡)𝑑𝑑𝑑𝑑𝑡𝑡𝑡𝑡 = 1 
+∞

−∞

                                                                                                                           (4) 

� 𝜓𝜓𝜓𝜓(𝑡𝑡𝑡𝑡)𝑑𝑑𝑑𝑑𝑡𝑡𝑡𝑡 = 1 
+∞

−∞

                                                                                                                           (5) 

A time series such as x(t) defined at 𝐿𝐿𝐿𝐿2(𝑅𝑅𝑅𝑅)3 can be expressed in terms of wavelet functions 
as in equation (6): 

𝑥𝑥𝑥𝑥(𝑡𝑡𝑡𝑡) = � 𝑆𝑆𝑆𝑆𝐽𝐽𝐽𝐽,𝑘𝑘𝑘𝑘Ø𝐽𝐽𝐽𝐽,𝑘𝑘𝑘𝑘(𝑡𝑡𝑡𝑡)
2𝑗𝑗𝑗𝑗−1

𝑘𝑘𝑘𝑘𝑘𝑘

+ � � 𝑑𝑑𝑑𝑑𝑗𝑗𝑗𝑗,𝑘𝑘𝑘𝑘 
𝑘𝑘𝑘𝑘𝑗𝑗𝑗𝑗−1

𝑘𝑘𝑘𝑘𝑘𝑘

𝐽𝐽𝐽𝐽

𝑗𝑗𝑗𝑗𝑘1

𝜓𝜓𝜓𝜓𝑗𝑗𝑗𝑗,𝑘𝑘𝑘𝑘(𝑡𝑡𝑡𝑡)                                                                      (6) 

Here it is defined as𝑆𝑆𝑆𝑆𝐽𝐽𝐽𝐽,𝑘𝑘𝑘𝑘 = ∫ 𝑡𝑡𝑡𝑡(𝑡𝑡𝑡𝑡)Ø𝐽𝐽𝐽𝐽,𝑘𝑘𝑘𝑘(𝑡𝑡𝑡𝑡)𝑑𝑑𝑑𝑑𝑡𝑡𝑡𝑡 = 1 +∞
−∞ ve 𝑑𝑑𝑑𝑑𝑗𝑗𝑗𝑗,𝑘𝑘𝑘𝑘 = ∫ 𝑥𝑥𝑥𝑥(𝑡𝑡𝑡𝑡)𝜓𝜓𝜓𝜓𝑗𝑗𝑗𝑗,𝑘𝑘𝑘𝑘(𝑡𝑡𝑡𝑡)𝑑𝑑𝑑𝑑𝑡𝑡𝑡𝑡 = 1 +∞

−∞ . 𝑆𝑆𝑆𝑆𝐽𝐽𝐽𝐽,𝑘𝑘𝑘𝑘, 
are called smooth coefficients, while 𝑑𝑑𝑑𝑑𝑗𝑗𝑗𝑗,𝑘𝑘𝑘𝑘 are called detail functions. The sizes of these 
coefficients show the share of wavelet functions in the total data. In the expression in 
Equation (7); 

𝑆𝑆𝑆𝑆𝑡𝑡𝑡𝑡(𝑡𝑡𝑡𝑡) = � 𝑆𝑆𝑆𝑆𝐽𝐽𝐽𝐽,𝑘𝑘𝑘𝑘Ø𝐽𝐽𝐽𝐽,𝑘𝑘𝑘𝑘(𝑡𝑡𝑡𝑡)  
2𝑗𝑗𝑗𝑗−1

𝑘𝑘𝑘𝑘𝑘𝑘

                                                                                                            (7) 

ve  

𝐷𝐷𝐷𝐷𝑗𝑗𝑗𝑗(𝑡𝑡𝑡𝑡) = � 𝑑𝑑𝑑𝑑𝑗𝑗𝑗𝑗,𝑘𝑘𝑘𝑘

2𝑗𝑗𝑗𝑗−1

𝑘𝑘𝑘𝑘𝑘𝑘

𝜓𝜓𝜓𝜓𝑗𝑗𝑗𝑗,𝑘𝑘𝑘𝑘(𝑡𝑡𝑡𝑡), 𝑗𝑗𝑗𝑗 = 1,2, … . . , 𝐽𝐽𝐽𝐽                                                                                 (8) 

When defined as x(t) time series can be re-expressed as in equation (9): 

 can be expressed in terms of wavelet functions as in equation (6):

In wavelet analysis, a time series can be decomposed into different time scales by 
applying wavelet transformation. Father wavelet in wavelet analysis Two basic functions 
are defined: mother wavelet and mother wavelet. The father wavelet contains the low-
frequency components of the original series and shows the trend of the series; The mother 
wavelet contains the high-frequency components of the series and shows deviations from 
the trend, in other words, it reflects the details in the data (Crowley, 2007). The father  
wavelet and mother wavelet can be defined as in equation (2) and equation (3), 
respectively (Ramsey and Lampart, 1998): 

Ø𝑗𝑗𝑗𝑗,𝑘𝑘𝑘𝑘(𝑡𝑡𝑡𝑡) = 2−
1
2 Ø�2−𝑗𝑗𝑗𝑗 ∗ 𝑡𝑡𝑡𝑡 𝑡 𝑡𝑡𝑡𝑡𝑡, 𝑗𝑗𝑗𝑗 = 1,2, … , 𝐽𝐽𝐽𝐽; 𝑡𝑡𝑡𝑡 = 0,1, … , 2𝑗𝑗𝑗𝑗 𝑡 1                                       (2) 

𝜓𝜓𝜓𝜓𝑗𝑗𝑗𝑗,𝑘𝑘𝑘𝑘(𝑡𝑡𝑡𝑡) = 2−
𝑗𝑗𝑗𝑗
2𝜓𝜓𝜓𝜓�2−𝑗𝑗𝑗𝑗 ∗ 𝑡𝑡𝑡𝑡 𝑡 𝑡𝑡𝑡𝑡𝑡, 𝑗𝑗𝑗𝑗 = 1,2, … . , 𝐽𝐽𝐽𝐽; 𝑡𝑡𝑡𝑡 = 1, … . , 2𝑗𝑗𝑗𝑗 𝑡 1                                       (3) 

Wavelet functions depend on the scale or frequency parameter j and the location 
parameter k. Although 2𝑗𝑗𝑗𝑗, is called the scale, it can be treated as a measure of the width 
of the Ø𝑗𝑗𝑗𝑗,𝑘𝑘𝑘𝑘(t) function. Accordingly, as the values of j increase, the function becomes 
shorter and spreads further. The scale parameter determines the size of the wavelet, while 
the position parameter sets the location of the wavelet. A scale parameter ranging from 1 
to J means that the time series is decomposed at J different levels according to the highest 
time scale J. Ø(.) ve 𝜓𝜓𝜓𝜓(.), (-∞,∞)  are real-valued functions defined on the real axis, and 
it is assumed that these functions meet the normalization conditions defined in equations 
(4) and (5): 

� Ø(𝑡𝑡𝑡𝑡)𝑑𝑑𝑑𝑑𝑡𝑡𝑡𝑡 = 1 
+∞

−∞

                                                                                                                           (4) 

� 𝜓𝜓𝜓𝜓(𝑡𝑡𝑡𝑡)𝑑𝑑𝑑𝑑𝑡𝑡𝑡𝑡 = 1 
+∞

−∞

                                                                                                                           (5) 

A time series such as x(t) defined at 𝐿𝐿𝐿𝐿2(𝑅𝑅𝑅𝑅)3 can be expressed in terms of wavelet functions 
as in equation (6): 

𝑥𝑥𝑥𝑥(𝑡𝑡𝑡𝑡) = � 𝑆𝑆𝑆𝑆𝐽𝐽𝐽𝐽,𝑘𝑘𝑘𝑘Ø𝐽𝐽𝐽𝐽,𝑘𝑘𝑘𝑘(𝑡𝑡𝑡𝑡)
2𝑗𝑗𝑗𝑗−1

𝑘𝑘𝑘𝑘𝑘𝑘

+ � � 𝑑𝑑𝑑𝑑𝑗𝑗𝑗𝑗,𝑘𝑘𝑘𝑘 
𝑘𝑘𝑘𝑘𝑗𝑗𝑗𝑗−1

𝑘𝑘𝑘𝑘𝑘𝑘

𝐽𝐽𝐽𝐽

𝑗𝑗𝑗𝑗𝑘1

𝜓𝜓𝜓𝜓𝑗𝑗𝑗𝑗,𝑘𝑘𝑘𝑘(𝑡𝑡𝑡𝑡)                                                                      (6) 

Here it is defined as𝑆𝑆𝑆𝑆𝐽𝐽𝐽𝐽,𝑘𝑘𝑘𝑘 = ∫ 𝑡𝑡𝑡𝑡(𝑡𝑡𝑡𝑡)Ø𝐽𝐽𝐽𝐽,𝑘𝑘𝑘𝑘(𝑡𝑡𝑡𝑡)𝑑𝑑𝑑𝑑𝑡𝑡𝑡𝑡 = 1 +∞
−∞ ve 𝑑𝑑𝑑𝑑𝑗𝑗𝑗𝑗,𝑘𝑘𝑘𝑘 = ∫ 𝑥𝑥𝑥𝑥(𝑡𝑡𝑡𝑡)𝜓𝜓𝜓𝜓𝑗𝑗𝑗𝑗,𝑘𝑘𝑘𝑘(𝑡𝑡𝑡𝑡)𝑑𝑑𝑑𝑑𝑡𝑡𝑡𝑡 = 1 +∞

−∞ . 𝑆𝑆𝑆𝑆𝐽𝐽𝐽𝐽,𝑘𝑘𝑘𝑘, 
are called smooth coefficients, while 𝑑𝑑𝑑𝑑𝑗𝑗𝑗𝑗,𝑘𝑘𝑘𝑘 are called detail functions. The sizes of these 
coefficients show the share of wavelet functions in the total data. In the expression in 
Equation (7); 

𝑆𝑆𝑆𝑆𝑡𝑡𝑡𝑡(𝑡𝑡𝑡𝑡) = � 𝑆𝑆𝑆𝑆𝐽𝐽𝐽𝐽,𝑘𝑘𝑘𝑘Ø𝐽𝐽𝐽𝐽,𝑘𝑘𝑘𝑘(𝑡𝑡𝑡𝑡)  
2𝑗𝑗𝑗𝑗−1

𝑘𝑘𝑘𝑘𝑘𝑘

                                                                                                            (7) 

ve  

𝐷𝐷𝐷𝐷𝑗𝑗𝑗𝑗(𝑡𝑡𝑡𝑡) = � 𝑑𝑑𝑑𝑑𝑗𝑗𝑗𝑗,𝑘𝑘𝑘𝑘

2𝑗𝑗𝑗𝑗−1

𝑘𝑘𝑘𝑘𝑘𝑘

𝜓𝜓𝜓𝜓𝑗𝑗𝑗𝑗,𝑘𝑘𝑘𝑘(𝑡𝑡𝑡𝑡), 𝑗𝑗𝑗𝑗 = 1,2, … . . , 𝐽𝐽𝐽𝐽                                                                                 (8) 

When defined as x(t) time series can be re-expressed as in equation (9): 

  (6)

Here it is defined 

In wavelet analysis, a time series can be decomposed into different time scales by 
applying wavelet transformation. Father wavelet in wavelet analysis Two basic functions 
are defined: mother wavelet and mother wavelet. The father wavelet contains the low-
frequency components of the original series and shows the trend of the series; The mother 
wavelet contains the high-frequency components of the series and shows deviations from 
the trend, in other words, it reflects the details in the data (Crowley, 2007). The father  
wavelet and mother wavelet can be defined as in equation (2) and equation (3), 
respectively (Ramsey and Lampart, 1998): 

Ø𝑗𝑗𝑗𝑗,𝑘𝑘𝑘𝑘(𝑡𝑡𝑡𝑡) = 2−
1
2 Ø�2−𝑗𝑗𝑗𝑗 ∗ 𝑡𝑡𝑡𝑡 𝑡 𝑡𝑡𝑡𝑡𝑡, 𝑗𝑗𝑗𝑗 = 1,2, … , 𝐽𝐽𝐽𝐽; 𝑡𝑡𝑡𝑡 = 0,1, … , 2𝑗𝑗𝑗𝑗 𝑡 1                                       (2) 

𝜓𝜓𝜓𝜓𝑗𝑗𝑗𝑗,𝑘𝑘𝑘𝑘(𝑡𝑡𝑡𝑡) = 2−
𝑗𝑗𝑗𝑗
2𝜓𝜓𝜓𝜓�2−𝑗𝑗𝑗𝑗 ∗ 𝑡𝑡𝑡𝑡 𝑡 𝑡𝑡𝑡𝑡𝑡, 𝑗𝑗𝑗𝑗 = 1,2, … . , 𝐽𝐽𝐽𝐽; 𝑡𝑡𝑡𝑡 = 1, … . , 2𝑗𝑗𝑗𝑗 𝑡 1                                       (3) 

Wavelet functions depend on the scale or frequency parameter j and the location 
parameter k. Although 2𝑗𝑗𝑗𝑗, is called the scale, it can be treated as a measure of the width 
of the Ø𝑗𝑗𝑗𝑗,𝑘𝑘𝑘𝑘(t) function. Accordingly, as the values of j increase, the function becomes 
shorter and spreads further. The scale parameter determines the size of the wavelet, while 
the position parameter sets the location of the wavelet. A scale parameter ranging from 1 
to J means that the time series is decomposed at J different levels according to the highest 
time scale J. Ø(.) ve 𝜓𝜓𝜓𝜓(.), (-∞,∞)  are real-valued functions defined on the real axis, and 
it is assumed that these functions meet the normalization conditions defined in equations 
(4) and (5): 

� Ø(𝑡𝑡𝑡𝑡)𝑑𝑑𝑑𝑑𝑡𝑡𝑡𝑡 = 1 
+∞

−∞

                                                                                                                           (4) 

� 𝜓𝜓𝜓𝜓(𝑡𝑡𝑡𝑡)𝑑𝑑𝑑𝑑𝑡𝑡𝑡𝑡 = 1 
+∞

−∞

                                                                                                                           (5) 

A time series such as x(t) defined at 𝐿𝐿𝐿𝐿2(𝑅𝑅𝑅𝑅)3 can be expressed in terms of wavelet functions 
as in equation (6): 

𝑥𝑥𝑥𝑥(𝑡𝑡𝑡𝑡) = � 𝑆𝑆𝑆𝑆𝐽𝐽𝐽𝐽,𝑘𝑘𝑘𝑘Ø𝐽𝐽𝐽𝐽,𝑘𝑘𝑘𝑘(𝑡𝑡𝑡𝑡)
2𝑗𝑗𝑗𝑗−1

𝑘𝑘𝑘𝑘𝑘𝑘

+ � � 𝑑𝑑𝑑𝑑𝑗𝑗𝑗𝑗,𝑘𝑘𝑘𝑘 
𝑘𝑘𝑘𝑘𝑗𝑗𝑗𝑗−1

𝑘𝑘𝑘𝑘𝑘𝑘

𝐽𝐽𝐽𝐽

𝑗𝑗𝑗𝑗𝑘1

𝜓𝜓𝜓𝜓𝑗𝑗𝑗𝑗,𝑘𝑘𝑘𝑘(𝑡𝑡𝑡𝑡)                                                                      (6) 

Here it is defined as𝑆𝑆𝑆𝑆𝐽𝐽𝐽𝐽,𝑘𝑘𝑘𝑘 = ∫ 𝑡𝑡𝑡𝑡(𝑡𝑡𝑡𝑡)Ø𝐽𝐽𝐽𝐽,𝑘𝑘𝑘𝑘(𝑡𝑡𝑡𝑡)𝑑𝑑𝑑𝑑𝑡𝑡𝑡𝑡 = 1 +∞
−∞ ve 𝑑𝑑𝑑𝑑𝑗𝑗𝑗𝑗,𝑘𝑘𝑘𝑘 = ∫ 𝑥𝑥𝑥𝑥(𝑡𝑡𝑡𝑡)𝜓𝜓𝜓𝜓𝑗𝑗𝑗𝑗,𝑘𝑘𝑘𝑘(𝑡𝑡𝑡𝑡)𝑑𝑑𝑑𝑑𝑡𝑡𝑡𝑡 = 1 +∞

−∞ . 𝑆𝑆𝑆𝑆𝐽𝐽𝐽𝐽,𝑘𝑘𝑘𝑘, 
are called smooth coefficients, while 𝑑𝑑𝑑𝑑𝑗𝑗𝑗𝑗,𝑘𝑘𝑘𝑘 are called detail functions. The sizes of these 
coefficients show the share of wavelet functions in the total data. In the expression in 
Equation (7); 

𝑆𝑆𝑆𝑆𝑡𝑡𝑡𝑡(𝑡𝑡𝑡𝑡) = � 𝑆𝑆𝑆𝑆𝐽𝐽𝐽𝐽,𝑘𝑘𝑘𝑘Ø𝐽𝐽𝐽𝐽,𝑘𝑘𝑘𝑘(𝑡𝑡𝑡𝑡)  
2𝑗𝑗𝑗𝑗−1

𝑘𝑘𝑘𝑘𝑘𝑘

                                                                                                            (7) 

ve  

𝐷𝐷𝐷𝐷𝑗𝑗𝑗𝑗(𝑡𝑡𝑡𝑡) = � 𝑑𝑑𝑑𝑑𝑗𝑗𝑗𝑗,𝑘𝑘𝑘𝑘

2𝑗𝑗𝑗𝑗−1

𝑘𝑘𝑘𝑘𝑘𝑘

𝜓𝜓𝜓𝜓𝑗𝑗𝑗𝑗,𝑘𝑘𝑘𝑘(𝑡𝑡𝑡𝑡), 𝑗𝑗𝑗𝑗 = 1,2, … . . , 𝐽𝐽𝐽𝐽                                                                                 (8) 

When defined as x(t) time series can be re-expressed as in equation (9): 

 are called smooth 
coefficients, while 

In wavelet analysis, a time series can be decomposed into different time scales by 
applying wavelet transformation. Father wavelet in wavelet analysis Two basic functions 
are defined: mother wavelet and mother wavelet. The father wavelet contains the low-
frequency components of the original series and shows the trend of the series; The mother 
wavelet contains the high-frequency components of the series and shows deviations from 
the trend, in other words, it reflects the details in the data (Crowley, 2007). The father  
wavelet and mother wavelet can be defined as in equation (2) and equation (3), 
respectively (Ramsey and Lampart, 1998): 

Ø𝑗𝑗𝑗𝑗,𝑘𝑘𝑘𝑘(𝑡𝑡𝑡𝑡) = 2−
1
2 Ø�2−𝑗𝑗𝑗𝑗 ∗ 𝑡𝑡𝑡𝑡 𝑡 𝑡𝑡𝑡𝑡𝑡, 𝑗𝑗𝑗𝑗 = 1,2, … , 𝐽𝐽𝐽𝐽; 𝑡𝑡𝑡𝑡 = 0,1, … , 2𝑗𝑗𝑗𝑗 𝑡 1                                       (2) 

𝜓𝜓𝜓𝜓𝑗𝑗𝑗𝑗,𝑘𝑘𝑘𝑘(𝑡𝑡𝑡𝑡) = 2−
𝑗𝑗𝑗𝑗
2𝜓𝜓𝜓𝜓�2−𝑗𝑗𝑗𝑗 ∗ 𝑡𝑡𝑡𝑡 𝑡 𝑡𝑡𝑡𝑡𝑡, 𝑗𝑗𝑗𝑗 = 1,2, … . , 𝐽𝐽𝐽𝐽; 𝑡𝑡𝑡𝑡 = 1, … . , 2𝑗𝑗𝑗𝑗 𝑡 1                                       (3) 

Wavelet functions depend on the scale or frequency parameter j and the location 
parameter k. Although 2𝑗𝑗𝑗𝑗, is called the scale, it can be treated as a measure of the width 
of the Ø𝑗𝑗𝑗𝑗,𝑘𝑘𝑘𝑘(t) function. Accordingly, as the values of j increase, the function becomes 
shorter and spreads further. The scale parameter determines the size of the wavelet, while 
the position parameter sets the location of the wavelet. A scale parameter ranging from 1 
to J means that the time series is decomposed at J different levels according to the highest 
time scale J. Ø(.) ve 𝜓𝜓𝜓𝜓(.), (-∞,∞)  are real-valued functions defined on the real axis, and 
it is assumed that these functions meet the normalization conditions defined in equations 
(4) and (5): 

� Ø(𝑡𝑡𝑡𝑡)𝑑𝑑𝑑𝑑𝑡𝑡𝑡𝑡 = 1 
+∞

−∞

                                                                                                                           (4) 

� 𝜓𝜓𝜓𝜓(𝑡𝑡𝑡𝑡)𝑑𝑑𝑑𝑑𝑡𝑡𝑡𝑡 = 1 
+∞

−∞

                                                                                                                           (5) 

A time series such as x(t) defined at 𝐿𝐿𝐿𝐿2(𝑅𝑅𝑅𝑅)3 can be expressed in terms of wavelet functions 
as in equation (6): 

𝑥𝑥𝑥𝑥(𝑡𝑡𝑡𝑡) = � 𝑆𝑆𝑆𝑆𝐽𝐽𝐽𝐽,𝑘𝑘𝑘𝑘Ø𝐽𝐽𝐽𝐽,𝑘𝑘𝑘𝑘(𝑡𝑡𝑡𝑡)
2𝑗𝑗𝑗𝑗−1

𝑘𝑘𝑘𝑘𝑘𝑘

+ � � 𝑑𝑑𝑑𝑑𝑗𝑗𝑗𝑗,𝑘𝑘𝑘𝑘 
𝑘𝑘𝑘𝑘𝑗𝑗𝑗𝑗−1

𝑘𝑘𝑘𝑘𝑘𝑘

𝐽𝐽𝐽𝐽

𝑗𝑗𝑗𝑗𝑘1

𝜓𝜓𝜓𝜓𝑗𝑗𝑗𝑗,𝑘𝑘𝑘𝑘(𝑡𝑡𝑡𝑡)                                                                      (6) 

Here it is defined as𝑆𝑆𝑆𝑆𝐽𝐽𝐽𝐽,𝑘𝑘𝑘𝑘 = ∫ 𝑡𝑡𝑡𝑡(𝑡𝑡𝑡𝑡)Ø𝐽𝐽𝐽𝐽,𝑘𝑘𝑘𝑘(𝑡𝑡𝑡𝑡)𝑑𝑑𝑑𝑑𝑡𝑡𝑡𝑡 = 1 +∞
−∞ ve 𝑑𝑑𝑑𝑑𝑗𝑗𝑗𝑗,𝑘𝑘𝑘𝑘 = ∫ 𝑥𝑥𝑥𝑥(𝑡𝑡𝑡𝑡)𝜓𝜓𝜓𝜓𝑗𝑗𝑗𝑗,𝑘𝑘𝑘𝑘(𝑡𝑡𝑡𝑡)𝑑𝑑𝑑𝑑𝑡𝑡𝑡𝑡 = 1 +∞

−∞ . 𝑆𝑆𝑆𝑆𝐽𝐽𝐽𝐽,𝑘𝑘𝑘𝑘, 
are called smooth coefficients, while 𝑑𝑑𝑑𝑑𝑗𝑗𝑗𝑗,𝑘𝑘𝑘𝑘 are called detail functions. The sizes of these 
coefficients show the share of wavelet functions in the total data. In the expression in 
Equation (7); 

𝑆𝑆𝑆𝑆𝑡𝑡𝑡𝑡(𝑡𝑡𝑡𝑡) = � 𝑆𝑆𝑆𝑆𝐽𝐽𝐽𝐽,𝑘𝑘𝑘𝑘Ø𝐽𝐽𝐽𝐽,𝑘𝑘𝑘𝑘(𝑡𝑡𝑡𝑡)  
2𝑗𝑗𝑗𝑗−1

𝑘𝑘𝑘𝑘𝑘𝑘

                                                                                                            (7) 

ve  

𝐷𝐷𝐷𝐷𝑗𝑗𝑗𝑗(𝑡𝑡𝑡𝑡) = � 𝑑𝑑𝑑𝑑𝑗𝑗𝑗𝑗,𝑘𝑘𝑘𝑘

2𝑗𝑗𝑗𝑗−1

𝑘𝑘𝑘𝑘𝑘𝑘

𝜓𝜓𝜓𝜓𝑗𝑗𝑗𝑗,𝑘𝑘𝑘𝑘(𝑡𝑡𝑡𝑡), 𝑗𝑗𝑗𝑗 = 1,2, … . . , 𝐽𝐽𝐽𝐽                                                                                 (8) 

When defined as x(t) time series can be re-expressed as in equation (9): 

 are called detail functions. The sizes of these coefficients show the share of wavelet 
functions in the total data. In the expression in Equation (7);

In wavelet analysis, a time series can be decomposed into different time scales by 
applying wavelet transformation. Father wavelet in wavelet analysis Two basic functions 
are defined: mother wavelet and mother wavelet. The father wavelet contains the low-
frequency components of the original series and shows the trend of the series; The mother 
wavelet contains the high-frequency components of the series and shows deviations from 
the trend, in other words, it reflects the details in the data (Crowley, 2007). The father  
wavelet and mother wavelet can be defined as in equation (2) and equation (3), 
respectively (Ramsey and Lampart, 1998): 

Ø𝑗𝑗𝑗𝑗,𝑘𝑘𝑘𝑘(𝑡𝑡𝑡𝑡) = 2−
1
2 Ø�2−𝑗𝑗𝑗𝑗 ∗ 𝑡𝑡𝑡𝑡 𝑡 𝑡𝑡𝑡𝑡𝑡, 𝑗𝑗𝑗𝑗 = 1,2, … , 𝐽𝐽𝐽𝐽; 𝑡𝑡𝑡𝑡 = 0,1, … , 2𝑗𝑗𝑗𝑗 𝑡 1                                       (2) 

𝜓𝜓𝜓𝜓𝑗𝑗𝑗𝑗,𝑘𝑘𝑘𝑘(𝑡𝑡𝑡𝑡) = 2−
𝑗𝑗𝑗𝑗
2𝜓𝜓𝜓𝜓�2−𝑗𝑗𝑗𝑗 ∗ 𝑡𝑡𝑡𝑡 𝑡 𝑡𝑡𝑡𝑡𝑡, 𝑗𝑗𝑗𝑗 = 1,2, … . , 𝐽𝐽𝐽𝐽; 𝑡𝑡𝑡𝑡 = 1, … . , 2𝑗𝑗𝑗𝑗 𝑡 1                                       (3) 

Wavelet functions depend on the scale or frequency parameter j and the location 
parameter k. Although 2𝑗𝑗𝑗𝑗, is called the scale, it can be treated as a measure of the width 
of the Ø𝑗𝑗𝑗𝑗,𝑘𝑘𝑘𝑘(t) function. Accordingly, as the values of j increase, the function becomes 
shorter and spreads further. The scale parameter determines the size of the wavelet, while 
the position parameter sets the location of the wavelet. A scale parameter ranging from 1 
to J means that the time series is decomposed at J different levels according to the highest 
time scale J. Ø(.) ve 𝜓𝜓𝜓𝜓(.), (-∞,∞)  are real-valued functions defined on the real axis, and 
it is assumed that these functions meet the normalization conditions defined in equations 
(4) and (5): 

� Ø(𝑡𝑡𝑡𝑡)𝑑𝑑𝑑𝑑𝑡𝑡𝑡𝑡 = 1 
+∞

−∞

                                                                                                                           (4) 

� 𝜓𝜓𝜓𝜓(𝑡𝑡𝑡𝑡)𝑑𝑑𝑑𝑑𝑡𝑡𝑡𝑡 = 1 
+∞

−∞

                                                                                                                           (5) 

A time series such as x(t) defined at 𝐿𝐿𝐿𝐿2(𝑅𝑅𝑅𝑅)3 can be expressed in terms of wavelet functions 
as in equation (6): 

𝑥𝑥𝑥𝑥(𝑡𝑡𝑡𝑡) = � 𝑆𝑆𝑆𝑆𝐽𝐽𝐽𝐽,𝑘𝑘𝑘𝑘Ø𝐽𝐽𝐽𝐽,𝑘𝑘𝑘𝑘(𝑡𝑡𝑡𝑡)
2𝑗𝑗𝑗𝑗−1

𝑘𝑘𝑘𝑘𝑘𝑘

+ � � 𝑑𝑑𝑑𝑑𝑗𝑗𝑗𝑗,𝑘𝑘𝑘𝑘 
𝑘𝑘𝑘𝑘𝑗𝑗𝑗𝑗−1

𝑘𝑘𝑘𝑘𝑘𝑘

𝐽𝐽𝐽𝐽

𝑗𝑗𝑗𝑗𝑘1

𝜓𝜓𝜓𝜓𝑗𝑗𝑗𝑗,𝑘𝑘𝑘𝑘(𝑡𝑡𝑡𝑡)                                                                      (6) 

Here it is defined as𝑆𝑆𝑆𝑆𝐽𝐽𝐽𝐽,𝑘𝑘𝑘𝑘 = ∫ 𝑡𝑡𝑡𝑡(𝑡𝑡𝑡𝑡)Ø𝐽𝐽𝐽𝐽,𝑘𝑘𝑘𝑘(𝑡𝑡𝑡𝑡)𝑑𝑑𝑑𝑑𝑡𝑡𝑡𝑡 = 1 +∞
−∞ ve 𝑑𝑑𝑑𝑑𝑗𝑗𝑗𝑗,𝑘𝑘𝑘𝑘 = ∫ 𝑥𝑥𝑥𝑥(𝑡𝑡𝑡𝑡)𝜓𝜓𝜓𝜓𝑗𝑗𝑗𝑗,𝑘𝑘𝑘𝑘(𝑡𝑡𝑡𝑡)𝑑𝑑𝑑𝑑𝑡𝑡𝑡𝑡 = 1 +∞

−∞ . 𝑆𝑆𝑆𝑆𝐽𝐽𝐽𝐽,𝑘𝑘𝑘𝑘, 
are called smooth coefficients, while 𝑑𝑑𝑑𝑑𝑗𝑗𝑗𝑗,𝑘𝑘𝑘𝑘 are called detail functions. The sizes of these 
coefficients show the share of wavelet functions in the total data. In the expression in 
Equation (7); 

𝑆𝑆𝑆𝑆𝑡𝑡𝑡𝑡(𝑡𝑡𝑡𝑡) = � 𝑆𝑆𝑆𝑆𝐽𝐽𝐽𝐽,𝑘𝑘𝑘𝑘Ø𝐽𝐽𝐽𝐽,𝑘𝑘𝑘𝑘(𝑡𝑡𝑡𝑡)  
2𝑗𝑗𝑗𝑗−1

𝑘𝑘𝑘𝑘𝑘𝑘

                                                                                                            (7) 

ve  

𝐷𝐷𝐷𝐷𝑗𝑗𝑗𝑗(𝑡𝑡𝑡𝑡) = � 𝑑𝑑𝑑𝑑𝑗𝑗𝑗𝑗,𝑘𝑘𝑘𝑘

2𝑗𝑗𝑗𝑗−1

𝑘𝑘𝑘𝑘𝑘𝑘

𝜓𝜓𝜓𝜓𝑗𝑗𝑗𝑗,𝑘𝑘𝑘𝑘(𝑡𝑡𝑡𝑡), 𝑗𝑗𝑗𝑗 = 1,2, … . . , 𝐽𝐽𝐽𝐽                                                                                 (8) 

When defined as x(t) time series can be re-expressed as in equation (9): 

 (7)

ve 

In wavelet analysis, a time series can be decomposed into different time scales by 
applying wavelet transformation. Father wavelet in wavelet analysis Two basic functions 
are defined: mother wavelet and mother wavelet. The father wavelet contains the low-
frequency components of the original series and shows the trend of the series; The mother 
wavelet contains the high-frequency components of the series and shows deviations from 
the trend, in other words, it reflects the details in the data (Crowley, 2007). The father  
wavelet and mother wavelet can be defined as in equation (2) and equation (3), 
respectively (Ramsey and Lampart, 1998): 

Ø𝑗𝑗𝑗𝑗,𝑘𝑘𝑘𝑘(𝑡𝑡𝑡𝑡) = 2−
1
2 Ø�2−𝑗𝑗𝑗𝑗 ∗ 𝑡𝑡𝑡𝑡 𝑡 𝑡𝑡𝑡𝑡𝑡, 𝑗𝑗𝑗𝑗 = 1,2, … , 𝐽𝐽𝐽𝐽; 𝑡𝑡𝑡𝑡 = 0,1, … , 2𝑗𝑗𝑗𝑗 𝑡 1                                       (2) 

𝜓𝜓𝜓𝜓𝑗𝑗𝑗𝑗,𝑘𝑘𝑘𝑘(𝑡𝑡𝑡𝑡) = 2−
𝑗𝑗𝑗𝑗
2𝜓𝜓𝜓𝜓�2−𝑗𝑗𝑗𝑗 ∗ 𝑡𝑡𝑡𝑡 𝑡 𝑡𝑡𝑡𝑡𝑡, 𝑗𝑗𝑗𝑗 = 1,2, … . , 𝐽𝐽𝐽𝐽; 𝑡𝑡𝑡𝑡 = 1, … . , 2𝑗𝑗𝑗𝑗 𝑡 1                                       (3) 

Wavelet functions depend on the scale or frequency parameter j and the location 
parameter k. Although 2𝑗𝑗𝑗𝑗, is called the scale, it can be treated as a measure of the width 
of the Ø𝑗𝑗𝑗𝑗,𝑘𝑘𝑘𝑘(t) function. Accordingly, as the values of j increase, the function becomes 
shorter and spreads further. The scale parameter determines the size of the wavelet, while 
the position parameter sets the location of the wavelet. A scale parameter ranging from 1 
to J means that the time series is decomposed at J different levels according to the highest 
time scale J. Ø(.) ve 𝜓𝜓𝜓𝜓(.), (-∞,∞)  are real-valued functions defined on the real axis, and 
it is assumed that these functions meet the normalization conditions defined in equations 
(4) and (5): 

� Ø(𝑡𝑡𝑡𝑡)𝑑𝑑𝑑𝑑𝑡𝑡𝑡𝑡 = 1 
+∞

−∞

                                                                                                                           (4) 

� 𝜓𝜓𝜓𝜓(𝑡𝑡𝑡𝑡)𝑑𝑑𝑑𝑑𝑡𝑡𝑡𝑡 = 1 
+∞

−∞

                                                                                                                           (5) 

A time series such as x(t) defined at 𝐿𝐿𝐿𝐿2(𝑅𝑅𝑅𝑅)3 can be expressed in terms of wavelet functions 
as in equation (6): 

𝑥𝑥𝑥𝑥(𝑡𝑡𝑡𝑡) = � 𝑆𝑆𝑆𝑆𝐽𝐽𝐽𝐽,𝑘𝑘𝑘𝑘Ø𝐽𝐽𝐽𝐽,𝑘𝑘𝑘𝑘(𝑡𝑡𝑡𝑡)
2𝑗𝑗𝑗𝑗−1

𝑘𝑘𝑘𝑘𝑘𝑘

+ � � 𝑑𝑑𝑑𝑑𝑗𝑗𝑗𝑗,𝑘𝑘𝑘𝑘 
𝑘𝑘𝑘𝑘𝑗𝑗𝑗𝑗−1

𝑘𝑘𝑘𝑘𝑘𝑘

𝐽𝐽𝐽𝐽

𝑗𝑗𝑗𝑗𝑘1

𝜓𝜓𝜓𝜓𝑗𝑗𝑗𝑗,𝑘𝑘𝑘𝑘(𝑡𝑡𝑡𝑡)                                                                      (6) 

Here it is defined as𝑆𝑆𝑆𝑆𝐽𝐽𝐽𝐽,𝑘𝑘𝑘𝑘 = ∫ 𝑡𝑡𝑡𝑡(𝑡𝑡𝑡𝑡)Ø𝐽𝐽𝐽𝐽,𝑘𝑘𝑘𝑘(𝑡𝑡𝑡𝑡)𝑑𝑑𝑑𝑑𝑡𝑡𝑡𝑡 = 1 +∞
−∞ ve 𝑑𝑑𝑑𝑑𝑗𝑗𝑗𝑗,𝑘𝑘𝑘𝑘 = ∫ 𝑥𝑥𝑥𝑥(𝑡𝑡𝑡𝑡)𝜓𝜓𝜓𝜓𝑗𝑗𝑗𝑗,𝑘𝑘𝑘𝑘(𝑡𝑡𝑡𝑡)𝑑𝑑𝑑𝑑𝑡𝑡𝑡𝑡 = 1 +∞

−∞ . 𝑆𝑆𝑆𝑆𝐽𝐽𝐽𝐽,𝑘𝑘𝑘𝑘, 
are called smooth coefficients, while 𝑑𝑑𝑑𝑑𝑗𝑗𝑗𝑗,𝑘𝑘𝑘𝑘 are called detail functions. The sizes of these 
coefficients show the share of wavelet functions in the total data. In the expression in 
Equation (7); 

𝑆𝑆𝑆𝑆𝑡𝑡𝑡𝑡(𝑡𝑡𝑡𝑡) = � 𝑆𝑆𝑆𝑆𝐽𝐽𝐽𝐽,𝑘𝑘𝑘𝑘Ø𝐽𝐽𝐽𝐽,𝑘𝑘𝑘𝑘(𝑡𝑡𝑡𝑡)  
2𝑗𝑗𝑗𝑗−1

𝑘𝑘𝑘𝑘𝑘𝑘

                                                                                                            (7) 

ve  

𝐷𝐷𝐷𝐷𝑗𝑗𝑗𝑗(𝑡𝑡𝑡𝑡) = � 𝑑𝑑𝑑𝑑𝑗𝑗𝑗𝑗,𝑘𝑘𝑘𝑘

2𝑗𝑗𝑗𝑗−1

𝑘𝑘𝑘𝑘𝑘𝑘

𝜓𝜓𝜓𝜓𝑗𝑗𝑗𝑗,𝑘𝑘𝑘𝑘(𝑡𝑡𝑡𝑡), 𝑗𝑗𝑗𝑗 = 1,2, … . . , 𝐽𝐽𝐽𝐽                                                                                 (8) 

When defined as x(t) time series can be re-expressed as in equation (9): 

 (8)

When defined as x(t) time series can be re-expressed as in equation (9):

𝑥𝑥𝑥𝑥(𝑡𝑡𝑡𝑡) = 𝑆𝑆𝑆𝑆𝐽𝐽𝐽𝐽(𝑡𝑡𝑡𝑡) + �𝐷𝐷𝐷𝐷𝑗𝑗𝑗𝑗(𝑡𝑡𝑡𝑡)
𝐽𝐽𝐽𝐽

𝑗𝑗𝑗𝑗=1

                                                                                                            (9) 

Here, 𝑆𝑆𝑆𝑆𝐽𝐽𝐽𝐽(𝑡𝑡𝑡𝑡),  reflects the trend of the data; because it is the component of the highest level 
time scale. 𝐷𝐷𝐷𝐷𝑗𝑗𝑗𝑗(𝑡𝑡𝑡𝑡) = (𝐷𝐷𝐷𝐷1(𝑡𝑡𝑡𝑡),𝐷𝐷𝐷𝐷2(𝑡𝑡𝑡𝑡), … … … … … … ,𝐷𝐷𝐷𝐷𝐽𝐽𝐽𝐽(𝑡𝑡𝑡𝑡)) are the details containing the 
fluctuations in the data on 2-4, 4-8,…..,2𝐽𝐽𝐽𝐽 − 2𝐽𝐽𝐽𝐽+1 time scales, respectively. 
Small values of j correspond to the low time scale, thus representing the high-frequency 
components of 𝑥𝑥𝑥𝑥(𝑡𝑡𝑡𝑡), while large values of j correspond to the high time scale, and thus 
represent the low-frequency components of 𝑥𝑥𝑥𝑥(𝑡𝑡𝑡𝑡). Since 𝐷𝐷𝐷𝐷𝑗𝑗𝑗𝑗, includes cyclical movements 
between coefficients 2𝐽𝐽𝐽𝐽 − 2𝐽𝐽𝐽𝐽+1, in period 𝐷𝐷𝐷𝐷1, 2-4; In period 𝐷𝐷𝐷𝐷2, 4-8, etc. Includes cyclic 
movements. 
Discrete wavelet transformation can be applied to obtain wavelet coefficients (smooth 
and detailed coefficients). In discrete wavelet transform (DWT), the researcher 
determines how many different time scales the time series will be decomposed according 
to the number of observations. Moreover, in DWT, it is stated that the number of 
observations must have a dyadic feature, in other words, it must be an integer that is a 
multiple of two. Since this feature of DWT is restrictive in determining time scales in 
applications, "maximum overlap discrete wavelet transform (MODWT)", a type of 
discrete wavelet transform, is generally applied instead of DWT. On the other hand, any 
sample size can be used for MODWT, it does not have to be dyadic. In this study, 
MODWT will be used to obtain wavelet coefficients due to the restrictive assumptions of 
DWT. 
Wavelet filters with different features (D(4), D(8), LA(8) and Haar wavelet) can be used 
to obtain wavelet coefficients with MODWT (Gençay et al., 2002: 113-116). Gençay et 
al. (2002, 2010) and Cornish et al. (2006) and others and frequently used in the literature 
is LA(8) (least asymmetric wavelet filter of length eight). This is because the LA(8) filter 
produces smoother and uncorrelated wavelet coefficients than other filters. 
In the study, after the wavelet coefficients based on MODWT were calculated for the 
returns of each variable, the return series were calculated according to four different time 
scales (𝐷𝐷𝐷𝐷1-2-4 months, 𝐷𝐷𝐷𝐷2-4-8 months, 𝐷𝐷𝐷𝐷3-8-16 months, Dg=16-32 months, Sg) was 
isolated. Cycle times for different time scales are defined in Table 2: 
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Here, 

𝑥𝑥𝑥𝑥(𝑡𝑡𝑡𝑡) = 𝑆𝑆𝑆𝑆𝐽𝐽𝐽𝐽(𝑡𝑡𝑡𝑡) + �𝐷𝐷𝐷𝐷𝑗𝑗𝑗𝑗(𝑡𝑡𝑡𝑡)
𝐽𝐽𝐽𝐽

𝑗𝑗𝑗𝑗=1

                                                                                                            (9) 

Here, 𝑆𝑆𝑆𝑆𝐽𝐽𝐽𝐽(𝑡𝑡𝑡𝑡),  reflects the trend of the data; because it is the component of the highest level 
time scale. 𝐷𝐷𝐷𝐷𝑗𝑗𝑗𝑗(𝑡𝑡𝑡𝑡) = (𝐷𝐷𝐷𝐷1(𝑡𝑡𝑡𝑡),𝐷𝐷𝐷𝐷2(𝑡𝑡𝑡𝑡), … … … … … … ,𝐷𝐷𝐷𝐷𝐽𝐽𝐽𝐽(𝑡𝑡𝑡𝑡)) are the details containing the 
fluctuations in the data on 2-4, 4-8,…..,2𝐽𝐽𝐽𝐽 − 2𝐽𝐽𝐽𝐽+1 time scales, respectively. 
Small values of j correspond to the low time scale, thus representing the high-frequency 
components of 𝑥𝑥𝑥𝑥(𝑡𝑡𝑡𝑡), while large values of j correspond to the high time scale, and thus 
represent the low-frequency components of 𝑥𝑥𝑥𝑥(𝑡𝑡𝑡𝑡). Since 𝐷𝐷𝐷𝐷𝑗𝑗𝑗𝑗, includes cyclical movements 
between coefficients 2𝐽𝐽𝐽𝐽 − 2𝐽𝐽𝐽𝐽+1, in period 𝐷𝐷𝐷𝐷1, 2-4; In period 𝐷𝐷𝐷𝐷2, 4-8, etc. Includes cyclic 
movements. 
Discrete wavelet transformation can be applied to obtain wavelet coefficients (smooth 
and detailed coefficients). In discrete wavelet transform (DWT), the researcher 
determines how many different time scales the time series will be decomposed according 
to the number of observations. Moreover, in DWT, it is stated that the number of 
observations must have a dyadic feature, in other words, it must be an integer that is a 
multiple of two. Since this feature of DWT is restrictive in determining time scales in 
applications, "maximum overlap discrete wavelet transform (MODWT)", a type of 
discrete wavelet transform, is generally applied instead of DWT. On the other hand, any 
sample size can be used for MODWT, it does not have to be dyadic. In this study, 
MODWT will be used to obtain wavelet coefficients due to the restrictive assumptions of 
DWT. 
Wavelet filters with different features (D(4), D(8), LA(8) and Haar wavelet) can be used 
to obtain wavelet coefficients with MODWT (Gençay et al., 2002: 113-116). Gençay et 
al. (2002, 2010) and Cornish et al. (2006) and others and frequently used in the literature 
is LA(8) (least asymmetric wavelet filter of length eight). This is because the LA(8) filter 
produces smoother and uncorrelated wavelet coefficients than other filters. 
In the study, after the wavelet coefficients based on MODWT were calculated for the 
returns of each variable, the return series were calculated according to four different time 
scales (𝐷𝐷𝐷𝐷1-2-4 months, 𝐷𝐷𝐷𝐷2-4-8 months, 𝐷𝐷𝐷𝐷3-8-16 months, Dg=16-32 months, Sg) was 
isolated. Cycle times for different time scales are defined in Table 2: 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

  reflects the trend of the data; because it is the component of the highest level time scale.  

𝑥𝑥𝑥𝑥(𝑡𝑡𝑡𝑡) = 𝑆𝑆𝑆𝑆𝐽𝐽𝐽𝐽(𝑡𝑡𝑡𝑡) + �𝐷𝐷𝐷𝐷𝑗𝑗𝑗𝑗(𝑡𝑡𝑡𝑡)
𝐽𝐽𝐽𝐽

𝑗𝑗𝑗𝑗=1

                                                                                                            (9) 

Here, 𝑆𝑆𝑆𝑆𝐽𝐽𝐽𝐽(𝑡𝑡𝑡𝑡),  reflects the trend of the data; because it is the component of the highest level 
time scale. 𝐷𝐷𝐷𝐷𝑗𝑗𝑗𝑗(𝑡𝑡𝑡𝑡) = (𝐷𝐷𝐷𝐷1(𝑡𝑡𝑡𝑡),𝐷𝐷𝐷𝐷2(𝑡𝑡𝑡𝑡), … … … … … … ,𝐷𝐷𝐷𝐷𝐽𝐽𝐽𝐽(𝑡𝑡𝑡𝑡)) are the details containing the 
fluctuations in the data on 2-4, 4-8,…..,2𝐽𝐽𝐽𝐽 − 2𝐽𝐽𝐽𝐽+1 time scales, respectively. 
Small values of j correspond to the low time scale, thus representing the high-frequency 
components of 𝑥𝑥𝑥𝑥(𝑡𝑡𝑡𝑡), while large values of j correspond to the high time scale, and thus 
represent the low-frequency components of 𝑥𝑥𝑥𝑥(𝑡𝑡𝑡𝑡). Since 𝐷𝐷𝐷𝐷𝑗𝑗𝑗𝑗, includes cyclical movements 
between coefficients 2𝐽𝐽𝐽𝐽 − 2𝐽𝐽𝐽𝐽+1, in period 𝐷𝐷𝐷𝐷1, 2-4; In period 𝐷𝐷𝐷𝐷2, 4-8, etc. Includes cyclic 
movements. 
Discrete wavelet transformation can be applied to obtain wavelet coefficients (smooth 
and detailed coefficients). In discrete wavelet transform (DWT), the researcher 
determines how many different time scales the time series will be decomposed according 
to the number of observations. Moreover, in DWT, it is stated that the number of 
observations must have a dyadic feature, in other words, it must be an integer that is a 
multiple of two. Since this feature of DWT is restrictive in determining time scales in 
applications, "maximum overlap discrete wavelet transform (MODWT)", a type of 
discrete wavelet transform, is generally applied instead of DWT. On the other hand, any 
sample size can be used for MODWT, it does not have to be dyadic. In this study, 
MODWT will be used to obtain wavelet coefficients due to the restrictive assumptions of 
DWT. 
Wavelet filters with different features (D(4), D(8), LA(8) and Haar wavelet) can be used 
to obtain wavelet coefficients with MODWT (Gençay et al., 2002: 113-116). Gençay et 
al. (2002, 2010) and Cornish et al. (2006) and others and frequently used in the literature 
is LA(8) (least asymmetric wavelet filter of length eight). This is because the LA(8) filter 
produces smoother and uncorrelated wavelet coefficients than other filters. 
In the study, after the wavelet coefficients based on MODWT were calculated for the 
returns of each variable, the return series were calculated according to four different time 
scales (𝐷𝐷𝐷𝐷1-2-4 months, 𝐷𝐷𝐷𝐷2-4-8 months, 𝐷𝐷𝐷𝐷3-8-16 months, Dg=16-32 months, Sg) was 
isolated. Cycle times for different time scales are defined in Table 2: 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

are the details containing the fluctuations in the data on 

𝑥𝑥𝑥𝑥(𝑡𝑡𝑡𝑡) = 𝑆𝑆𝑆𝑆𝐽𝐽𝐽𝐽(𝑡𝑡𝑡𝑡) + �𝐷𝐷𝐷𝐷𝑗𝑗𝑗𝑗(𝑡𝑡𝑡𝑡)
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sample size can be used for MODWT, it does not have to be dyadic. In this study, 
MODWT will be used to obtain wavelet coefficients due to the restrictive assumptions of 
DWT. 
Wavelet filters with different features (D(4), D(8), LA(8) and Haar wavelet) can be used 
to obtain wavelet coefficients with MODWT (Gençay et al., 2002: 113-116). Gençay et 
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produces smoother and uncorrelated wavelet coefficients than other filters. 
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produces smoother and uncorrelated wavelet coefficients than other filters. 
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Table 2. Wavelet Analysis Time Horizons According to the Multiple Scale MethodTable 2. Wavelet Analysis Time Horizons According to the Multiple Scale Method 
 

Scales 
(𝟐𝟐𝟐𝟐𝒋𝒋𝒋𝒋) Annual Frequency Monthly Frequency Daily Frequency 

1 21 2-4 2-4 2-4 
2 22 4-8 4-8 4-8 

3 23 8-16 8-16 
(8 months-1 year 4 months) 8-16 

4 24 16-32 
16-32 

(1 years 4 months-2 years 8 
months) 

16-32 
(3 weeks 1 day-6 weeks 2 day) 

5 25 32-64 
32-64 

(2 years 8 months-5 years 4 
months) 

32-64 
(6 weeks 2 day-12 weeks 4 day) 

6 26 64-128 
64-128 

(5 years 4 months-10 years 8 
months) 

64-128 
(12 weeks 4 day-25 weeks 3 day) 

7 27 128-256 
128-256 

(10 years 8 months-21 years 
4 months) 

128-256 
(25 weeks 3 day- 51 weeks 1 day) 

8 28 256-512 ….. …. 
 
Source: Crowly (2007:214). Theoretically, the maximum number of scales is expressed as 9. In the case 
where the scale number is indicated by j (j = 9), the frequencies are calculated using 2j notation.  

Considering the scale frequencies given in Table 2; After a wavelet analysis is performed, 
predictions will be made for the specified number of scales and coefficients will be 
estimated for various investment horizons. The time scales in Table 2 are grouped as 
follows: (𝐷𝐷𝐷𝐷1 − 𝐷𝐷𝐷𝐷2 − 𝐷𝐷𝐷𝐷3): short term; (𝐷𝐷𝐷𝐷4 − 𝐷𝐷𝐷𝐷5 − 𝐷𝐷𝐷𝐷6): medium term; (𝐷𝐷𝐷𝐷7 − 𝐷𝐷𝐷𝐷8 − 𝑆𝑆𝑆𝑆8): 
long term. This type of grouping was made to examine how the movements of investors 
with short, medium and long-term investment horizons develop according to different 
time scales. Short-term investment horizons (𝐷𝐷𝐷𝐷1 − 𝐷𝐷𝐷𝐷2 − 𝐷𝐷𝐷𝐷3); It refers to short-term 
changes due to shocks occurring on time scales of 2-16 months and includes daily-weekly 
spreads. Medium-term investment horizons (𝐷𝐷𝐷𝐷4 − 𝐷𝐷𝐷𝐷5 − 𝐷𝐷𝐷𝐷6); It shows medium-term 
changes on time scales of 32-128 months and covers monthly to quarterly spreads. Long-
term investment horizons are (𝐷𝐷𝐷𝐷7 − 𝐷𝐷𝐷𝐷8 − 𝑆𝑆𝑆𝑆8); It indicates long-term changes on time 
scales of 256 months and longer and is a period covering annual spreads (Uyar and 
Kangalı Uyar, 2021: p. 319; Aydoğdu, 2024: p. 217-218). 
3.3. DCC-GARCH Approach 

The dynamic conditional correlation (DCC) approach was developed by Engle (2002) to 
examine time-varying correlations between asset returns. To examine in more detail how 
this approach was developed and what assumptions it is based on, let the vector containing 
the logarithmic returns of k financial assets be denoted by 𝑟𝑟𝑟𝑟𝑡𝑡𝑡𝑡. Financial asset returns have 
the following distribution under the assumptions that there is no autocorrelation between 
average returns and that quadratic moments vary over time: 

𝑟𝑟𝑟𝑟𝑡𝑡𝑡𝑡 ∣ 𝐼𝐼𝐼𝐼𝑡𝑡𝑡𝑡−1 ∼ 𝐷𝐷𝐷𝐷(𝜇𝜇𝜇𝜇,𝐻𝐻𝐻𝐻𝑡𝑡𝑡𝑡)                                                                                                                   (10) 

Here, 𝑟𝑟𝑟𝑟𝑡𝑡𝑡𝑡,  is the payoff vector of size 𝐼𝐼𝐼𝐼𝑡𝑡𝑡𝑡−1,; 𝑡𝑡𝑡𝑡 − 1 represents the information set at time t-
1; μ is the unconditional mean, which is usually very close to or equal to zero; 𝐻𝐻𝐻𝐻𝑡𝑡𝑡𝑡,  denotes 
the dynamic conditional covariance matrix of the k-return series of size kxk, and 
𝐷𝐷𝐷𝐷(𝑢𝑢𝑢𝑢,𝐻𝐻𝐻𝐻𝑡𝑡𝑡𝑡),  denotes the multivariate density function that depends on the mean vector and 
the dynamic conditional covariance matrix. 
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by j (j = 9), the frequencies are calculated using 2j notation.
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 short term;

Table 2. Wavelet Analysis Time Horizons According to the Multiple Scale Method 
 

Scales 
(𝟐𝟐𝟐𝟐𝒋𝒋𝒋𝒋) Annual Frequency Monthly Frequency Daily Frequency 

1 21 2-4 2-4 2-4 
2 22 4-8 4-8 4-8 

3 23 8-16 8-16 
(8 months-1 year 4 months) 8-16 

4 24 16-32 
16-32 

(1 years 4 months-2 years 8 
months) 

16-32 
(3 weeks 1 day-6 weeks 2 day) 

5 25 32-64 
32-64 

(2 years 8 months-5 years 4 
months) 

32-64 
(6 weeks 2 day-12 weeks 4 day) 

6 26 64-128 
64-128 

(5 years 4 months-10 years 8 
months) 

64-128 
(12 weeks 4 day-25 weeks 3 day) 

7 27 128-256 
128-256 

(10 years 8 months-21 years 
4 months) 

128-256 
(25 weeks 3 day- 51 weeks 1 day) 

8 28 256-512 ….. …. 
 
Source: Crowly (2007:214). Theoretically, the maximum number of scales is expressed as 9. In the case 
where the scale number is indicated by j (j = 9), the frequencies are calculated using 2j notation.  

Considering the scale frequencies given in Table 2; After a wavelet analysis is performed, 
predictions will be made for the specified number of scales and coefficients will be 
estimated for various investment horizons. The time scales in Table 2 are grouped as 
follows: (𝐷𝐷𝐷𝐷1 − 𝐷𝐷𝐷𝐷2 − 𝐷𝐷𝐷𝐷3): short term; (𝐷𝐷𝐷𝐷4 − 𝐷𝐷𝐷𝐷5 − 𝐷𝐷𝐷𝐷6): medium term; (𝐷𝐷𝐷𝐷7 − 𝐷𝐷𝐷𝐷8 − 𝑆𝑆𝑆𝑆8): 
long term. This type of grouping was made to examine how the movements of investors 
with short, medium and long-term investment horizons develop according to different 
time scales. Short-term investment horizons (𝐷𝐷𝐷𝐷1 − 𝐷𝐷𝐷𝐷2 − 𝐷𝐷𝐷𝐷3); It refers to short-term 
changes due to shocks occurring on time scales of 2-16 months and includes daily-weekly 
spreads. Medium-term investment horizons (𝐷𝐷𝐷𝐷4 − 𝐷𝐷𝐷𝐷5 − 𝐷𝐷𝐷𝐷6); It shows medium-term 
changes on time scales of 32-128 months and covers monthly to quarterly spreads. Long-
term investment horizons are (𝐷𝐷𝐷𝐷7 − 𝐷𝐷𝐷𝐷8 − 𝑆𝑆𝑆𝑆8); It indicates long-term changes on time 
scales of 256 months and longer and is a period covering annual spreads (Uyar and 
Kangalı Uyar, 2021: p. 319; Aydoğdu, 2024: p. 217-218). 
3.3. DCC-GARCH Approach 

The dynamic conditional correlation (DCC) approach was developed by Engle (2002) to 
examine time-varying correlations between asset returns. To examine in more detail how 
this approach was developed and what assumptions it is based on, let the vector containing 
the logarithmic returns of k financial assets be denoted by 𝑟𝑟𝑟𝑟𝑡𝑡𝑡𝑡. Financial asset returns have 
the following distribution under the assumptions that there is no autocorrelation between 
average returns and that quadratic moments vary over time: 

𝑟𝑟𝑟𝑟𝑡𝑡𝑡𝑡 ∣ 𝐼𝐼𝐼𝐼𝑡𝑡𝑡𝑡−1 ∼ 𝐷𝐷𝐷𝐷(𝜇𝜇𝜇𝜇,𝐻𝐻𝐻𝐻𝑡𝑡𝑡𝑡)                                                                                                                   (10) 

Here, 𝑟𝑟𝑟𝑟𝑡𝑡𝑡𝑡,  is the payoff vector of size 𝐼𝐼𝐼𝐼𝑡𝑡𝑡𝑡−1,; 𝑡𝑡𝑡𝑡 − 1 represents the information set at time t-
1; μ is the unconditional mean, which is usually very close to or equal to zero; 𝐻𝐻𝐻𝐻𝑡𝑡𝑡𝑡,  denotes 
the dynamic conditional covariance matrix of the k-return series of size kxk, and 
𝐷𝐷𝐷𝐷(𝑢𝑢𝑢𝑢,𝐻𝐻𝐻𝐻𝑡𝑡𝑡𝑡),  denotes the multivariate density function that depends on the mean vector and 
the dynamic conditional covariance matrix. 

 medium term; 

Table 2. Wavelet Analysis Time Horizons According to the Multiple Scale Method 
 

Scales 
(𝟐𝟐𝟐𝟐𝒋𝒋𝒋𝒋) Annual Frequency Monthly Frequency Daily Frequency 

1 21 2-4 2-4 2-4 
2 22 4-8 4-8 4-8 

3 23 8-16 8-16 
(8 months-1 year 4 months) 8-16 

4 24 16-32 
16-32 

(1 years 4 months-2 years 8 
months) 

16-32 
(3 weeks 1 day-6 weeks 2 day) 

5 25 32-64 
32-64 

(2 years 8 months-5 years 4 
months) 

32-64 
(6 weeks 2 day-12 weeks 4 day) 

6 26 64-128 
64-128 

(5 years 4 months-10 years 8 
months) 

64-128 
(12 weeks 4 day-25 weeks 3 day) 

7 27 128-256 
128-256 

(10 years 8 months-21 years 
4 months) 

128-256 
(25 weeks 3 day- 51 weeks 1 day) 

8 28 256-512 ….. …. 
 
Source: Crowly (2007:214). Theoretically, the maximum number of scales is expressed as 9. In the case 
where the scale number is indicated by j (j = 9), the frequencies are calculated using 2j notation.  

Considering the scale frequencies given in Table 2; After a wavelet analysis is performed, 
predictions will be made for the specified number of scales and coefficients will be 
estimated for various investment horizons. The time scales in Table 2 are grouped as 
follows: (𝐷𝐷𝐷𝐷1 − 𝐷𝐷𝐷𝐷2 − 𝐷𝐷𝐷𝐷3): short term; (𝐷𝐷𝐷𝐷4 − 𝐷𝐷𝐷𝐷5 − 𝐷𝐷𝐷𝐷6): medium term; (𝐷𝐷𝐷𝐷7 − 𝐷𝐷𝐷𝐷8 − 𝑆𝑆𝑆𝑆8): 
long term. This type of grouping was made to examine how the movements of investors 
with short, medium and long-term investment horizons develop according to different 
time scales. Short-term investment horizons (𝐷𝐷𝐷𝐷1 − 𝐷𝐷𝐷𝐷2 − 𝐷𝐷𝐷𝐷3); It refers to short-term 
changes due to shocks occurring on time scales of 2-16 months and includes daily-weekly 
spreads. Medium-term investment horizons (𝐷𝐷𝐷𝐷4 − 𝐷𝐷𝐷𝐷5 − 𝐷𝐷𝐷𝐷6); It shows medium-term 
changes on time scales of 32-128 months and covers monthly to quarterly spreads. Long-
term investment horizons are (𝐷𝐷𝐷𝐷7 − 𝐷𝐷𝐷𝐷8 − 𝑆𝑆𝑆𝑆8); It indicates long-term changes on time 
scales of 256 months and longer and is a period covering annual spreads (Uyar and 
Kangalı Uyar, 2021: p. 319; Aydoğdu, 2024: p. 217-218). 
3.3. DCC-GARCH Approach 

The dynamic conditional correlation (DCC) approach was developed by Engle (2002) to 
examine time-varying correlations between asset returns. To examine in more detail how 
this approach was developed and what assumptions it is based on, let the vector containing 
the logarithmic returns of k financial assets be denoted by 𝑟𝑟𝑟𝑟𝑡𝑡𝑡𝑡. Financial asset returns have 
the following distribution under the assumptions that there is no autocorrelation between 
average returns and that quadratic moments vary over time: 

𝑟𝑟𝑟𝑟𝑡𝑡𝑡𝑡 ∣ 𝐼𝐼𝐼𝐼𝑡𝑡𝑡𝑡−1 ∼ 𝐷𝐷𝐷𝐷(𝜇𝜇𝜇𝜇,𝐻𝐻𝐻𝐻𝑡𝑡𝑡𝑡)                                                                                                                   (10) 

Here, 𝑟𝑟𝑟𝑟𝑡𝑡𝑡𝑡,  is the payoff vector of size 𝐼𝐼𝐼𝐼𝑡𝑡𝑡𝑡−1,; 𝑡𝑡𝑡𝑡 − 1 represents the information set at time t-
1; μ is the unconditional mean, which is usually very close to or equal to zero; 𝐻𝐻𝐻𝐻𝑡𝑡𝑡𝑡,  denotes 
the dynamic conditional covariance matrix of the k-return series of size kxk, and 
𝐷𝐷𝐷𝐷(𝑢𝑢𝑢𝑢,𝐻𝐻𝐻𝐻𝑡𝑡𝑡𝑡),  denotes the multivariate density function that depends on the mean vector and 
the dynamic conditional covariance matrix. 

 long term. This type of grouping was made to examine how the movements of investors with 
short, medium and long-term investment horizons develop according to different time scales. Short-term investment 
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horizons 

Table 2. Wavelet Analysis Time Horizons According to the Multiple Scale Method 
 

Scales 
(𝟐𝟐𝟐𝟐𝒋𝒋𝒋𝒋) Annual Frequency Monthly Frequency Daily Frequency 

1 21 2-4 2-4 2-4 
2 22 4-8 4-8 4-8 

3 23 8-16 8-16 
(8 months-1 year 4 months) 8-16 

4 24 16-32 
16-32 

(1 years 4 months-2 years 8 
months) 

16-32 
(3 weeks 1 day-6 weeks 2 day) 

5 25 32-64 
32-64 

(2 years 8 months-5 years 4 
months) 

32-64 
(6 weeks 2 day-12 weeks 4 day) 

6 26 64-128 
64-128 

(5 years 4 months-10 years 8 
months) 

64-128 
(12 weeks 4 day-25 weeks 3 day) 

7 27 128-256 
128-256 

(10 years 8 months-21 years 
4 months) 

128-256 
(25 weeks 3 day- 51 weeks 1 day) 

8 28 256-512 ….. …. 
 
Source: Crowly (2007:214). Theoretically, the maximum number of scales is expressed as 9. In the case 
where the scale number is indicated by j (j = 9), the frequencies are calculated using 2j notation.  

Considering the scale frequencies given in Table 2; After a wavelet analysis is performed, 
predictions will be made for the specified number of scales and coefficients will be 
estimated for various investment horizons. The time scales in Table 2 are grouped as 
follows: (𝐷𝐷𝐷𝐷1 − 𝐷𝐷𝐷𝐷2 − 𝐷𝐷𝐷𝐷3): short term; (𝐷𝐷𝐷𝐷4 − 𝐷𝐷𝐷𝐷5 − 𝐷𝐷𝐷𝐷6): medium term; (𝐷𝐷𝐷𝐷7 − 𝐷𝐷𝐷𝐷8 − 𝑆𝑆𝑆𝑆8): 
long term. This type of grouping was made to examine how the movements of investors 
with short, medium and long-term investment horizons develop according to different 
time scales. Short-term investment horizons (𝐷𝐷𝐷𝐷1 − 𝐷𝐷𝐷𝐷2 − 𝐷𝐷𝐷𝐷3); It refers to short-term 
changes due to shocks occurring on time scales of 2-16 months and includes daily-weekly 
spreads. Medium-term investment horizons (𝐷𝐷𝐷𝐷4 − 𝐷𝐷𝐷𝐷5 − 𝐷𝐷𝐷𝐷6); It shows medium-term 
changes on time scales of 32-128 months and covers monthly to quarterly spreads. Long-
term investment horizons are (𝐷𝐷𝐷𝐷7 − 𝐷𝐷𝐷𝐷8 − 𝑆𝑆𝑆𝑆8); It indicates long-term changes on time 
scales of 256 months and longer and is a period covering annual spreads (Uyar and 
Kangalı Uyar, 2021: p. 319; Aydoğdu, 2024: p. 217-218). 
3.3. DCC-GARCH Approach 

The dynamic conditional correlation (DCC) approach was developed by Engle (2002) to 
examine time-varying correlations between asset returns. To examine in more detail how 
this approach was developed and what assumptions it is based on, let the vector containing 
the logarithmic returns of k financial assets be denoted by 𝑟𝑟𝑟𝑟𝑡𝑡𝑡𝑡. Financial asset returns have 
the following distribution under the assumptions that there is no autocorrelation between 
average returns and that quadratic moments vary over time: 

𝑟𝑟𝑟𝑟𝑡𝑡𝑡𝑡 ∣ 𝐼𝐼𝐼𝐼𝑡𝑡𝑡𝑡−1 ∼ 𝐷𝐷𝐷𝐷(𝜇𝜇𝜇𝜇,𝐻𝐻𝐻𝐻𝑡𝑡𝑡𝑡)                                                                                                                   (10) 

Here, 𝑟𝑟𝑟𝑟𝑡𝑡𝑡𝑡,  is the payoff vector of size 𝐼𝐼𝐼𝐼𝑡𝑡𝑡𝑡−1,; 𝑡𝑡𝑡𝑡 − 1 represents the information set at time t-
1; μ is the unconditional mean, which is usually very close to or equal to zero; 𝐻𝐻𝐻𝐻𝑡𝑡𝑡𝑡,  denotes 
the dynamic conditional covariance matrix of the k-return series of size kxk, and 
𝐷𝐷𝐷𝐷(𝑢𝑢𝑢𝑢,𝐻𝐻𝐻𝐻𝑡𝑡𝑡𝑡),  denotes the multivariate density function that depends on the mean vector and 
the dynamic conditional covariance matrix. 

 It refers to short-term changes due to shocks occurring on time scales of 2-16 months 
and includes daily-weekly spreads. Medium-term investment horizons 

Table 2. Wavelet Analysis Time Horizons According to the Multiple Scale Method 
 

Scales 
(𝟐𝟐𝟐𝟐𝒋𝒋𝒋𝒋) Annual Frequency Monthly Frequency Daily Frequency 

1 21 2-4 2-4 2-4 
2 22 4-8 4-8 4-8 

3 23 8-16 8-16 
(8 months-1 year 4 months) 8-16 

4 24 16-32 
16-32 

(1 years 4 months-2 years 8 
months) 

16-32 
(3 weeks 1 day-6 weeks 2 day) 

5 25 32-64 
32-64 

(2 years 8 months-5 years 4 
months) 

32-64 
(6 weeks 2 day-12 weeks 4 day) 

6 26 64-128 
64-128 

(5 years 4 months-10 years 8 
months) 

64-128 
(12 weeks 4 day-25 weeks 3 day) 

7 27 128-256 
128-256 

(10 years 8 months-21 years 
4 months) 

128-256 
(25 weeks 3 day- 51 weeks 1 day) 

8 28 256-512 ….. …. 
 
Source: Crowly (2007:214). Theoretically, the maximum number of scales is expressed as 9. In the case 
where the scale number is indicated by j (j = 9), the frequencies are calculated using 2j notation.  

Considering the scale frequencies given in Table 2; After a wavelet analysis is performed, 
predictions will be made for the specified number of scales and coefficients will be 
estimated for various investment horizons. The time scales in Table 2 are grouped as 
follows: (𝐷𝐷𝐷𝐷1 − 𝐷𝐷𝐷𝐷2 − 𝐷𝐷𝐷𝐷3): short term; (𝐷𝐷𝐷𝐷4 − 𝐷𝐷𝐷𝐷5 − 𝐷𝐷𝐷𝐷6): medium term; (𝐷𝐷𝐷𝐷7 − 𝐷𝐷𝐷𝐷8 − 𝑆𝑆𝑆𝑆8): 
long term. This type of grouping was made to examine how the movements of investors 
with short, medium and long-term investment horizons develop according to different 
time scales. Short-term investment horizons (𝐷𝐷𝐷𝐷1 − 𝐷𝐷𝐷𝐷2 − 𝐷𝐷𝐷𝐷3); It refers to short-term 
changes due to shocks occurring on time scales of 2-16 months and includes daily-weekly 
spreads. Medium-term investment horizons (𝐷𝐷𝐷𝐷4 − 𝐷𝐷𝐷𝐷5 − 𝐷𝐷𝐷𝐷6); It shows medium-term 
changes on time scales of 32-128 months and covers monthly to quarterly spreads. Long-
term investment horizons are (𝐷𝐷𝐷𝐷7 − 𝐷𝐷𝐷𝐷8 − 𝑆𝑆𝑆𝑆8); It indicates long-term changes on time 
scales of 256 months and longer and is a period covering annual spreads (Uyar and 
Kangalı Uyar, 2021: p. 319; Aydoğdu, 2024: p. 217-218). 
3.3. DCC-GARCH Approach 

The dynamic conditional correlation (DCC) approach was developed by Engle (2002) to 
examine time-varying correlations between asset returns. To examine in more detail how 
this approach was developed and what assumptions it is based on, let the vector containing 
the logarithmic returns of k financial assets be denoted by 𝑟𝑟𝑟𝑟𝑡𝑡𝑡𝑡. Financial asset returns have 
the following distribution under the assumptions that there is no autocorrelation between 
average returns and that quadratic moments vary over time: 

𝑟𝑟𝑟𝑟𝑡𝑡𝑡𝑡 ∣ 𝐼𝐼𝐼𝐼𝑡𝑡𝑡𝑡−1 ∼ 𝐷𝐷𝐷𝐷(𝜇𝜇𝜇𝜇,𝐻𝐻𝐻𝐻𝑡𝑡𝑡𝑡)                                                                                                                   (10) 

Here, 𝑟𝑟𝑟𝑟𝑡𝑡𝑡𝑡,  is the payoff vector of size 𝐼𝐼𝐼𝐼𝑡𝑡𝑡𝑡−1,; 𝑡𝑡𝑡𝑡 − 1 represents the information set at time t-
1; μ is the unconditional mean, which is usually very close to or equal to zero; 𝐻𝐻𝐻𝐻𝑡𝑡𝑡𝑡,  denotes 
the dynamic conditional covariance matrix of the k-return series of size kxk, and 
𝐷𝐷𝐷𝐷(𝑢𝑢𝑢𝑢,𝐻𝐻𝐻𝐻𝑡𝑡𝑡𝑡),  denotes the multivariate density function that depends on the mean vector and 
the dynamic conditional covariance matrix. 

 It shows medium-term 
changes on time scales of 32-128 months and covers monthly to quarterly spreads. Long-term investment horizons 
are 

Table 2. Wavelet Analysis Time Horizons According to the Multiple Scale Method 
 

Scales 
(𝟐𝟐𝟐𝟐𝒋𝒋𝒋𝒋) Annual Frequency Monthly Frequency Daily Frequency 

1 21 2-4 2-4 2-4 
2 22 4-8 4-8 4-8 

3 23 8-16 8-16 
(8 months-1 year 4 months) 8-16 

4 24 16-32 
16-32 

(1 years 4 months-2 years 8 
months) 

16-32 
(3 weeks 1 day-6 weeks 2 day) 

5 25 32-64 
32-64 

(2 years 8 months-5 years 4 
months) 

32-64 
(6 weeks 2 day-12 weeks 4 day) 

6 26 64-128 
64-128 

(5 years 4 months-10 years 8 
months) 

64-128 
(12 weeks 4 day-25 weeks 3 day) 

7 27 128-256 
128-256 

(10 years 8 months-21 years 
4 months) 

128-256 
(25 weeks 3 day- 51 weeks 1 day) 

8 28 256-512 ….. …. 
 
Source: Crowly (2007:214). Theoretically, the maximum number of scales is expressed as 9. In the case 
where the scale number is indicated by j (j = 9), the frequencies are calculated using 2j notation.  

Considering the scale frequencies given in Table 2; After a wavelet analysis is performed, 
predictions will be made for the specified number of scales and coefficients will be 
estimated for various investment horizons. The time scales in Table 2 are grouped as 
follows: (𝐷𝐷𝐷𝐷1 − 𝐷𝐷𝐷𝐷2 − 𝐷𝐷𝐷𝐷3): short term; (𝐷𝐷𝐷𝐷4 − 𝐷𝐷𝐷𝐷5 − 𝐷𝐷𝐷𝐷6): medium term; (𝐷𝐷𝐷𝐷7 − 𝐷𝐷𝐷𝐷8 − 𝑆𝑆𝑆𝑆8): 
long term. This type of grouping was made to examine how the movements of investors 
with short, medium and long-term investment horizons develop according to different 
time scales. Short-term investment horizons (𝐷𝐷𝐷𝐷1 − 𝐷𝐷𝐷𝐷2 − 𝐷𝐷𝐷𝐷3); It refers to short-term 
changes due to shocks occurring on time scales of 2-16 months and includes daily-weekly 
spreads. Medium-term investment horizons (𝐷𝐷𝐷𝐷4 − 𝐷𝐷𝐷𝐷5 − 𝐷𝐷𝐷𝐷6); It shows medium-term 
changes on time scales of 32-128 months and covers monthly to quarterly spreads. Long-
term investment horizons are (𝐷𝐷𝐷𝐷7 − 𝐷𝐷𝐷𝐷8 − 𝑆𝑆𝑆𝑆8); It indicates long-term changes on time 
scales of 256 months and longer and is a period covering annual spreads (Uyar and 
Kangalı Uyar, 2021: p. 319; Aydoğdu, 2024: p. 217-218). 
3.3. DCC-GARCH Approach 

The dynamic conditional correlation (DCC) approach was developed by Engle (2002) to 
examine time-varying correlations between asset returns. To examine in more detail how 
this approach was developed and what assumptions it is based on, let the vector containing 
the logarithmic returns of k financial assets be denoted by 𝑟𝑟𝑟𝑟𝑡𝑡𝑡𝑡. Financial asset returns have 
the following distribution under the assumptions that there is no autocorrelation between 
average returns and that quadratic moments vary over time: 

𝑟𝑟𝑟𝑟𝑡𝑡𝑡𝑡 ∣ 𝐼𝐼𝐼𝐼𝑡𝑡𝑡𝑡−1 ∼ 𝐷𝐷𝐷𝐷(𝜇𝜇𝜇𝜇,𝐻𝐻𝐻𝐻𝑡𝑡𝑡𝑡)                                                                                                                   (10) 

Here, 𝑟𝑟𝑟𝑟𝑡𝑡𝑡𝑡,  is the payoff vector of size 𝐼𝐼𝐼𝐼𝑡𝑡𝑡𝑡−1,; 𝑡𝑡𝑡𝑡 − 1 represents the information set at time t-
1; μ is the unconditional mean, which is usually very close to or equal to zero; 𝐻𝐻𝐻𝐻𝑡𝑡𝑡𝑡,  denotes 
the dynamic conditional covariance matrix of the k-return series of size kxk, and 
𝐷𝐷𝐷𝐷(𝑢𝑢𝑢𝑢,𝐻𝐻𝐻𝐻𝑡𝑡𝑡𝑡),  denotes the multivariate density function that depends on the mean vector and 
the dynamic conditional covariance matrix. 

 It indicates long-term changes on time scales of 256 months and longer and is a period 
covering annual spreads (Uyar and Kangalı Uyar, 2021: p. 319; Aydoğdu, 2024: p. 217-218).

3.3. DCC-GARCH Approach

The dynamic conditional correlation (DCC) approach was developed by Engle (2002) to examine time-varying 
correlations between asset returns. To examine in more detail how this approach was developed and what 
assumptions it is based on, let the vector containing the logarithmic returns of k financial assets be denoted by 

Table 2. Wavelet Analysis Time Horizons According to the Multiple Scale Method 
 

Scales 
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Source: Crowly (2007:214). Theoretically, the maximum number of scales is expressed as 9. In the case 
where the scale number is indicated by j (j = 9), the frequencies are calculated using 2j notation.  

Considering the scale frequencies given in Table 2; After a wavelet analysis is performed, 
predictions will be made for the specified number of scales and coefficients will be 
estimated for various investment horizons. The time scales in Table 2 are grouped as 
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scales of 256 months and longer and is a period covering annual spreads (Uyar and 
Kangalı Uyar, 2021: p. 319; Aydoğdu, 2024: p. 217-218). 
3.3. DCC-GARCH Approach 

The dynamic conditional correlation (DCC) approach was developed by Engle (2002) to 
examine time-varying correlations between asset returns. To examine in more detail how 
this approach was developed and what assumptions it is based on, let the vector containing 
the logarithmic returns of k financial assets be denoted by 𝑟𝑟𝑟𝑟𝑡𝑡𝑡𝑡. Financial asset returns have 
the following distribution under the assumptions that there is no autocorrelation between 
average returns and that quadratic moments vary over time: 
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Here, 𝑟𝑟𝑟𝑟𝑡𝑡𝑡𝑡,  is the payoff vector of size 𝐼𝐼𝐼𝐼𝑡𝑡𝑡𝑡−1,; 𝑡𝑡𝑡𝑡 − 1 represents the information set at time t-
1; μ is the unconditional mean, which is usually very close to or equal to zero; 𝐻𝐻𝐻𝐻𝑡𝑡𝑡𝑡,  denotes 
the dynamic conditional covariance matrix of the k-return series of size kxk, and 
𝐷𝐷𝐷𝐷(𝑢𝑢𝑢𝑢,𝐻𝐻𝐻𝐻𝑡𝑡𝑡𝑡),  denotes the multivariate density function that depends on the mean vector and 
the dynamic conditional covariance matrix. 
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the logarithmic returns of k financial assets be denoted by 𝑟𝑟𝑟𝑟𝑡𝑡𝑡𝑡. Financial asset returns have 
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this approach was developed and what assumptions it is based on, let the vector containing 
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average returns and that quadratic moments vary over time: 

𝑟𝑟𝑟𝑟𝑡𝑡𝑡𝑡 ∣ 𝐼𝐼𝐼𝐼𝑡𝑡𝑡𝑡−1 ∼ 𝐷𝐷𝐷𝐷(𝜇𝜇𝜇𝜇,𝐻𝐻𝐻𝐻𝑡𝑡𝑡𝑡)                                                                                                                   (10) 
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Considering the scale frequencies given in Table 2; After a wavelet analysis is performed, 
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3.3. DCC-GARCH Approach 
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the following distribution under the assumptions that there is no autocorrelation between 
average returns and that quadratic moments vary over time: 

𝑟𝑟𝑟𝑟𝑡𝑡𝑡𝑡 ∣ 𝐼𝐼𝐼𝐼𝑡𝑡𝑡𝑡−1 ∼ 𝐷𝐷𝐷𝐷(𝜇𝜇𝜇𝜇,𝐻𝐻𝐻𝐻𝑡𝑡𝑡𝑡)                                                                                                                   (10) 

Here, 𝑟𝑟𝑟𝑟𝑡𝑡𝑡𝑡,  is the payoff vector of size 𝐼𝐼𝐼𝐼𝑡𝑡𝑡𝑡−1,; 𝑡𝑡𝑡𝑡 − 1 represents the information set at time t-
1; μ is the unconditional mean, which is usually very close to or equal to zero; 𝐻𝐻𝐻𝐻𝑡𝑡𝑡𝑡,  denotes 
the dynamic conditional covariance matrix of the k-return series of size kxk, and 
𝐷𝐷𝐷𝐷(𝑢𝑢𝑢𝑢,𝐻𝐻𝐻𝐻𝑡𝑡𝑡𝑡),  denotes the multivariate density function that depends on the mean vector and 
the dynamic conditional covariance matrix. 

 denotes the multivariate density function that depends on the mean 
vector and the dynamic conditional covariance matrix.

Engle (2002; p. 341) decomposed the covariance matrix as the product of dynamic conditional standard deviations 
and dynamic conditional correlations:Engle (2002; p. 341) decomposed the covariance matrix as the product of dynamic 
conditional standard deviations and dynamic conditional correlations: 

𝐻𝐻𝐻𝐻𝑡𝑡𝑡𝑡 = 𝐷𝐷𝐷𝐷𝑡𝑡𝑡𝑡𝑅𝑅𝑅𝑅𝑡𝑡𝑡𝑡𝐷𝐷𝐷𝐷𝑡𝑡𝑡𝑡                                                                                                                               (11) 

Here, 𝐷𝐷𝐷𝐷𝑡𝑡𝑡𝑡, is a diagonal matrix of size kxk and its elements consist of time-varying standard 
deviations obtained from univariate GARCH models. In the 𝐷𝐷𝐷𝐷𝑡𝑡𝑡𝑡 matrix, the i’th element 
of the diagonal can be represented as �ℎ𝑖𝑖𝑖𝑖𝑡𝑡𝑡𝑡  hit: 

𝐷𝐷𝐷𝐷𝑡𝑡𝑡𝑡 = �
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𝑅𝑅𝑅𝑅𝑡𝑡𝑡𝑡,  is the time-varying correlation matrix of Ƞ𝑡𝑡𝑡𝑡 = 𝐷𝐷𝐷𝐷𝑡𝑡𝑡𝑡−1 ∗ 𝑟𝑟𝑟𝑟𝑡𝑡𝑡𝑡, 𝑅𝑅𝑅𝑅𝑡𝑡𝑡𝑡 ∼ 𝑁𝑁𝑁𝑁(0,𝑅𝑅𝑅𝑅𝑡𝑡𝑡𝑡), standardized 
residues of size kxk: 

𝑅𝑅𝑅𝑅𝑡𝑡𝑡𝑡 = �
1 𝜌𝜌𝜌𝜌12,𝑡𝑡𝑡𝑡
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… ⋯ 𝜌𝜌𝜌𝜌1𝑘𝑘𝑘𝑘,𝑡𝑡𝑡𝑡
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�                                                                            (13) 

Since 𝐻𝐻𝐻𝐻𝑡𝑡𝑡𝑡, is a covariance matrix, it must be a positive definite matrix. Since Dt, is a 
positive definite matrix due to its positive diagonal elements, 𝑅𝑅𝑅𝑅𝑡𝑡𝑡𝑡 must also be a positive 
definite matrix. Finally, the elements in the 𝑅𝑅𝑅𝑅𝑡𝑡𝑡𝑡 must be less than or equal to 1 because 
they include conditional correlation coefficients. 
Using the representations in Equations (10)-(11), it can be deduced that the marginal 
density function of each element of the 𝑟𝑟𝑟𝑟𝑡𝑡𝑡𝑡 vector, in other words, the return of each 
financial asset, "depends on the time-varying conditional variance" and the time-varying 
conditional variance, which is the representative of volatility. can be modeled as a 
univariate GARCH process. Accordingly, the 𝐷𝐷𝐷𝐷𝑡𝑡𝑡𝑡 matrix can be created using the 
univariate GARCH(p, q) model defined in equation (11): 

ℎ𝑖𝑖𝑖𝑖𝑡𝑡𝑡𝑡 = 𝜃𝜃𝜃𝜃𝑖𝑖𝑖𝑖 + �𝛼𝛼𝛼𝛼𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖
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Here, 𝜃𝜃𝜃𝜃𝑖𝑖𝑖𝑖  is the constant term. non-negativity of parameters and stationarity in variance in 
the GARCH(p, q) model: 
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It is assumed that the constraints in equality (15) are satisfied. Satisfying these constraints 
ensures that the 𝐻𝐻𝐻𝐻𝑡𝑡𝑡𝑡 matrix is a positive definite matrix for all time points. 
The standardized return vector is obtained by dividing the return of each financial asset 
by its conditional standard deviation, �ℎ𝑖𝑖𝑖𝑖𝑡𝑡𝑡𝑡,: 

ŋ𝑡𝑡𝑡𝑡 = 𝐷𝐷𝐷𝐷𝑡𝑡𝑡𝑡−1 ∗ 𝑟𝑟𝑟𝑟𝑡𝑡𝑡𝑡 , ŋ𝑡𝑡𝑡𝑡 ∼ 𝑁𝑁𝑁𝑁(0,𝑅𝑅𝑅𝑅𝑡𝑡𝑡𝑡)                                                                                         (16) 
This vector can be used to define the dynamic conditional correlation structure defined 
by Engle (2002) for the return series: 

𝑄𝑄𝑄𝑄𝑡𝑡𝑡𝑡 = �1 − � 𝛼𝛼𝛼𝛼𝑚𝑚𝑚𝑚 −�𝛽𝛽𝛽𝛽𝑛𝑛𝑛𝑛
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definite matrix. Finally, the elements in the 𝑅𝑅𝑅𝑅𝑡𝑡𝑡𝑡 must be less than or equal to 1 because 
they include conditional correlation coefficients. 
Using the representations in Equations (10)-(11), it can be deduced that the marginal 
density function of each element of the 𝑟𝑟𝑟𝑟𝑡𝑡𝑡𝑡 vector, in other words, the return of each 
financial asset, "depends on the time-varying conditional variance" and the time-varying 
conditional variance, which is the representative of volatility. can be modeled as a 
univariate GARCH process. Accordingly, the 𝐷𝐷𝐷𝐷𝑡𝑡𝑡𝑡 matrix can be created using the 
univariate GARCH(p, q) model defined in equation (11): 
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Since 𝐻𝐻𝐻𝐻𝑡𝑡𝑡𝑡, is a covariance matrix, it must be a positive definite matrix. Since Dt, is a 
positive definite matrix due to its positive diagonal elements, 𝑅𝑅𝑅𝑅𝑡𝑡𝑡𝑡 must also be a positive 
definite matrix. Finally, the elements in the 𝑅𝑅𝑅𝑅𝑡𝑡𝑡𝑡 must be less than or equal to 1 because 
they include conditional correlation coefficients. 
Using the representations in Equations (10)-(11), it can be deduced that the marginal 
density function of each element of the 𝑟𝑟𝑟𝑟𝑡𝑡𝑡𝑡 vector, in other words, the return of each 
financial asset, "depends on the time-varying conditional variance" and the time-varying 
conditional variance, which is the representative of volatility. can be modeled as a 
univariate GARCH process. Accordingly, the 𝐷𝐷𝐷𝐷𝑡𝑡𝑡𝑡 matrix can be created using the 
univariate GARCH(p, q) model defined in equation (11): 
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It is assumed that the constraints in equality (15) are satisfied. Satisfying these constraints 
ensures that the 𝐻𝐻𝐻𝐻𝑡𝑡𝑡𝑡 matrix is a positive definite matrix for all time points. 
The standardized return vector is obtained by dividing the return of each financial asset 
by its conditional standard deviation, �ℎ𝑖𝑖𝑖𝑖𝑡𝑡𝑡𝑡,: 
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This vector can be used to define the dynamic conditional correlation structure defined 
by Engle (2002) for the return series: 
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matrix can be created using the univariate 
GARCH(p, q) model defined in equation (11):
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the GARCH(p, q) model: 

�𝛼𝛼𝛼𝛼𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖

pi

p=1

ɛ𝑖𝑖𝑖𝑖𝑡𝑡𝑡𝑡−𝑖𝑖𝑖𝑖2 + �𝛽𝛽𝛽𝛽𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖ℎ𝑖𝑖𝑖𝑖𝑡𝑡𝑡𝑡−𝑖𝑖𝑖𝑖

Qi

q=1

< 1                                                                                         (15)  

It is assumed that the constraints in equality (15) are satisfied. Satisfying these constraints 
ensures that the 𝐻𝐻𝐻𝐻𝑡𝑡𝑡𝑡 matrix is a positive definite matrix for all time points. 
The standardized return vector is obtained by dividing the return of each financial asset 
by its conditional standard deviation, �ℎ𝑖𝑖𝑖𝑖𝑡𝑡𝑡𝑡,: 

ŋ𝑡𝑡𝑡𝑡 = 𝐷𝐷𝐷𝐷𝑡𝑡𝑡𝑡−1 ∗ 𝑟𝑟𝑟𝑟𝑡𝑡𝑡𝑡 , ŋ𝑡𝑡𝑡𝑡 ∼ 𝑁𝑁𝑁𝑁(0,𝑅𝑅𝑅𝑅𝑡𝑡𝑡𝑡)                                                                                         (16) 
This vector can be used to define the dynamic conditional correlation structure defined 
by Engle (2002) for the return series: 

𝑄𝑄𝑄𝑄𝑡𝑡𝑡𝑡 = �1 − � 𝛼𝛼𝛼𝛼𝑚𝑚𝑚𝑚 −�𝛽𝛽𝛽𝛽𝑛𝑛𝑛𝑛

𝑁𝑁𝑁𝑁

𝑛𝑛𝑛𝑛=1

𝑀𝑀𝑀𝑀

𝑚𝑚𝑚𝑚=1

� ∗ 𝑄𝑄𝑄𝑄� + � 𝛼𝛼𝛼𝛼𝑚𝑚𝑚𝑚(ŋ𝑡𝑡𝑡𝑡−𝑚𝑚𝑚𝑚ή𝑡𝑡𝑡𝑡−𝑚𝑚𝑚𝑚) + �𝛽𝛽𝛽𝛽𝑛𝑛𝑛𝑛𝑄𝑄𝑄𝑄𝑡𝑡𝑡𝑡−𝑛𝑛𝑛𝑛

𝑁𝑁𝑁𝑁

𝑛𝑛𝑛𝑛=1

𝑀𝑀𝑀𝑀

𝑚𝑚𝑚𝑚=1

                   (17) 

  (14)

Here, 

Engle (2002; p. 341) decomposed the covariance matrix as the product of dynamic 
conditional standard deviations and dynamic conditional correlations: 

𝐻𝐻𝐻𝐻𝑡𝑡𝑡𝑡 = 𝐷𝐷𝐷𝐷𝑡𝑡𝑡𝑡𝑅𝑅𝑅𝑅𝑡𝑡𝑡𝑡𝐷𝐷𝐷𝐷𝑡𝑡𝑡𝑡                                                                                                                               (11) 

Here, 𝐷𝐷𝐷𝐷𝑡𝑡𝑡𝑡, is a diagonal matrix of size kxk and its elements consist of time-varying standard 
deviations obtained from univariate GARCH models. In the 𝐷𝐷𝐷𝐷𝑡𝑡𝑡𝑡 matrix, the i’th element 
of the diagonal can be represented as �ℎ𝑖𝑖𝑖𝑖𝑡𝑡𝑡𝑡  hit: 

𝐷𝐷𝐷𝐷𝑡𝑡𝑡𝑡 = �
�ℎ1𝑡𝑡𝑡𝑡

0
0

     
0 ⋯ 0

�ℎ2𝑡𝑡𝑡𝑡 ⋱ ⋮
… ⋯ �ℎ𝑘𝑘𝑘𝑘𝑡𝑡𝑡𝑡

�                                                                                           (12) 

𝑅𝑅𝑅𝑅𝑡𝑡𝑡𝑡,  is the time-varying correlation matrix of Ƞ𝑡𝑡𝑡𝑡 = 𝐷𝐷𝐷𝐷𝑡𝑡𝑡𝑡−1 ∗ 𝑟𝑟𝑟𝑟𝑡𝑡𝑡𝑡, 𝑅𝑅𝑅𝑅𝑡𝑡𝑡𝑡 ∼ 𝑁𝑁𝑁𝑁(0,𝑅𝑅𝑅𝑅𝑡𝑡𝑡𝑡), standardized 
residues of size kxk: 

𝑅𝑅𝑅𝑅𝑡𝑡𝑡𝑡 = �
1 𝜌𝜌𝜌𝜌12,𝑡𝑡𝑡𝑡

𝜌𝜌𝜌𝜌12,𝑡𝑡𝑡𝑡 1
𝜌𝜌𝜌𝜌1𝑘𝑘𝑘𝑘,𝑡𝑡𝑡𝑡 …

     
… ⋯ 𝜌𝜌𝜌𝜌1𝑘𝑘𝑘𝑘,𝑡𝑡𝑡𝑡
⋮ ⋱ ⋮

𝜌𝜌𝜌𝜌𝑘𝑘𝑘𝑘−1,𝑘𝑘𝑘𝑘,𝑡𝑡𝑡𝑡 ⋯ 1
�                                                                            (13) 

Since 𝐻𝐻𝐻𝐻𝑡𝑡𝑡𝑡, is a covariance matrix, it must be a positive definite matrix. Since Dt, is a 
positive definite matrix due to its positive diagonal elements, 𝑅𝑅𝑅𝑅𝑡𝑡𝑡𝑡 must also be a positive 
definite matrix. Finally, the elements in the 𝑅𝑅𝑅𝑅𝑡𝑡𝑡𝑡 must be less than or equal to 1 because 
they include conditional correlation coefficients. 
Using the representations in Equations (10)-(11), it can be deduced that the marginal 
density function of each element of the 𝑟𝑟𝑟𝑟𝑡𝑡𝑡𝑡 vector, in other words, the return of each 
financial asset, "depends on the time-varying conditional variance" and the time-varying 
conditional variance, which is the representative of volatility. can be modeled as a 
univariate GARCH process. Accordingly, the 𝐷𝐷𝐷𝐷𝑡𝑡𝑡𝑡 matrix can be created using the 
univariate GARCH(p, q) model defined in equation (11): 

ℎ𝑖𝑖𝑖𝑖𝑡𝑡𝑡𝑡 = 𝜃𝜃𝜃𝜃𝑖𝑖𝑖𝑖 + �𝛼𝛼𝛼𝛼𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖

pi

p=1

ɛ𝑖𝑖𝑖𝑖𝑡𝑡𝑡𝑡−𝑖𝑖𝑖𝑖2 + �𝛽𝛽𝛽𝛽𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖ℎ𝑖𝑖𝑖𝑖𝑡𝑡𝑡𝑡−𝑖𝑖𝑖𝑖

Qi

q=1

    i = 1,2, … . . , k                                               (14) 

Here, 𝜃𝜃𝜃𝜃𝑖𝑖𝑖𝑖  is the constant term. non-negativity of parameters and stationarity in variance in 
the GARCH(p, q) model: 

�𝛼𝛼𝛼𝛼𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖

pi

p=1

ɛ𝑖𝑖𝑖𝑖𝑡𝑡𝑡𝑡−𝑖𝑖𝑖𝑖2 + �𝛽𝛽𝛽𝛽𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖ℎ𝑖𝑖𝑖𝑖𝑡𝑡𝑡𝑡−𝑖𝑖𝑖𝑖

Qi

q=1

< 1                                                                                         (15)  

It is assumed that the constraints in equality (15) are satisfied. Satisfying these constraints 
ensures that the 𝐻𝐻𝐻𝐻𝑡𝑡𝑡𝑡 matrix is a positive definite matrix for all time points. 
The standardized return vector is obtained by dividing the return of each financial asset 
by its conditional standard deviation, �ℎ𝑖𝑖𝑖𝑖𝑡𝑡𝑡𝑡,: 

ŋ𝑡𝑡𝑡𝑡 = 𝐷𝐷𝐷𝐷𝑡𝑡𝑡𝑡−1 ∗ 𝑟𝑟𝑟𝑟𝑡𝑡𝑡𝑡 , ŋ𝑡𝑡𝑡𝑡 ∼ 𝑁𝑁𝑁𝑁(0,𝑅𝑅𝑅𝑅𝑡𝑡𝑡𝑡)                                                                                         (16) 
This vector can be used to define the dynamic conditional correlation structure defined 
by Engle (2002) for the return series: 

𝑄𝑄𝑄𝑄𝑡𝑡𝑡𝑡 = �1 − � 𝛼𝛼𝛼𝛼𝑚𝑚𝑚𝑚 −�𝛽𝛽𝛽𝛽𝑛𝑛𝑛𝑛

𝑁𝑁𝑁𝑁

𝑛𝑛𝑛𝑛=1

𝑀𝑀𝑀𝑀

𝑚𝑚𝑚𝑚=1

� ∗ 𝑄𝑄𝑄𝑄� + � 𝛼𝛼𝛼𝛼𝑚𝑚𝑚𝑚(ŋ𝑡𝑡𝑡𝑡−𝑚𝑚𝑚𝑚ή𝑡𝑡𝑡𝑡−𝑚𝑚𝑚𝑚) + �𝛽𝛽𝛽𝛽𝑛𝑛𝑛𝑛𝑄𝑄𝑄𝑄𝑡𝑡𝑡𝑡−𝑛𝑛𝑛𝑛

𝑁𝑁𝑁𝑁

𝑛𝑛𝑛𝑛=1

𝑀𝑀𝑀𝑀

𝑚𝑚𝑚𝑚=1

                   (17) 

  is the constant term. non-negativity of parameters and stationarity in variance in the GARCH(p, q) 
model:

Engle (2002; p. 341) decomposed the covariance matrix as the product of dynamic 
conditional standard deviations and dynamic conditional correlations: 

𝐻𝐻𝐻𝐻𝑡𝑡𝑡𝑡 = 𝐷𝐷𝐷𝐷𝑡𝑡𝑡𝑡𝑅𝑅𝑅𝑅𝑡𝑡𝑡𝑡𝐷𝐷𝐷𝐷𝑡𝑡𝑡𝑡                                                                                                                               (11) 

Here, 𝐷𝐷𝐷𝐷𝑡𝑡𝑡𝑡, is a diagonal matrix of size kxk and its elements consist of time-varying standard 
deviations obtained from univariate GARCH models. In the 𝐷𝐷𝐷𝐷𝑡𝑡𝑡𝑡 matrix, the i’th element 
of the diagonal can be represented as �ℎ𝑖𝑖𝑖𝑖𝑡𝑡𝑡𝑡  hit: 

𝐷𝐷𝐷𝐷𝑡𝑡𝑡𝑡 = �
�ℎ1𝑡𝑡𝑡𝑡

0
0

     
0 ⋯ 0

�ℎ2𝑡𝑡𝑡𝑡 ⋱ ⋮
… ⋯ �ℎ𝑘𝑘𝑘𝑘𝑡𝑡𝑡𝑡

�                                                                                           (12) 

𝑅𝑅𝑅𝑅𝑡𝑡𝑡𝑡,  is the time-varying correlation matrix of Ƞ𝑡𝑡𝑡𝑡 = 𝐷𝐷𝐷𝐷𝑡𝑡𝑡𝑡−1 ∗ 𝑟𝑟𝑟𝑟𝑡𝑡𝑡𝑡, 𝑅𝑅𝑅𝑅𝑡𝑡𝑡𝑡 ∼ 𝑁𝑁𝑁𝑁(0,𝑅𝑅𝑅𝑅𝑡𝑡𝑡𝑡), standardized 
residues of size kxk: 

𝑅𝑅𝑅𝑅𝑡𝑡𝑡𝑡 = �
1 𝜌𝜌𝜌𝜌12,𝑡𝑡𝑡𝑡

𝜌𝜌𝜌𝜌12,𝑡𝑡𝑡𝑡 1
𝜌𝜌𝜌𝜌1𝑘𝑘𝑘𝑘,𝑡𝑡𝑡𝑡 …

     
… ⋯ 𝜌𝜌𝜌𝜌1𝑘𝑘𝑘𝑘,𝑡𝑡𝑡𝑡
⋮ ⋱ ⋮

𝜌𝜌𝜌𝜌𝑘𝑘𝑘𝑘−1,𝑘𝑘𝑘𝑘,𝑡𝑡𝑡𝑡 ⋯ 1
�                                                                            (13) 

Since 𝐻𝐻𝐻𝐻𝑡𝑡𝑡𝑡, is a covariance matrix, it must be a positive definite matrix. Since Dt, is a 
positive definite matrix due to its positive diagonal elements, 𝑅𝑅𝑅𝑅𝑡𝑡𝑡𝑡 must also be a positive 
definite matrix. Finally, the elements in the 𝑅𝑅𝑅𝑅𝑡𝑡𝑡𝑡 must be less than or equal to 1 because 
they include conditional correlation coefficients. 
Using the representations in Equations (10)-(11), it can be deduced that the marginal 
density function of each element of the 𝑟𝑟𝑟𝑟𝑡𝑡𝑡𝑡 vector, in other words, the return of each 
financial asset, "depends on the time-varying conditional variance" and the time-varying 
conditional variance, which is the representative of volatility. can be modeled as a 
univariate GARCH process. Accordingly, the 𝐷𝐷𝐷𝐷𝑡𝑡𝑡𝑡 matrix can be created using the 
univariate GARCH(p, q) model defined in equation (11): 

ℎ𝑖𝑖𝑖𝑖𝑡𝑡𝑡𝑡 = 𝜃𝜃𝜃𝜃𝑖𝑖𝑖𝑖 + �𝛼𝛼𝛼𝛼𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖

pi

p=1

ɛ𝑖𝑖𝑖𝑖𝑡𝑡𝑡𝑡−𝑖𝑖𝑖𝑖2 + �𝛽𝛽𝛽𝛽𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖ℎ𝑖𝑖𝑖𝑖𝑡𝑡𝑡𝑡−𝑖𝑖𝑖𝑖

Qi

q=1

    i = 1,2, … . . , k                                               (14) 

Here, 𝜃𝜃𝜃𝜃𝑖𝑖𝑖𝑖  is the constant term. non-negativity of parameters and stationarity in variance in 
the GARCH(p, q) model: 

�𝛼𝛼𝛼𝛼𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖

pi

p=1

ɛ𝑖𝑖𝑖𝑖𝑡𝑡𝑡𝑡−𝑖𝑖𝑖𝑖2 + �𝛽𝛽𝛽𝛽𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖ℎ𝑖𝑖𝑖𝑖𝑡𝑡𝑡𝑡−𝑖𝑖𝑖𝑖

Qi

q=1

< 1                                                                                         (15)  

It is assumed that the constraints in equality (15) are satisfied. Satisfying these constraints 
ensures that the 𝐻𝐻𝐻𝐻𝑡𝑡𝑡𝑡 matrix is a positive definite matrix for all time points. 
The standardized return vector is obtained by dividing the return of each financial asset 
by its conditional standard deviation, �ℎ𝑖𝑖𝑖𝑖𝑡𝑡𝑡𝑡,: 

ŋ𝑡𝑡𝑡𝑡 = 𝐷𝐷𝐷𝐷𝑡𝑡𝑡𝑡−1 ∗ 𝑟𝑟𝑟𝑟𝑡𝑡𝑡𝑡 , ŋ𝑡𝑡𝑡𝑡 ∼ 𝑁𝑁𝑁𝑁(0,𝑅𝑅𝑅𝑅𝑡𝑡𝑡𝑡)                                                                                         (16) 
This vector can be used to define the dynamic conditional correlation structure defined 
by Engle (2002) for the return series: 

𝑄𝑄𝑄𝑄𝑡𝑡𝑡𝑡 = �1 − � 𝛼𝛼𝛼𝛼𝑚𝑚𝑚𝑚 −�𝛽𝛽𝛽𝛽𝑛𝑛𝑛𝑛

𝑁𝑁𝑁𝑁

𝑛𝑛𝑛𝑛=1

𝑀𝑀𝑀𝑀

𝑚𝑚𝑚𝑚=1

� ∗ 𝑄𝑄𝑄𝑄� + � 𝛼𝛼𝛼𝛼𝑚𝑚𝑚𝑚(ŋ𝑡𝑡𝑡𝑡−𝑚𝑚𝑚𝑚ή𝑡𝑡𝑡𝑡−𝑚𝑚𝑚𝑚) + �𝛽𝛽𝛽𝛽𝑛𝑛𝑛𝑛𝑄𝑄𝑄𝑄𝑡𝑡𝑡𝑡−𝑛𝑛𝑛𝑛

𝑁𝑁𝑁𝑁

𝑛𝑛𝑛𝑛=1

𝑀𝑀𝑀𝑀

𝑚𝑚𝑚𝑚=1

                   (17) 

 (15)

It is assumed that the constraints in equality (15) are satisfied. Satisfying these constraints ensures that the  matrix 
is a positive definite

Engle (2002; p. 341) decomposed the covariance matrix as the product of dynamic 
conditional standard deviations and dynamic conditional correlations: 

𝐻𝐻𝐻𝐻𝑡𝑡𝑡𝑡 = 𝐷𝐷𝐷𝐷𝑡𝑡𝑡𝑡𝑅𝑅𝑅𝑅𝑡𝑡𝑡𝑡𝐷𝐷𝐷𝐷𝑡𝑡𝑡𝑡                                                                                                                               (11) 

Here, 𝐷𝐷𝐷𝐷𝑡𝑡𝑡𝑡, is a diagonal matrix of size kxk and its elements consist of time-varying standard 
deviations obtained from univariate GARCH models. In the 𝐷𝐷𝐷𝐷𝑡𝑡𝑡𝑡 matrix, the i’th element 
of the diagonal can be represented as �ℎ𝑖𝑖𝑖𝑖𝑡𝑡𝑡𝑡  hit: 

𝐷𝐷𝐷𝐷𝑡𝑡𝑡𝑡 = �
�ℎ1𝑡𝑡𝑡𝑡

0
0

     
0 ⋯ 0

�ℎ2𝑡𝑡𝑡𝑡 ⋱ ⋮
… ⋯ �ℎ𝑘𝑘𝑘𝑘𝑡𝑡𝑡𝑡

�                                                                                           (12) 

𝑅𝑅𝑅𝑅𝑡𝑡𝑡𝑡,  is the time-varying correlation matrix of Ƞ𝑡𝑡𝑡𝑡 = 𝐷𝐷𝐷𝐷𝑡𝑡𝑡𝑡−1 ∗ 𝑟𝑟𝑟𝑟𝑡𝑡𝑡𝑡, 𝑅𝑅𝑅𝑅𝑡𝑡𝑡𝑡 ∼ 𝑁𝑁𝑁𝑁(0,𝑅𝑅𝑅𝑅𝑡𝑡𝑡𝑡), standardized 
residues of size kxk: 

𝑅𝑅𝑅𝑅𝑡𝑡𝑡𝑡 = �
1 𝜌𝜌𝜌𝜌12,𝑡𝑡𝑡𝑡

𝜌𝜌𝜌𝜌12,𝑡𝑡𝑡𝑡 1
𝜌𝜌𝜌𝜌1𝑘𝑘𝑘𝑘,𝑡𝑡𝑡𝑡 …

     
… ⋯ 𝜌𝜌𝜌𝜌1𝑘𝑘𝑘𝑘,𝑡𝑡𝑡𝑡
⋮ ⋱ ⋮

𝜌𝜌𝜌𝜌𝑘𝑘𝑘𝑘−1,𝑘𝑘𝑘𝑘,𝑡𝑡𝑡𝑡 ⋯ 1
�                                                                            (13) 

Since 𝐻𝐻𝐻𝐻𝑡𝑡𝑡𝑡, is a covariance matrix, it must be a positive definite matrix. Since Dt, is a 
positive definite matrix due to its positive diagonal elements, 𝑅𝑅𝑅𝑅𝑡𝑡𝑡𝑡 must also be a positive 
definite matrix. Finally, the elements in the 𝑅𝑅𝑅𝑅𝑡𝑡𝑡𝑡 must be less than or equal to 1 because 
they include conditional correlation coefficients. 
Using the representations in Equations (10)-(11), it can be deduced that the marginal 
density function of each element of the 𝑟𝑟𝑟𝑟𝑡𝑡𝑡𝑡 vector, in other words, the return of each 
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𝑅𝑅𝑅𝑅𝑡𝑡𝑡𝑡 = �
1 𝜌𝜌𝜌𝜌12,𝑡𝑡𝑡𝑡

𝜌𝜌𝜌𝜌12,𝑡𝑡𝑡𝑡 1
𝜌𝜌𝜌𝜌1𝑘𝑘𝑘𝑘,𝑡𝑡𝑡𝑡 …

     
… ⋯ 𝜌𝜌𝜌𝜌1𝑘𝑘𝑘𝑘,𝑡𝑡𝑡𝑡
⋮ ⋱ ⋮

𝜌𝜌𝜌𝜌𝑘𝑘𝑘𝑘−1,𝑘𝑘𝑘𝑘,𝑡𝑡𝑡𝑡 ⋯ 1
�                                                                            (13) 

Since 𝐻𝐻𝐻𝐻𝑡𝑡𝑡𝑡, is a covariance matrix, it must be a positive definite matrix. Since Dt, is a 
positive definite matrix due to its positive diagonal elements, 𝑅𝑅𝑅𝑅𝑡𝑡𝑡𝑡 must also be a positive 
definite matrix. Finally, the elements in the 𝑅𝑅𝑅𝑅𝑡𝑡𝑡𝑡 must be less than or equal to 1 because 
they include conditional correlation coefficients. 
Using the representations in Equations (10)-(11), it can be deduced that the marginal 
density function of each element of the 𝑟𝑟𝑟𝑟𝑡𝑡𝑡𝑡 vector, in other words, the return of each 
financial asset, "depends on the time-varying conditional variance" and the time-varying 
conditional variance, which is the representative of volatility. can be modeled as a 
univariate GARCH process. Accordingly, the 𝐷𝐷𝐷𝐷𝑡𝑡𝑡𝑡 matrix can be created using the 
univariate GARCH(p, q) model defined in equation (11): 

ℎ𝑖𝑖𝑖𝑖𝑡𝑡𝑡𝑡 = 𝜃𝜃𝜃𝜃𝑖𝑖𝑖𝑖 + �𝛼𝛼𝛼𝛼𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖

pi

p=1

ɛ𝑖𝑖𝑖𝑖𝑡𝑡𝑡𝑡−𝑖𝑖𝑖𝑖2 + �𝛽𝛽𝛽𝛽𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖ℎ𝑖𝑖𝑖𝑖𝑡𝑡𝑡𝑡−𝑖𝑖𝑖𝑖

Qi

q=1

    i = 1,2, … . . , k                                               (14) 

Here, 𝜃𝜃𝜃𝜃𝑖𝑖𝑖𝑖  is the constant term. non-negativity of parameters and stationarity in variance in 
the GARCH(p, q) model: 

�𝛼𝛼𝛼𝛼𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖

pi

p=1

ɛ𝑖𝑖𝑖𝑖𝑡𝑡𝑡𝑡−𝑖𝑖𝑖𝑖2 + �𝛽𝛽𝛽𝛽𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖ℎ𝑖𝑖𝑖𝑖𝑡𝑡𝑡𝑡−𝑖𝑖𝑖𝑖

Qi

q=1

< 1                                                                                         (15)  

It is assumed that the constraints in equality (15) are satisfied. Satisfying these constraints 
ensures that the 𝐻𝐻𝐻𝐻𝑡𝑡𝑡𝑡 matrix is a positive definite matrix for all time points. 
The standardized return vector is obtained by dividing the return of each financial asset 
by its conditional standard deviation, �ℎ𝑖𝑖𝑖𝑖𝑡𝑡𝑡𝑡,: 

ŋ𝑡𝑡𝑡𝑡 = 𝐷𝐷𝐷𝐷𝑡𝑡𝑡𝑡−1 ∗ 𝑟𝑟𝑟𝑟𝑡𝑡𝑡𝑡 , ŋ𝑡𝑡𝑡𝑡 ∼ 𝑁𝑁𝑁𝑁(0,𝑅𝑅𝑅𝑅𝑡𝑡𝑡𝑡)                                                                                         (16) 
This vector can be used to define the dynamic conditional correlation structure defined 
by Engle (2002) for the return series: 

𝑄𝑄𝑄𝑄𝑡𝑡𝑡𝑡 = �1 − � 𝛼𝛼𝛼𝛼𝑚𝑚𝑚𝑚 −�𝛽𝛽𝛽𝛽𝑛𝑛𝑛𝑛

𝑁𝑁𝑁𝑁

𝑛𝑛𝑛𝑛=1

𝑀𝑀𝑀𝑀

𝑚𝑚𝑚𝑚=1

� ∗ 𝑄𝑄𝑄𝑄� + � 𝛼𝛼𝛼𝛼𝑚𝑚𝑚𝑚(ŋ𝑡𝑡𝑡𝑡−𝑚𝑚𝑚𝑚ή𝑡𝑡𝑡𝑡−𝑚𝑚𝑚𝑚) + �𝛽𝛽𝛽𝛽𝑛𝑛𝑛𝑛𝑄𝑄𝑄𝑄𝑡𝑡𝑡𝑡−𝑛𝑛𝑛𝑛

𝑁𝑁𝑁𝑁

𝑛𝑛𝑛𝑛=1

𝑀𝑀𝑀𝑀

𝑚𝑚𝑚𝑚=1

                   (17)    (17)

Here Here 𝛼𝛼𝛼𝛼𝑚𝑚𝑚𝑚  and 𝛽𝛽𝛽𝛽𝑛𝑛𝑛𝑛 are non-negative scalars. Due to the stability condition, it is assumed 
that 𝛼𝛼𝛼𝛼𝑚𝑚𝑚𝑚 + 𝛽𝛽𝛽𝛽𝑛𝑛𝑛𝑛 <1. Providing these assumptions is important for the 𝐻𝐻𝐻𝐻𝑡𝑡𝑡𝑡 matrix to be a 
positive definite matrix. Since Q𝑡𝑡𝑡𝑡 = Q� if the constraint 𝛼𝛼𝛼𝛼𝑚𝑚𝑚𝑚 = 𝛽𝛽𝛽𝛽𝑛𝑛𝑛𝑛 = 0 is met, it can be said 
that the use of a time-invariant conditional correlation model will be sufficient to examine 
the relationships (Lebo and Box Steffensmeier, 2008: 694). Q�, is the unconditional 
covariance matrix of the standardized residuals from the first-stage estimation: 

Q� = 𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶[ŋ𝑡𝑡𝑡𝑡ή𝑡𝑡𝑡𝑡] = 𝐸𝐸𝐸𝐸[ŋ𝑡𝑡𝑡𝑡ή𝑡𝑡𝑡𝑡] ve Q� = 1
𝑇𝑇𝑇𝑇
∑ ŋ𝑡𝑡𝑡𝑡ή𝑡𝑡𝑡𝑡                                                                  (18) 𝑇𝑇𝑇𝑇
𝑡𝑡𝑡𝑡𝑡1     

It can be predicted by. Finally, the model defined in equation (17) can be represented as 
DCC(m, n). 

However, since 𝑄𝑄𝑄𝑄𝑡𝑡𝑡𝑡, does not meet the definition of a dynamic conditional correlation 
matrix, Engle (2002) suggested the following standardization: 

𝑅𝑅𝑅𝑅𝑡𝑡𝑡𝑡 = 𝑄𝑄𝑄𝑄𝑡𝑡𝑡𝑡∗−1 ∗ 𝑄𝑄𝑄𝑄𝑡𝑡𝑡𝑡 ∗ 𝑄𝑄𝑄𝑄𝑡𝑡𝑡𝑡∗−1                                                                                                           (19) 

Here 𝑄𝑄𝑄𝑄𝑡𝑡𝑡𝑡∗, is a diagonal matrix containing the square roots of the diagonal elements of the 
matrix  𝑄𝑄𝑄𝑄𝑡𝑡𝑡𝑡: 

𝑄𝑄𝑄𝑄𝑡𝑡𝑡𝑡∗ = �
�𝑞𝑞𝑞𝑞11,𝑡𝑡𝑡𝑡

0
0

         
0 ⋯ 0

�𝑞𝑞𝑞𝑞22,𝑡𝑡𝑡𝑡 ⋱ ⋮
… ⋯ �𝑞𝑞𝑞𝑞𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛,𝑡𝑡𝑡𝑡

�                                                                              (20) 

𝑄𝑄𝑄𝑄𝑡𝑡𝑡𝑡∗, rescales the elements of the 𝑄𝑄𝑄𝑄𝑡𝑡𝑡𝑡 matrix to be �𝜌𝜌𝜌𝜌𝑖𝑖𝑖𝑖𝑗𝑗𝑗𝑗𝑡𝑡𝑡𝑡� = � 𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑗𝑗𝑗𝑗𝑖𝑖𝑖𝑖
�𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑗𝑗𝑗𝑗𝑗𝑗𝑗𝑗𝑖𝑖𝑖𝑖

� ≤ 1. 𝑄𝑄𝑄𝑄𝑡𝑡𝑡𝑡 must be a 

positive definite matrix. 

The elements of the 𝑅𝑅𝑅𝑅𝑡𝑡𝑡𝑡 matrix are in the form 𝜌𝜌𝜌𝜌𝑖𝑖𝑖𝑖𝑗𝑗𝑗𝑗𝑡𝑡𝑡𝑡 = 𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑗𝑗𝑗𝑗𝑖𝑖𝑖𝑖
�𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑗𝑗𝑗𝑗𝑗𝑗𝑗𝑗𝑖𝑖𝑖𝑖

. The fact that the 𝑅𝑅𝑅𝑅𝑡𝑡𝑡𝑡 matrix 

is a positive definite matrix depends on the 𝑄𝑄𝑄𝑄𝑡𝑡𝑡𝑡 matrix being a positive definite matrix. 
Engle (2002) defined the logarithmic likelihood function for the maximum likelihood 
estimation of the DCC model defined in equation (12) as follows: 
 

𝐿𝐿𝐿𝐿 =  
1
2
�𝑘𝑘𝑘𝑘 ∗ log (2π)
𝑇𝑇𝑇𝑇

𝑡𝑡𝑡𝑡𝑡1

+ log(|𝐻𝐻𝐻𝐻𝑡𝑡𝑡𝑡|) + 𝑟𝑟𝑟𝑟𝑡𝑡𝑡𝑡′𝐻𝐻𝐻𝐻𝑡𝑡𝑡𝑡−1𝑟𝑟𝑟𝑟𝑡𝑡𝑡𝑡                                                                (21) 

If the expression where 𝐻𝐻𝐻𝐻𝑡𝑡𝑡𝑡 is equal in equation (10) is substituted in equation (15), the 
logarithmic likelihood function in equation (16) is obtained by using Ƞ𝑡𝑡𝑡𝑡 = 𝐷𝐷𝐷𝐷𝑡𝑡𝑡𝑡−1 ∗ 𝑟𝑟𝑟𝑟𝑡𝑡𝑡𝑡 
equation: 

𝐿𝐿𝐿𝐿 =  
1
2
�𝑘𝑘𝑘𝑘 ∗ log (2π)
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𝑡𝑡𝑡𝑡𝑡1

+ 2 ∗ log(|𝐷𝐷𝐷𝐷𝑡𝑡𝑡𝑡|) + 𝑛𝑛𝑛𝑛𝑡𝑡𝑡𝑡′𝑅𝑅𝑅𝑅𝑡𝑡𝑡𝑡−1𝑛𝑛𝑛𝑛𝑡𝑡𝑡𝑡                                                        (22) 

The definition of the logarithmic likelihood function in equation (22) facilitates the 
estimation of the DCC model, because the function has two components, namely the 
volatility component and the correlation component, and the estimation can be carried out 
by splitting the estimation process into two. The first component is the volatility 
component and contains only terms in 𝐷𝐷𝐷𝐷𝑡𝑡𝑡𝑡, and the second component is the correlation 
component and contains only terms in 𝑅𝑅𝑅𝑅𝑡𝑡𝑡𝑡, The reason why the DCC model is estimated 
in two stages can be explained by this structure. In the first stage, only the part containing 
the volatility component is maximized, and in the second stage, the correlation component 

  and  Here 𝛼𝛼𝛼𝛼𝑚𝑚𝑚𝑚  and 𝛽𝛽𝛽𝛽𝑛𝑛𝑛𝑛 are non-negative scalars. Due to the stability condition, it is assumed 
that 𝛼𝛼𝛼𝛼𝑚𝑚𝑚𝑚 + 𝛽𝛽𝛽𝛽𝑛𝑛𝑛𝑛 <1. Providing these assumptions is important for the 𝐻𝐻𝐻𝐻𝑡𝑡𝑡𝑡 matrix to be a 
positive definite matrix. Since Q𝑡𝑡𝑡𝑡 = Q� if the constraint 𝛼𝛼𝛼𝛼𝑚𝑚𝑚𝑚 = 𝛽𝛽𝛽𝛽𝑛𝑛𝑛𝑛 = 0 is met, it can be said 
that the use of a time-invariant conditional correlation model will be sufficient to examine 
the relationships (Lebo and Box Steffensmeier, 2008: 694). Q�, is the unconditional 
covariance matrix of the standardized residuals from the first-stage estimation: 

Q� = 𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶[ŋ𝑡𝑡𝑡𝑡ή𝑡𝑡𝑡𝑡] = 𝐸𝐸𝐸𝐸[ŋ𝑡𝑡𝑡𝑡ή𝑡𝑡𝑡𝑡] ve Q� = 1
𝑇𝑇𝑇𝑇
∑ ŋ𝑡𝑡𝑡𝑡ή𝑡𝑡𝑡𝑡                                                                  (18) 𝑇𝑇𝑇𝑇
𝑡𝑡𝑡𝑡𝑡1     

It can be predicted by. Finally, the model defined in equation (17) can be represented as 
DCC(m, n). 

However, since 𝑄𝑄𝑄𝑄𝑡𝑡𝑡𝑡, does not meet the definition of a dynamic conditional correlation 
matrix, Engle (2002) suggested the following standardization: 
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Here 𝑄𝑄𝑄𝑄𝑡𝑡𝑡𝑡∗, is a diagonal matrix containing the square roots of the diagonal elements of the 
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is a positive definite matrix depends on the 𝑄𝑄𝑄𝑄𝑡𝑡𝑡𝑡 matrix being a positive definite matrix. 
Engle (2002) defined the logarithmic likelihood function for the maximum likelihood 
estimation of the DCC model defined in equation (12) as follows: 
 

𝐿𝐿𝐿𝐿 =  
1
2
�𝑘𝑘𝑘𝑘 ∗ log (2π)
𝑇𝑇𝑇𝑇

𝑡𝑡𝑡𝑡𝑡1

+ log(|𝐻𝐻𝐻𝐻𝑡𝑡𝑡𝑡|) + 𝑟𝑟𝑟𝑟𝑡𝑡𝑡𝑡′𝐻𝐻𝐻𝐻𝑡𝑡𝑡𝑡−1𝑟𝑟𝑟𝑟𝑡𝑡𝑡𝑡                                                                (21) 

If the expression where 𝐻𝐻𝐻𝐻𝑡𝑡𝑡𝑡 is equal in equation (10) is substituted in equation (15), the 
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 are non-negative scalars. Due to the stability condition, it is assumed that  
Here 𝛼𝛼𝛼𝛼𝑚𝑚𝑚𝑚  and 𝛽𝛽𝛽𝛽𝑛𝑛𝑛𝑛 are non-negative scalars. Due to the stability condition, it is assumed 
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However, since 𝑄𝑄𝑄𝑄𝑡𝑡𝑡𝑡, does not meet the definition of a dynamic conditional correlation 
matrix, Engle (2002) suggested the following standardization: 
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However, since 𝑄𝑄𝑄𝑄𝑡𝑡𝑡𝑡, does not meet the definition of a dynamic conditional correlation 
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. The fact that the 𝑅𝑅𝑅𝑅𝑡𝑡𝑡𝑡 matrix 

is a positive definite matrix depends on the 𝑄𝑄𝑄𝑄𝑡𝑡𝑡𝑡 matrix being a positive definite matrix. 
Engle (2002) defined the logarithmic likelihood function for the maximum likelihood 
estimation of the DCC model defined in equation (12) as follows: 
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The definition of the logarithmic likelihood function in equation (22) facilitates the 
estimation of the DCC model, because the function has two components, namely the 
volatility component and the correlation component, and the estimation can be carried out 
by splitting the estimation process into two. The first component is the volatility 
component and contains only terms in 𝐷𝐷𝐷𝐷𝑡𝑡𝑡𝑡, and the second component is the correlation 
component and contains only terms in 𝑅𝑅𝑅𝑅𝑡𝑡𝑡𝑡, The reason why the DCC model is estimated 
in two stages can be explained by this structure. In the first stage, only the part containing 
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It can be predicted by. Finally, the model defined in equation (17) can be represented as DCC(m, n).
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. The fact that the 𝑅𝑅𝑅𝑅𝑡𝑡𝑡𝑡 matrix 

is a positive definite matrix depends on the 𝑄𝑄𝑄𝑄𝑡𝑡𝑡𝑡 matrix being a positive definite matrix. 
Engle (2002) defined the logarithmic likelihood function for the maximum likelihood 
estimation of the DCC model defined in equation (12) as follows: 
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+ log(|𝐻𝐻𝐻𝐻𝑡𝑡𝑡𝑡|) + 𝑟𝑟𝑟𝑟𝑡𝑡𝑡𝑡′𝐻𝐻𝐻𝐻𝑡𝑡𝑡𝑡−1𝑟𝑟𝑟𝑟𝑡𝑡𝑡𝑡                                                                (21) 

If the expression where 𝐻𝐻𝐻𝐻𝑡𝑡𝑡𝑡 is equal in equation (10) is substituted in equation (15), the 
logarithmic likelihood function in equation (16) is obtained by using Ƞ𝑡𝑡𝑡𝑡 = 𝐷𝐷𝐷𝐷𝑡𝑡𝑡𝑡−1 ∗ 𝑟𝑟𝑟𝑟𝑡𝑡𝑡𝑡 
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The definition of the logarithmic likelihood function in equation (22) facilitates the 
estimation of the DCC model, because the function has two components, namely the 
volatility component and the correlation component, and the estimation can be carried out 
by splitting the estimation process into two. The first component is the volatility 
component and contains only terms in 𝐷𝐷𝐷𝐷𝑡𝑡𝑡𝑡, and the second component is the correlation 
component and contains only terms in 𝑅𝑅𝑅𝑅𝑡𝑡𝑡𝑡, The reason why the DCC model is estimated 
in two stages can be explained by this structure. In the first stage, only the part containing 
the volatility component is maximized, and in the second stage, the correlation component 

 is a diagonal matrix containing the square roots of the diagonal elements of the matrix 

Here 𝛼𝛼𝛼𝛼𝑚𝑚𝑚𝑚  and 𝛽𝛽𝛽𝛽𝑛𝑛𝑛𝑛 are non-negative scalars. Due to the stability condition, it is assumed 
that 𝛼𝛼𝛼𝛼𝑚𝑚𝑚𝑚 + 𝛽𝛽𝛽𝛽𝑛𝑛𝑛𝑛 <1. Providing these assumptions is important for the 𝐻𝐻𝐻𝐻𝑡𝑡𝑡𝑡 matrix to be a 
positive definite matrix. Since Q𝑡𝑡𝑡𝑡 = Q� if the constraint 𝛼𝛼𝛼𝛼𝑚𝑚𝑚𝑚 = 𝛽𝛽𝛽𝛽𝑛𝑛𝑛𝑛 = 0 is met, it can be said 
that the use of a time-invariant conditional correlation model will be sufficient to examine 
the relationships (Lebo and Box Steffensmeier, 2008: 694). Q�, is the unconditional 
covariance matrix of the standardized residuals from the first-stage estimation: 
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It can be predicted by. Finally, the model defined in equation (17) can be represented as 
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matrix, Engle (2002) suggested the following standardization: 
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It can be predicted by. Finally, the model defined in equation (17) can be represented as 
DCC(m, n). 

However, since 𝑄𝑄𝑄𝑄𝑡𝑡𝑡𝑡, does not meet the definition of a dynamic conditional correlation 
matrix, Engle (2002) suggested the following standardization: 

𝑅𝑅𝑅𝑅𝑡𝑡𝑡𝑡 = 𝑄𝑄𝑄𝑄𝑡𝑡𝑡𝑡∗−1 ∗ 𝑄𝑄𝑄𝑄𝑡𝑡𝑡𝑡 ∗ 𝑄𝑄𝑄𝑄𝑡𝑡𝑡𝑡∗−1                                                                                                           (19) 
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. The fact that the 𝑅𝑅𝑅𝑅𝑡𝑡𝑡𝑡 matrix 

is a positive definite matrix depends on the 𝑄𝑄𝑄𝑄𝑡𝑡𝑡𝑡 matrix being a positive definite matrix. 
Engle (2002) defined the logarithmic likelihood function for the maximum likelihood 
estimation of the DCC model defined in equation (12) as follows: 
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estimation of the DCC model, because the function has two components, namely the 
volatility component and the correlation component, and the estimation can be carried out 
by splitting the estimation process into two. The first component is the volatility 
component and contains only terms in 𝐷𝐷𝐷𝐷𝑡𝑡𝑡𝑡, and the second component is the correlation 
component and contains only terms in 𝑅𝑅𝑅𝑅𝑡𝑡𝑡𝑡, The reason why the DCC model is estimated 
in two stages can be explained by this structure. In the first stage, only the part containing 
the volatility component is maximized, and in the second stage, the correlation component 
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If the expression where 𝐻𝐻𝐻𝐻𝑡𝑡𝑡𝑡 is equal in equation (10) is substituted in equation (15), the 
logarithmic likelihood function in equation (16) is obtained by using Ƞ𝑡𝑡𝑡𝑡 = 𝐷𝐷𝐷𝐷𝑡𝑡𝑡𝑡−1 ∗ 𝑟𝑟𝑟𝑟𝑡𝑡𝑡𝑡 
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+ 2 ∗ log(|𝐷𝐷𝐷𝐷𝑡𝑡𝑡𝑡|) + 𝑛𝑛𝑛𝑛𝑡𝑡𝑡𝑡′𝑅𝑅𝑅𝑅𝑡𝑡𝑡𝑡−1𝑛𝑛𝑛𝑛𝑡𝑡𝑡𝑡                                                        (22) 

The definition of the logarithmic likelihood function in equation (22) facilitates the 
estimation of the DCC model, because the function has two components, namely the 
volatility component and the correlation component, and the estimation can be carried out 
by splitting the estimation process into two. The first component is the volatility 
component and contains only terms in 𝐷𝐷𝐷𝐷𝑡𝑡𝑡𝑡, and the second component is the correlation 
component and contains only terms in 𝑅𝑅𝑅𝑅𝑡𝑡𝑡𝑡, The reason why the DCC model is estimated 
in two stages can be explained by this structure. In the first stage, only the part containing 
the volatility component is maximized, and in the second stage, the correlation component 

 matrix is a positive definite 

matrix depends on the  

Here 𝛼𝛼𝛼𝛼𝑚𝑚𝑚𝑚  and 𝛽𝛽𝛽𝛽𝑛𝑛𝑛𝑛 are non-negative scalars. Due to the stability condition, it is assumed 
that 𝛼𝛼𝛼𝛼𝑚𝑚𝑚𝑚 + 𝛽𝛽𝛽𝛽𝑛𝑛𝑛𝑛 <1. Providing these assumptions is important for the 𝐻𝐻𝐻𝐻𝑡𝑡𝑡𝑡 matrix to be a 
positive definite matrix. Since Q𝑡𝑡𝑡𝑡 = Q� if the constraint 𝛼𝛼𝛼𝛼𝑚𝑚𝑚𝑚 = 𝛽𝛽𝛽𝛽𝑛𝑛𝑛𝑛 = 0 is met, it can be said 
that the use of a time-invariant conditional correlation model will be sufficient to examine 
the relationships (Lebo and Box Steffensmeier, 2008: 694). Q�, is the unconditional 
covariance matrix of the standardized residuals from the first-stage estimation: 

Q� = 𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶[ŋ𝑡𝑡𝑡𝑡ή𝑡𝑡𝑡𝑡] = 𝐸𝐸𝐸𝐸[ŋ𝑡𝑡𝑡𝑡ή𝑡𝑡𝑡𝑡] ve Q� = 1
𝑇𝑇𝑇𝑇
∑ ŋ𝑡𝑡𝑡𝑡ή𝑡𝑡𝑡𝑡                                                                  (18) 𝑇𝑇𝑇𝑇
𝑡𝑡𝑡𝑡𝑡1     

It can be predicted by. Finally, the model defined in equation (17) can be represented as 
DCC(m, n). 

However, since 𝑄𝑄𝑄𝑄𝑡𝑡𝑡𝑡, does not meet the definition of a dynamic conditional correlation 
matrix, Engle (2002) suggested the following standardization: 

𝑅𝑅𝑅𝑅𝑡𝑡𝑡𝑡 = 𝑄𝑄𝑄𝑄𝑡𝑡𝑡𝑡∗−1 ∗ 𝑄𝑄𝑄𝑄𝑡𝑡𝑡𝑡 ∗ 𝑄𝑄𝑄𝑄𝑡𝑡𝑡𝑡∗−1                                                                                                           (19) 

Here 𝑄𝑄𝑄𝑄𝑡𝑡𝑡𝑡∗, is a diagonal matrix containing the square roots of the diagonal elements of the 
matrix  𝑄𝑄𝑄𝑄𝑡𝑡𝑡𝑡: 

𝑄𝑄𝑄𝑄𝑡𝑡𝑡𝑡∗ = �
�𝑞𝑞𝑞𝑞11,𝑡𝑡𝑡𝑡
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�𝑞𝑞𝑞𝑞22,𝑡𝑡𝑡𝑡 ⋱ ⋮
… ⋯ �𝑞𝑞𝑞𝑞𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛,𝑡𝑡𝑡𝑡

�                                                                              (20) 

𝑄𝑄𝑄𝑄𝑡𝑡𝑡𝑡∗, rescales the elements of the 𝑄𝑄𝑄𝑄𝑡𝑡𝑡𝑡 matrix to be �𝜌𝜌𝜌𝜌𝑖𝑖𝑖𝑖𝑗𝑗𝑗𝑗𝑡𝑡𝑡𝑡� = � 𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑗𝑗𝑗𝑗𝑖𝑖𝑖𝑖
�𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑗𝑗𝑗𝑗𝑗𝑗𝑗𝑗𝑖𝑖𝑖𝑖

� ≤ 1. 𝑄𝑄𝑄𝑄𝑡𝑡𝑡𝑡 must be a 

positive definite matrix. 

The elements of the 𝑅𝑅𝑅𝑅𝑡𝑡𝑡𝑡 matrix are in the form 𝜌𝜌𝜌𝜌𝑖𝑖𝑖𝑖𝑗𝑗𝑗𝑗𝑡𝑡𝑡𝑡 = 𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑗𝑗𝑗𝑗𝑖𝑖𝑖𝑖
�𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑗𝑗𝑗𝑗𝑗𝑗𝑗𝑗𝑖𝑖𝑖𝑖

. The fact that the 𝑅𝑅𝑅𝑅𝑡𝑡𝑡𝑡 matrix 

is a positive definite matrix depends on the 𝑄𝑄𝑄𝑄𝑡𝑡𝑡𝑡 matrix being a positive definite matrix. 
Engle (2002) defined the logarithmic likelihood function for the maximum likelihood 
estimation of the DCC model defined in equation (12) as follows: 
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𝑅𝑅𝑅𝑅𝑡𝑡𝑡𝑡 = 𝑄𝑄𝑄𝑄𝑡𝑡𝑡𝑡∗−1 ∗ 𝑄𝑄𝑄𝑄𝑡𝑡𝑡𝑡 ∗ 𝑄𝑄𝑄𝑄𝑡𝑡𝑡𝑡∗−1                                                                                                           (19) 

Here 𝑄𝑄𝑄𝑄𝑡𝑡𝑡𝑡∗, is a diagonal matrix containing the square roots of the diagonal elements of the 
matrix  𝑄𝑄𝑄𝑄𝑡𝑡𝑡𝑡: 

𝑄𝑄𝑄𝑄𝑡𝑡𝑡𝑡∗ = �
�𝑞𝑞𝑞𝑞11,𝑡𝑡𝑡𝑡

0
0

         
0 ⋯ 0

�𝑞𝑞𝑞𝑞22,𝑡𝑡𝑡𝑡 ⋱ ⋮
… ⋯ �𝑞𝑞𝑞𝑞𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛,𝑡𝑡𝑡𝑡

�                                                                              (20) 

𝑄𝑄𝑄𝑄𝑡𝑡𝑡𝑡∗, rescales the elements of the 𝑄𝑄𝑄𝑄𝑡𝑡𝑡𝑡 matrix to be �𝜌𝜌𝜌𝜌𝑖𝑖𝑖𝑖𝑗𝑗𝑗𝑗𝑡𝑡𝑡𝑡� = � 𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑗𝑗𝑗𝑗𝑖𝑖𝑖𝑖
�𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑗𝑗𝑗𝑗𝑗𝑗𝑗𝑗𝑖𝑖𝑖𝑖

� ≤ 1. 𝑄𝑄𝑄𝑄𝑡𝑡𝑡𝑡 must be a 

positive definite matrix. 

The elements of the 𝑅𝑅𝑅𝑅𝑡𝑡𝑡𝑡 matrix are in the form 𝜌𝜌𝜌𝜌𝑖𝑖𝑖𝑖𝑗𝑗𝑗𝑗𝑡𝑡𝑡𝑡 = 𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑗𝑗𝑗𝑗𝑖𝑖𝑖𝑖
�𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑗𝑗𝑗𝑗𝑗𝑗𝑗𝑗𝑖𝑖𝑖𝑖

. The fact that the 𝑅𝑅𝑅𝑅𝑡𝑡𝑡𝑡 matrix 

is a positive definite matrix depends on the 𝑄𝑄𝑄𝑄𝑡𝑡𝑡𝑡 matrix being a positive definite matrix. 
Engle (2002) defined the logarithmic likelihood function for the maximum likelihood 
estimation of the DCC model defined in equation (12) as follows: 
 

𝐿𝐿𝐿𝐿 =  
1
2
�𝑘𝑘𝑘𝑘 ∗ log (2π)
𝑇𝑇𝑇𝑇

𝑡𝑡𝑡𝑡𝑡1

+ log(|𝐻𝐻𝐻𝐻𝑡𝑡𝑡𝑡|) + 𝑟𝑟𝑟𝑟𝑡𝑡𝑡𝑡′𝐻𝐻𝐻𝐻𝑡𝑡𝑡𝑡−1𝑟𝑟𝑟𝑟𝑡𝑡𝑡𝑡                                                                (21) 

If the expression where 𝐻𝐻𝐻𝐻𝑡𝑡𝑡𝑡 is equal in equation (10) is substituted in equation (15), the 
logarithmic likelihood function in equation (16) is obtained by using Ƞ𝑡𝑡𝑡𝑡 = 𝐷𝐷𝐷𝐷𝑡𝑡𝑡𝑡−1 ∗ 𝑟𝑟𝑟𝑟𝑡𝑡𝑡𝑡 
equation: 

𝐿𝐿𝐿𝐿 =  
1
2
�𝑘𝑘𝑘𝑘 ∗ log (2π)
𝑇𝑇𝑇𝑇

𝑡𝑡𝑡𝑡𝑡1

+ 2 ∗ log(|𝐷𝐷𝐷𝐷𝑡𝑡𝑡𝑡|) + 𝑛𝑛𝑛𝑛𝑡𝑡𝑡𝑡′𝑅𝑅𝑅𝑅𝑡𝑡𝑡𝑡−1𝑛𝑛𝑛𝑛𝑡𝑡𝑡𝑡                                                        (22) 

The definition of the logarithmic likelihood function in equation (22) facilitates the 
estimation of the DCC model, because the function has two components, namely the 
volatility component and the correlation component, and the estimation can be carried out 
by splitting the estimation process into two. The first component is the volatility 
component and contains only terms in 𝐷𝐷𝐷𝐷𝑡𝑡𝑡𝑡, and the second component is the correlation 
component and contains only terms in 𝑅𝑅𝑅𝑅𝑡𝑡𝑡𝑡, The reason why the DCC model is estimated 
in two stages can be explained by this structure. In the first stage, only the part containing 
the volatility component is maximized, and in the second stage, the correlation component 

 and the second component is the correlation component and contains 
only terms in 

Here 𝛼𝛼𝛼𝛼𝑚𝑚𝑚𝑚  and 𝛽𝛽𝛽𝛽𝑛𝑛𝑛𝑛 are non-negative scalars. Due to the stability condition, it is assumed 
that 𝛼𝛼𝛼𝛼𝑚𝑚𝑚𝑚 + 𝛽𝛽𝛽𝛽𝑛𝑛𝑛𝑛 <1. Providing these assumptions is important for the 𝐻𝐻𝐻𝐻𝑡𝑡𝑡𝑡 matrix to be a 
positive definite matrix. Since Q𝑡𝑡𝑡𝑡 = Q� if the constraint 𝛼𝛼𝛼𝛼𝑚𝑚𝑚𝑚 = 𝛽𝛽𝛽𝛽𝑛𝑛𝑛𝑛 = 0 is met, it can be said 
that the use of a time-invariant conditional correlation model will be sufficient to examine 
the relationships (Lebo and Box Steffensmeier, 2008: 694). Q�, is the unconditional 
covariance matrix of the standardized residuals from the first-stage estimation: 

Q� = 𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶[ŋ𝑡𝑡𝑡𝑡ή𝑡𝑡𝑡𝑡] = 𝐸𝐸𝐸𝐸[ŋ𝑡𝑡𝑡𝑡ή𝑡𝑡𝑡𝑡] ve Q� = 1
𝑇𝑇𝑇𝑇
∑ ŋ𝑡𝑡𝑡𝑡ή𝑡𝑡𝑡𝑡                                                                  (18) 𝑇𝑇𝑇𝑇
𝑡𝑡𝑡𝑡𝑡1     

It can be predicted by. Finally, the model defined in equation (17) can be represented as 
DCC(m, n). 

However, since 𝑄𝑄𝑄𝑄𝑡𝑡𝑡𝑡, does not meet the definition of a dynamic conditional correlation 
matrix, Engle (2002) suggested the following standardization: 

𝑅𝑅𝑅𝑅𝑡𝑡𝑡𝑡 = 𝑄𝑄𝑄𝑄𝑡𝑡𝑡𝑡∗−1 ∗ 𝑄𝑄𝑄𝑄𝑡𝑡𝑡𝑡 ∗ 𝑄𝑄𝑄𝑄𝑡𝑡𝑡𝑡∗−1                                                                                                           (19) 

Here 𝑄𝑄𝑄𝑄𝑡𝑡𝑡𝑡∗, is a diagonal matrix containing the square roots of the diagonal elements of the 
matrix  𝑄𝑄𝑄𝑄𝑡𝑡𝑡𝑡: 

𝑄𝑄𝑄𝑄𝑡𝑡𝑡𝑡∗ = �
�𝑞𝑞𝑞𝑞11,𝑡𝑡𝑡𝑡
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� ≤ 1. 𝑄𝑄𝑄𝑄𝑡𝑡𝑡𝑡 must be a 

positive definite matrix. 

The elements of the 𝑅𝑅𝑅𝑅𝑡𝑡𝑡𝑡 matrix are in the form 𝜌𝜌𝜌𝜌𝑖𝑖𝑖𝑖𝑗𝑗𝑗𝑗𝑡𝑡𝑡𝑡 = 𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑗𝑗𝑗𝑗𝑖𝑖𝑖𝑖
�𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑗𝑗𝑗𝑗𝑗𝑗𝑗𝑗𝑖𝑖𝑖𝑖

. The fact that the 𝑅𝑅𝑅𝑅𝑡𝑡𝑡𝑡 matrix 

is a positive definite matrix depends on the 𝑄𝑄𝑄𝑄𝑡𝑡𝑡𝑡 matrix being a positive definite matrix. 
Engle (2002) defined the logarithmic likelihood function for the maximum likelihood 
estimation of the DCC model defined in equation (12) as follows: 
 

𝐿𝐿𝐿𝐿 =  
1
2
�𝑘𝑘𝑘𝑘 ∗ log (2π)
𝑇𝑇𝑇𝑇

𝑡𝑡𝑡𝑡𝑡1

+ log(|𝐻𝐻𝐻𝐻𝑡𝑡𝑡𝑡|) + 𝑟𝑟𝑟𝑟𝑡𝑡𝑡𝑡′𝐻𝐻𝐻𝐻𝑡𝑡𝑡𝑡−1𝑟𝑟𝑟𝑟𝑡𝑡𝑡𝑡                                                                (21) 

If the expression where 𝐻𝐻𝐻𝐻𝑡𝑡𝑡𝑡 is equal in equation (10) is substituted in equation (15), the 
logarithmic likelihood function in equation (16) is obtained by using Ƞ𝑡𝑡𝑡𝑡 = 𝐷𝐷𝐷𝐷𝑡𝑡𝑡𝑡−1 ∗ 𝑟𝑟𝑟𝑟𝑡𝑡𝑡𝑡 
equation: 

𝐿𝐿𝐿𝐿 =  
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�𝑘𝑘𝑘𝑘 ∗ log (2π)
𝑇𝑇𝑇𝑇

𝑡𝑡𝑡𝑡𝑡1

+ 2 ∗ log(|𝐷𝐷𝐷𝐷𝑡𝑡𝑡𝑡|) + 𝑛𝑛𝑛𝑛𝑡𝑡𝑡𝑡′𝑅𝑅𝑅𝑅𝑡𝑡𝑡𝑡−1𝑛𝑛𝑛𝑛𝑡𝑡𝑡𝑡                                                        (22) 

The definition of the logarithmic likelihood function in equation (22) facilitates the 
estimation of the DCC model, because the function has two components, namely the 
volatility component and the correlation component, and the estimation can be carried out 
by splitting the estimation process into two. The first component is the volatility 
component and contains only terms in 𝐷𝐷𝐷𝐷𝑡𝑡𝑡𝑡, and the second component is the correlation 
component and contains only terms in 𝑅𝑅𝑅𝑅𝑡𝑡𝑡𝑡, The reason why the DCC model is estimated 
in two stages can be explained by this structure. In the first stage, only the part containing 
the volatility component is maximized, and in the second stage, the correlation component 

 The reason why the DCC model is estimated in two stages can be explained by this structure. 
In the first stage, only the part containing the volatility component is maximized, and in the second stage, the 
correlation component conditional on conditional on 𝐷𝐷𝐷𝐷𝑡𝑡𝑡𝑡 is maximized, and thus estimates of the parameters of the DCC model, 

𝛼𝛼𝛼𝛼𝑚𝑚𝑚𝑚 and 𝛽𝛽𝛽𝛽𝑛𝑛𝑛𝑛 are obtained. The parameters 𝛼𝛼𝛼𝛼𝑚𝑚𝑚𝑚 and 𝛽𝛽𝛽𝛽𝑛𝑛𝑛𝑛 are the determinants of the correlation 
between two series. The 𝛼𝛼𝛼𝛼𝑚𝑚𝑚𝑚 parameter shows the short-term effects of volatility, and the  
𝛽𝛽𝛽𝛽𝑛𝑛𝑛𝑛 parameter shows the long-term permanent effects (Uyar and Kangalı Uyar, 2021: p. 
322) .  

4. ANALYSIS FINDINGS 
In this study using monthly data, descriptive statistics and unit root analysis of the raw 
returns of the variables were performed. Then, the study analyzes were carried out in two 
stages. In the first stage, variable returns were decomposed into different time scales using 
wavelet decomposition analysis. In the second stage, the dynamic correlation relationship 
between the return series of variables separated according to different time scales was 
examined according to the DCC-GARCH approach. The DCC-GARCH (1,1) model to 
be estimated was created as follows: 

𝑟𝑟𝑟𝑟𝑡𝑡𝑡𝑡 = 𝜇𝜇𝜇𝜇 + 𝜀𝜀𝜀𝜀𝑡𝑡𝑡𝑡 , 𝑡𝑡𝑡𝑡 = 1,2, … ,𝑇𝑇𝑇𝑇, 𝜀𝜀𝜀𝜀𝑡𝑡𝑡𝑡 ∣ 𝐼𝐼𝐼𝐼𝑡𝑡𝑡𝑡−1 ∼ 𝑁𝑁𝑁𝑁(0,𝐻𝐻𝐻𝐻𝑡𝑡𝑡𝑡)                                                                  (23) 

𝐻𝐻𝐻𝐻𝑡𝑡𝑡𝑡 = 𝐷𝐷𝐷𝐷𝑡𝑡𝑡𝑡𝑅𝑅𝑅𝑅𝑡𝑡𝑡𝑡𝐷𝐷𝐷𝐷𝑡𝑡𝑡𝑡 ,𝐷𝐷𝐷𝐷𝑡𝑡𝑡𝑡
= 𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑��ℎ1𝑡𝑡𝑡𝑡 ,�ℎ2𝑡𝑡𝑡𝑡�                                                                                     (24) 

ℎ𝑖𝑖𝑖𝑖𝑡𝑡𝑡𝑡 = 𝜃𝜃𝜃𝜃𝑖𝑖𝑖𝑖 + 𝛼𝛼𝛼𝛼𝑖𝑖𝑖𝑖𝜀𝜀𝜀𝜀𝑖𝑖𝑖𝑖𝑡𝑡𝑡𝑡−12 + 𝛽𝛽𝛽𝛽𝑖𝑖𝑖𝑖ℎ𝑖𝑖𝑖𝑖𝑡𝑡𝑡𝑡−1, 𝑑𝑑𝑑𝑑 = VIX, Bitcoin                                                                  (25) 

𝑅𝑅𝑅𝑅𝑡𝑡𝑡𝑡 = 𝑄𝑄𝑄𝑄𝑡𝑡𝑡𝑡∗−1 ∗ 𝑄𝑄𝑄𝑄𝑡𝑡𝑡𝑡 ∗ 𝑄𝑄𝑄𝑄𝑡𝑡𝑡𝑡∗−1,𝑄𝑄𝑄𝑄𝑡𝑡𝑡𝑡∗ = 𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑��𝑞𝑞𝑞𝑞11,𝑡𝑡𝑡𝑡 ,�𝑞𝑞𝑞𝑞22,𝑡𝑡𝑡𝑡�                                                      (26) 

𝑄𝑄𝑄𝑄𝑡𝑡𝑡𝑡 = (1 − 𝛼𝛼𝛼𝛼 − 𝛽𝛽𝛽𝛽) ∗ 𝑄𝑄𝑄𝑄� + 𝛼𝛼𝛼𝛼(𝜂𝜂𝜂𝜂𝑡𝑡𝑡𝑡−1ή𝑡𝑡𝑡𝑡−1) + 𝛽𝛽𝛽𝛽𝑄𝑄𝑄𝑄𝑡𝑡𝑡𝑡−1                                                                 (27) 
Here, the DCC-GARCH (1,1) model is defined to study the dynamic correlation between 
VIX and Bitcoin. Similarly, the DCC-GARCH (1,1) model is created for other variable 
returns. DCC-GARCH (1,1) model is defined within the return series of the variables 
separated into different time scales. These models are defined as wavelet-based DCC-
GARCH(1,1) models. In the models, VIX return on time scale D1 and Bitcoin on time 
scale D1, VIX return on time scale D4, and Bitcoin on time scale D4, etc. The dynamic 
correlations between them were examined. Similar matchings were made for return series 
of variables on other time scales. As a result, 4 DCC-GARCH (1,1) models based on raw 
data; 16 DCC-GARCH (1,1) models based on four different time scales (4x4) were 
estimated. 
Table 3. Descriptive Statistics of Return Series of Variables 
 

 Bitcoin Ethereum GEPU VIX 
Mean 0.0651 0.0604 0.0026 0.0004 
Median 0.0277 0.0316 -0.0020 -0.0040 
Maksimum 1.7249 1.1426 0.6279 0.8525 
Minimum -0.4665 -0.7719 -0.4987 -0.6142 
Standard Deviation 0.2656 0.3135 0.1791 0.2421 
Skewness 1.8256 0.4579 0.4104 0.3971 
Kurtosis 12.9327 4.0861 4.5647 3.8066 
Jarque-Bera 681.2857*** 8.1582** 4.6547*** 7.7959** 

P. Value [0.0000] [0.0169] [0.0000] [0.0202] 
Observations 146 97 146 146 

 
Note: ***, ** and * indicate statistical significance at 1%, 5% and 10% confidence intervals, respectively. 

Table 3. includes descriptive statistics of the return series of Bitcoin, Ethereum, Global 
Economic Political Uncertainty Index (GEPU) and Fear Index (VIX). It can be seen that 
the mean values of all variables are close to zero and positive. While the highest average 

 is maximized, and thus estimates of the parameters of the DCC model,  conditional on 𝐷𝐷𝐷𝐷𝑡𝑡𝑡𝑡 is maximized, and thus estimates of the parameters of the DCC model, 
𝛼𝛼𝛼𝛼𝑚𝑚𝑚𝑚 and 𝛽𝛽𝛽𝛽𝑛𝑛𝑛𝑛 are obtained. The parameters 𝛼𝛼𝛼𝛼𝑚𝑚𝑚𝑚 and 𝛽𝛽𝛽𝛽𝑛𝑛𝑛𝑛 are the determinants of the correlation 
between two series. The 𝛼𝛼𝛼𝛼𝑚𝑚𝑚𝑚 parameter shows the short-term effects of volatility, and the  
𝛽𝛽𝛽𝛽𝑛𝑛𝑛𝑛 parameter shows the long-term permanent effects (Uyar and Kangalı Uyar, 2021: p. 
322) .  

4. ANALYSIS FINDINGS 
In this study using monthly data, descriptive statistics and unit root analysis of the raw 
returns of the variables were performed. Then, the study analyzes were carried out in two 
stages. In the first stage, variable returns were decomposed into different time scales using 
wavelet decomposition analysis. In the second stage, the dynamic correlation relationship 
between the return series of variables separated according to different time scales was 
examined according to the DCC-GARCH approach. The DCC-GARCH (1,1) model to 
be estimated was created as follows: 

𝑟𝑟𝑟𝑟𝑡𝑡𝑡𝑡 = 𝜇𝜇𝜇𝜇 + 𝜀𝜀𝜀𝜀𝑡𝑡𝑡𝑡 , 𝑡𝑡𝑡𝑡 = 1,2, … ,𝑇𝑇𝑇𝑇, 𝜀𝜀𝜀𝜀𝑡𝑡𝑡𝑡 ∣ 𝐼𝐼𝐼𝐼𝑡𝑡𝑡𝑡−1 ∼ 𝑁𝑁𝑁𝑁(0,𝐻𝐻𝐻𝐻𝑡𝑡𝑡𝑡)                                                                  (23) 

𝐻𝐻𝐻𝐻𝑡𝑡𝑡𝑡 = 𝐷𝐷𝐷𝐷𝑡𝑡𝑡𝑡𝑅𝑅𝑅𝑅𝑡𝑡𝑡𝑡𝐷𝐷𝐷𝐷𝑡𝑡𝑡𝑡 ,𝐷𝐷𝐷𝐷𝑡𝑡𝑡𝑡
= 𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑��ℎ1𝑡𝑡𝑡𝑡 ,�ℎ2𝑡𝑡𝑡𝑡�                                                                                     (24) 

ℎ𝑖𝑖𝑖𝑖𝑡𝑡𝑡𝑡 = 𝜃𝜃𝜃𝜃𝑖𝑖𝑖𝑖 + 𝛼𝛼𝛼𝛼𝑖𝑖𝑖𝑖𝜀𝜀𝜀𝜀𝑖𝑖𝑖𝑖𝑡𝑡𝑡𝑡−12 + 𝛽𝛽𝛽𝛽𝑖𝑖𝑖𝑖ℎ𝑖𝑖𝑖𝑖𝑡𝑡𝑡𝑡−1, 𝑑𝑑𝑑𝑑 = VIX, Bitcoin                                                                  (25) 
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𝑄𝑄𝑄𝑄𝑡𝑡𝑡𝑡 = (1 − 𝛼𝛼𝛼𝛼 − 𝛽𝛽𝛽𝛽) ∗ 𝑄𝑄𝑄𝑄� + 𝛼𝛼𝛼𝛼(𝜂𝜂𝜂𝜂𝑡𝑡𝑡𝑡−1ή𝑡𝑡𝑡𝑡−1) + 𝛽𝛽𝛽𝛽𝑄𝑄𝑄𝑄𝑡𝑡𝑡𝑡−1                                                                 (27) 
Here, the DCC-GARCH (1,1) model is defined to study the dynamic correlation between 
VIX and Bitcoin. Similarly, the DCC-GARCH (1,1) model is created for other variable 
returns. DCC-GARCH (1,1) model is defined within the return series of the variables 
separated into different time scales. These models are defined as wavelet-based DCC-
GARCH(1,1) models. In the models, VIX return on time scale D1 and Bitcoin on time 
scale D1, VIX return on time scale D4, and Bitcoin on time scale D4, etc. The dynamic 
correlations between them were examined. Similar matchings were made for return series 
of variables on other time scales. As a result, 4 DCC-GARCH (1,1) models based on raw 
data; 16 DCC-GARCH (1,1) models based on four different time scales (4x4) were 
estimated. 
Table 3. Descriptive Statistics of Return Series of Variables 
 

 Bitcoin Ethereum GEPU VIX 
Mean 0.0651 0.0604 0.0026 0.0004 
Median 0.0277 0.0316 -0.0020 -0.0040 
Maksimum 1.7249 1.1426 0.6279 0.8525 
Minimum -0.4665 -0.7719 -0.4987 -0.6142 
Standard Deviation 0.2656 0.3135 0.1791 0.2421 
Skewness 1.8256 0.4579 0.4104 0.3971 
Kurtosis 12.9327 4.0861 4.5647 3.8066 
Jarque-Bera 681.2857*** 8.1582** 4.6547*** 7.7959** 

P. Value [0.0000] [0.0169] [0.0000] [0.0202] 
Observations 146 97 146 146 

 
Note: ***, ** and * indicate statistical significance at 1%, 5% and 10% confidence intervals, respectively. 
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Economic Political Uncertainty Index (GEPU) and Fear Index (VIX). It can be seen that 
the mean values of all variables are close to zero and positive. While the highest average 

  (25)

conditional on 𝐷𝐷𝐷𝐷𝑡𝑡𝑡𝑡 is maximized, and thus estimates of the parameters of the DCC model, 
𝛼𝛼𝛼𝛼𝑚𝑚𝑚𝑚 and 𝛽𝛽𝛽𝛽𝑛𝑛𝑛𝑛 are obtained. The parameters 𝛼𝛼𝛼𝛼𝑚𝑚𝑚𝑚 and 𝛽𝛽𝛽𝛽𝑛𝑛𝑛𝑛 are the determinants of the correlation 
between two series. The 𝛼𝛼𝛼𝛼𝑚𝑚𝑚𝑚 parameter shows the short-term effects of volatility, and the  
𝛽𝛽𝛽𝛽𝑛𝑛𝑛𝑛 parameter shows the long-term permanent effects (Uyar and Kangalı Uyar, 2021: p. 
322) .  

4. ANALYSIS FINDINGS 
In this study using monthly data, descriptive statistics and unit root analysis of the raw 
returns of the variables were performed. Then, the study analyzes were carried out in two 
stages. In the first stage, variable returns were decomposed into different time scales using 
wavelet decomposition analysis. In the second stage, the dynamic correlation relationship 
between the return series of variables separated according to different time scales was 
examined according to the DCC-GARCH approach. The DCC-GARCH (1,1) model to 
be estimated was created as follows: 

𝑟𝑟𝑟𝑟𝑡𝑡𝑡𝑡 = 𝜇𝜇𝜇𝜇 + 𝜀𝜀𝜀𝜀𝑡𝑡𝑡𝑡 , 𝑡𝑡𝑡𝑡 = 1,2, … ,𝑇𝑇𝑇𝑇, 𝜀𝜀𝜀𝜀𝑡𝑡𝑡𝑡 ∣ 𝐼𝐼𝐼𝐼𝑡𝑡𝑡𝑡−1 ∼ 𝑁𝑁𝑁𝑁(0,𝐻𝐻𝐻𝐻𝑡𝑡𝑡𝑡)                                                                  (23) 

𝐻𝐻𝐻𝐻𝑡𝑡𝑡𝑡 = 𝐷𝐷𝐷𝐷𝑡𝑡𝑡𝑡𝑅𝑅𝑅𝑅𝑡𝑡𝑡𝑡𝐷𝐷𝐷𝐷𝑡𝑡𝑡𝑡 ,𝐷𝐷𝐷𝐷𝑡𝑡𝑡𝑡
= 𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑��ℎ1𝑡𝑡𝑡𝑡 ,�ℎ2𝑡𝑡𝑡𝑡�                                                                                     (24) 

ℎ𝑖𝑖𝑖𝑖𝑡𝑡𝑡𝑡 = 𝜃𝜃𝜃𝜃𝑖𝑖𝑖𝑖 + 𝛼𝛼𝛼𝛼𝑖𝑖𝑖𝑖𝜀𝜀𝜀𝜀𝑖𝑖𝑖𝑖𝑡𝑡𝑡𝑡−12 + 𝛽𝛽𝛽𝛽𝑖𝑖𝑖𝑖ℎ𝑖𝑖𝑖𝑖𝑡𝑡𝑡𝑡−1, 𝑑𝑑𝑑𝑑 = VIX, Bitcoin                                                                  (25) 

𝑅𝑅𝑅𝑅𝑡𝑡𝑡𝑡 = 𝑄𝑄𝑄𝑄𝑡𝑡𝑡𝑡∗−1 ∗ 𝑄𝑄𝑄𝑄𝑡𝑡𝑡𝑡 ∗ 𝑄𝑄𝑄𝑄𝑡𝑡𝑡𝑡∗−1,𝑄𝑄𝑄𝑄𝑡𝑡𝑡𝑡∗ = 𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑��𝑞𝑞𝑞𝑞11,𝑡𝑡𝑡𝑡 ,�𝑞𝑞𝑞𝑞22,𝑡𝑡𝑡𝑡�                                                      (26) 

𝑄𝑄𝑄𝑄𝑡𝑡𝑡𝑡 = (1 − 𝛼𝛼𝛼𝛼 − 𝛽𝛽𝛽𝛽) ∗ 𝑄𝑄𝑄𝑄� + 𝛼𝛼𝛼𝛼(𝜂𝜂𝜂𝜂𝑡𝑡𝑡𝑡−1ή𝑡𝑡𝑡𝑡−1) + 𝛽𝛽𝛽𝛽𝑄𝑄𝑄𝑄𝑡𝑡𝑡𝑡−1                                                                 (27) 
Here, the DCC-GARCH (1,1) model is defined to study the dynamic correlation between 
VIX and Bitcoin. Similarly, the DCC-GARCH (1,1) model is created for other variable 
returns. DCC-GARCH (1,1) model is defined within the return series of the variables 
separated into different time scales. These models are defined as wavelet-based DCC-
GARCH(1,1) models. In the models, VIX return on time scale D1 and Bitcoin on time 
scale D1, VIX return on time scale D4, and Bitcoin on time scale D4, etc. The dynamic 
correlations between them were examined. Similar matchings were made for return series 
of variables on other time scales. As a result, 4 DCC-GARCH (1,1) models based on raw 
data; 16 DCC-GARCH (1,1) models based on four different time scales (4x4) were 
estimated. 
Table 3. Descriptive Statistics of Return Series of Variables 
 

 Bitcoin Ethereum GEPU VIX 
Mean 0.0651 0.0604 0.0026 0.0004 
Median 0.0277 0.0316 -0.0020 -0.0040 
Maksimum 1.7249 1.1426 0.6279 0.8525 
Minimum -0.4665 -0.7719 -0.4987 -0.6142 
Standard Deviation 0.2656 0.3135 0.1791 0.2421 
Skewness 1.8256 0.4579 0.4104 0.3971 
Kurtosis 12.9327 4.0861 4.5647 3.8066 
Jarque-Bera 681.2857*** 8.1582** 4.6547*** 7.7959** 

P. Value [0.0000] [0.0169] [0.0000] [0.0202] 
Observations 146 97 146 146 

 
Note: ***, ** and * indicate statistical significance at 1%, 5% and 10% confidence intervals, respectively. 

Table 3. includes descriptive statistics of the return series of Bitcoin, Ethereum, Global 
Economic Political Uncertainty Index (GEPU) and Fear Index (VIX). It can be seen that 
the mean values of all variables are close to zero and positive. While the highest average 
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VIX and Bitcoin. Similarly, the DCC-GARCH (1,1) model is created for other variable 
returns. DCC-GARCH (1,1) model is defined within the return series of the variables 
separated into different time scales. These models are defined as wavelet-based DCC-
GARCH(1,1) models. In the models, VIX return on time scale D1 and Bitcoin on time 
scale D1, VIX return on time scale D4, and Bitcoin on time scale D4, etc. The dynamic 
correlations between them were examined. Similar matchings were made for return series 
of variables on other time scales. As a result, 4 DCC-GARCH (1,1) models based on raw 
data; 16 DCC-GARCH (1,1) models based on four different time scales (4x4) were 
estimated. 
Table 3. Descriptive Statistics of Return Series of Variables 
 

 Bitcoin Ethereum GEPU VIX 
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Table 3. includes descriptive statistics of the return series of Bitcoin, Ethereum, Global 
Economic Political Uncertainty Index (GEPU) and Fear Index (VIX). It can be seen that 
the mean values of all variables are close to zero and positive. While the highest average 
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Here, the DCC-GARCH (1,1) model is defined to study the dynamic correlation between VIX and Bitcoin. Similarly, 
the DCC-GARCH (1,1) model is created for other variable returns. DCC-GARCH (1,1) model is defined within 
the return series of the variables separated into different time scales. These models are defined as wavelet-based 
DCC-GARCH(1,1) models. In the models, VIX return on time scale 
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𝛽𝛽𝛽𝛽𝑛𝑛𝑛𝑛 parameter shows the long-term permanent effects (Uyar and Kangalı Uyar, 2021: p. 
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estimated. 
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Here, the DCC-GARCH (1,1) model is defined to study the dynamic correlation between 
VIX and Bitcoin. Similarly, the DCC-GARCH (1,1) model is created for other variable 
returns. DCC-GARCH (1,1) model is defined within the return series of the variables 
separated into different time scales. These models are defined as wavelet-based DCC-
GARCH(1,1) models. In the models, VIX return on time scale D1 and Bitcoin on time 
scale D1, VIX return on time scale D4, and Bitcoin on time scale D4, etc. The dynamic 
correlations between them were examined. Similar matchings were made for return series 
of variables on other time scales. As a result, 4 DCC-GARCH (1,1) models based on raw 
data; 16 DCC-GARCH (1,1) models based on four different time scales (4x4) were 
estimated. 
Table 3. Descriptive Statistics of Return Series of Variables 
 

 Bitcoin Ethereum GEPU VIX 
Mean 0.0651 0.0604 0.0026 0.0004 
Median 0.0277 0.0316 -0.0020 -0.0040 
Maksimum 1.7249 1.1426 0.6279 0.8525 
Minimum -0.4665 -0.7719 -0.4987 -0.6142 
Standard Deviation 0.2656 0.3135 0.1791 0.2421 
Skewness 1.8256 0.4579 0.4104 0.3971 
Kurtosis 12.9327 4.0861 4.5647 3.8066 
Jarque-Bera 681.2857*** 8.1582** 4.6547*** 7.7959** 

P. Value [0.0000] [0.0169] [0.0000] [0.0202] 
Observations 146 97 146 146 

 
Note: ***, ** and * indicate statistical significance at 1%, 5% and 10% confidence intervals, respectively. 

Table 3. includes descriptive statistics of the return series of Bitcoin, Ethereum, Global 
Economic Political Uncertainty Index (GEPU) and Fear Index (VIX). It can be seen that 
the mean values of all variables are close to zero and positive. While the highest average 
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between two series. The 𝛼𝛼𝛼𝛼𝑚𝑚𝑚𝑚 parameter shows the short-term effects of volatility, and the  
𝛽𝛽𝛽𝛽𝑛𝑛𝑛𝑛 parameter shows the long-term permanent effects (Uyar and Kangalı Uyar, 2021: p. 
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4. ANALYSIS FINDINGS 
In this study using monthly data, descriptive statistics and unit root analysis of the raw 
returns of the variables were performed. Then, the study analyzes were carried out in two 
stages. In the first stage, variable returns were decomposed into different time scales using 
wavelet decomposition analysis. In the second stage, the dynamic correlation relationship 
between the return series of variables separated according to different time scales was 
examined according to the DCC-GARCH approach. The DCC-GARCH (1,1) model to 
be estimated was created as follows: 
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Here, the DCC-GARCH (1,1) model is defined to study the dynamic correlation between 
VIX and Bitcoin. Similarly, the DCC-GARCH (1,1) model is created for other variable 
returns. DCC-GARCH (1,1) model is defined within the return series of the variables 
separated into different time scales. These models are defined as wavelet-based DCC-
GARCH(1,1) models. In the models, VIX return on time scale D1 and Bitcoin on time 
scale D1, VIX return on time scale D4, and Bitcoin on time scale D4, etc. The dynamic 
correlations between them were examined. Similar matchings were made for return series 
of variables on other time scales. As a result, 4 DCC-GARCH (1,1) models based on raw 
data; 16 DCC-GARCH (1,1) models based on four different time scales (4x4) were 
estimated. 
Table 3. Descriptive Statistics of Return Series of Variables 
 

 Bitcoin Ethereum GEPU VIX 
Mean 0.0651 0.0604 0.0026 0.0004 
Median 0.0277 0.0316 -0.0020 -0.0040 
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Kurtosis 12.9327 4.0861 4.5647 3.8066 
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Observations 146 97 146 146 

 
Note: ***, ** and * indicate statistical significance at 1%, 5% and 10% confidence intervals, respectively. 

Table 3. includes descriptive statistics of the return series of Bitcoin, Ethereum, Global 
Economic Political Uncertainty Index (GEPU) and Fear Index (VIX). It can be seen that 
the mean values of all variables are close to zero and positive. While the highest average 
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Here, the DCC-GARCH (1,1) model is defined to study the dynamic correlation between 
VIX and Bitcoin. Similarly, the DCC-GARCH (1,1) model is created for other variable 
returns. DCC-GARCH (1,1) model is defined within the return series of the variables 
separated into different time scales. These models are defined as wavelet-based DCC-
GARCH(1,1) models. In the models, VIX return on time scale D1 and Bitcoin on time 
scale D1, VIX return on time scale D4, and Bitcoin on time scale D4, etc. The dynamic 
correlations between them were examined. Similar matchings were made for return series 
of variables on other time scales. As a result, 4 DCC-GARCH (1,1) models based on raw 
data; 16 DCC-GARCH (1,1) models based on four different time scales (4x4) were 
estimated. 
Table 3. Descriptive Statistics of Return Series of Variables 
 

 Bitcoin Ethereum GEPU VIX 
Mean 0.0651 0.0604 0.0026 0.0004 
Median 0.0277 0.0316 -0.0020 -0.0040 
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Note: ***, ** and * indicate statistical significance at 1%, 5% and 10% confidence intervals, respectively. 

Table 3. includes descriptive statistics of the return series of Bitcoin, Ethereum, Global 
Economic Political Uncertainty Index (GEPU) and Fear Index (VIX). It can be seen that 
the mean values of all variables are close to zero and positive. While the highest average 

Note: ***, ** and * indicate statistical significance at 1%, 5% and 10% confidence intervals, respectively.

Table 3. includes descriptive statistics of the return series of Bitcoin, Ethereum, Global Economic Political 
Uncertainty Index (GEPU) and Fear Index (VIX). It can be seen that the mean values of all variables are close to 
zero and positive. While the highest average return belongs to Bitcoin and Ethereum; When evaluated in terms 
of volatility, it can be seen that Bitcoin has the highest standard deviation in the examined data range and is the 
GEPU with the lowest standard deviation. It can be seen that the coefficients of all return series are positive and 
right-skewed. It is seen that the kurtosis values are positive and greater than three and the series have an extremely 
flat (leptokortic) structure. Positive skewness coefficients indicate that positive returns occur more frequently than 
negative extreme returns. When the Jarque-Bera test statistics, which test the normality assumption of all variables, 
were evaluated, it was confirmed that the return series did not comply with the normal distribution. This result 
provides an important reason for using the wavelet-based DCC-GARCH approach, which does not make any 
distributional assumptions, to examine the relationships between markets. Before performing the wavelet-based 
DCC-GARCH analysis, unit root tests were carried out to determine whether the return series were stationary.

Table 4. Unit Root Tests of Price and Return Series of Variables

return belongs to Bitcoin and Ethereum; When evaluated in terms of volatility, it can be 
seen that Bitcoin has the highest standard deviation in the examined data range and is the 
GEPU with the lowest standard deviation. It can be seen that the coefficients of all return 
series are positive and right-skewed. It is seen that the kurtosis values are positive and 
greater than three and the series have an extremely flat (leptokortic) structure. Positive 
skewness coefficients indicate that positive returns occur more frequently than negative 
extreme returns. When the Jarque-Bera test statistics, which test the normality assumption 
of all variables, were evaluated, it was confirmed that the return series did not comply 
with the normal distribution. This result provides an important reason for using the 
wavelet-based DCC-GARCH approach, which does not make any distributional 
assumptions, to examine the relationships between markets. Before performing the 
wavelet-based DCC-GARCH analysis, unit root tests were carried out to determine 
whether the return series were stationary. 
Table 4. Unit Root Tests of Price and Return Series of Variables 
 

 
Note: In the ADF test, the maximum number of delays was taken as 13 and the optimum number of delays 
was determined according to the Schwarz Information Criterion. Long-term variance in PP and KPSS tests 
was obtained with the Bartlett kernel estimator and bandwidth was determined with the Newey-West 
method. In ADF and PP tests, critical values are -3.433122 (1%), -2.862651 (5%) and -2.567407 (10%) for 
the constant model; for the constant and trend model it is -3.962212 (1%), -3.411849 (5%) and - 3.127817 
(10%). In the KPSS test, the critical values for the constant model are 0.739000 (1%), 0.463000 (5%) and 
0.347000 (10%); For the constant and trending model, it is 0.216000 (1%), 0.146000 (5%) and 0.119000 
(10%). The symbols ***, **, and * indicate statistical significance at 1%, 5% and 10% significance levels. 

The long-term characteristics of a time series are revealed by determining how the 
variable value in the previous period affects the current period. In order to understand the 
evolution of the time series, it is necessary to perform regression analysis of the values in 
each period compared to previous periods. The unit root analysis method used to 
determine the stationarity of the series is an effective tool for evaluating this process (Tarı, 
2014: 387; Aydoğdu, 2024: 243). In this context, Table 4 includes Augmented Dickey 
Fuller (ADF), Phillips-Perron (PP) and Kwiatkowski, Phillips, Schmidt and Shin (KPSS) 
unit root test results to determine the stationarity of the series examined within the scope 
of the research. While ADF and PP tests indicate the case of unit root, non-stationarity or 
I[1] with "𝐻𝐻𝐻𝐻0(null hypothesis)"; KPSS test indicates the I[0] process, in other words, 
stasis (Şahin Dağlı and Çelik, 2022; 2198). According to the ADF and PP tests applied to 
Bitcoin, Ethereum, GEPU and VIX returns, it is seen that the unit root 𝐻𝐻𝐻𝐻0  hypothesis is 
rejected, and for the KPSS test statistic result, the I[0] process is reached and 𝐻𝐻𝐻𝐻0 cannot 

 
Price Return 

Model          ADF                 PP              KPSS             ADF                PP                   KPSS           

 
Bitcoin 

Constant -0.7065 -0.1610 1.1851 -9.5077*** -9.4382*** 0.1863 
Constant 
and Trend -2.5251 -1.9965 0.1686 -8.9934*** -9.6142*** 0.0469 

Ethereum 
Constant 0.7220 -1.1838 0.8735 -8.2236*** -8.5232*** 0.0766 

Constant 
and Trend -2.1279 -2.2658 0.0869 -8.2061*** -8.4822*** 0.0568 

GEPU 
Constant -2.9564 -2.6875 0.9488 -15.1740*** -15.9600*** 0.2318 
Constant 
and Trend -3.1453 -2.8006 0.1558 -15.2393*** -16.0917*** 0.1117 

VIX 
Constant -5.3098 -5.1646 0.4754 -11.59680*** -27.2617*** 0.1622 
Constant 
and Trend -5.5897 -5.5029 0.1156 -11.5509*** -27.2626*** 0.1593 

Note: In the ADF test, the maximum number of delays was taken as 13 and the optimum number of delays was determined according to the 
Schwarz Information Criterion. Long-term variance in PP and KPSS tests was obtained with the Bartlett kernel estimator and bandwidth was 
determined with the Newey-West method. In ADF and PP tests, critical values are -3.433122 (1%), -2.862651 (5%) and -2.567407 (10%) for 
the constant model; for the constant and trend model it is -3.962212 (1%), -3.411849 (5%) and - 3.127817 (10%). In the KPSS test, the critical 
values for the constant model are 0.739000 (1%), 0.463000 (5%) and 0.347000 (10%); For the constant and trending model, it is 0.216000 
(1%), 0.146000 (5%) and 0.119000 (10%). The symbols ***, **, and * indicate statistical significance at 1%, 5% and 10% significance levels.

The long-term characteristics of a time series are revealed by determining how the variable value in the previous 
period affects the current period. In order to understand the evolution of the time series, it is necessary to perform 
regression analysis of the values in each period compared to previous periods. The unit root analysis method 
used to determine the stationarity of the series is an effective tool for evaluating this process (Tarı, 2014: 387; 
Aydoğdu, 2024: 243). In this context, Table 4 includes Augmented Dickey Fuller (ADF), Phillips-Perron (PP) and 
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Kwiatkowski, Phillips, Schmidt and Shin (KPSS) unit root test results to determine the stationarity of the series 
examined within the scope of the research. While ADF and PP tests indicate the case of unit root, non-stationarity 
or I[1] with 

return belongs to Bitcoin and Ethereum; When evaluated in terms of volatility, it can be 
seen that Bitcoin has the highest standard deviation in the examined data range and is the 
GEPU with the lowest standard deviation. It can be seen that the coefficients of all return 
series are positive and right-skewed. It is seen that the kurtosis values are positive and 
greater than three and the series have an extremely flat (leptokortic) structure. Positive 
skewness coefficients indicate that positive returns occur more frequently than negative 
extreme returns. When the Jarque-Bera test statistics, which test the normality assumption 
of all variables, were evaluated, it was confirmed that the return series did not comply 
with the normal distribution. This result provides an important reason for using the 
wavelet-based DCC-GARCH approach, which does not make any distributional 
assumptions, to examine the relationships between markets. Before performing the 
wavelet-based DCC-GARCH analysis, unit root tests were carried out to determine 
whether the return series were stationary. 
Table 4. Unit Root Tests of Price and Return Series of Variables 
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I[1] with "𝐻𝐻𝐻𝐻0(null hypothesis)"; KPSS test indicates the I[0] process, in other words, 
stasis (Şahin Dağlı and Çelik, 2022; 2198). According to the ADF and PP tests applied to 
Bitcoin, Ethereum, GEPU and VIX returns, it is seen that the unit root 𝐻𝐻𝐻𝐻0  hypothesis is 
rejected, and for the KPSS test statistic result, the I[0] process is reached and 𝐻𝐻𝐻𝐻0 cannot 
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Ethereum 
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assumptions, to examine the relationships between markets. Before performing the 
wavelet-based DCC-GARCH analysis, unit root tests were carried out to determine 
whether the return series were stationary. 
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assumptions, to examine the relationships between markets. Before performing the 
wavelet-based DCC-GARCH analysis, unit root tests were carried out to determine 
whether the return series were stationary. 
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 cannot be rejected. As a result, it was concluded that the series do not contain unit roots and have 
a stationary structure.

Tables 5, 6, 7 and 8 show the predictions of DCC-GARCH (1,1) models for return series disaggregated according 
to raw data and four different time scales. The coefficient 𝛼 shows the effect of standardized shocks 

be rejected. As a result, it was concluded that the series do not contain unit roots and have 
a stationary structure. 
Tables 5, 6, 7 and 8 show the predictions of DCC-GARCH (1,1) models for return series 
disaggregated according to raw data and four different time scales. The coefficient 𝛼𝛼𝛼𝛼  
shows the effect of standardized shocks (𝜂𝜂𝜂𝜂𝑡𝑡𝑡𝑡−1ή𝑡𝑡𝑡𝑡−1) and the coefficient 𝛽𝛽𝛽𝛽  shows the effect 
of lagged dynamic conditional correlations 𝑄𝑄𝑄𝑄𝑡𝑡𝑡𝑡−1 on the dynamic conditional correlations 
in the current period. Statistically significant values of the 𝛼𝛼𝛼𝛼  coefficient indicate short-
term permanence, while large and statistically significant values of the 𝛽𝛽𝛽𝛽  coefficient 
indicate long-term permanence. 
Table 5. Analysis Results for VIX-Bitcoin Raw Data and Return Scales 
 

Panel A: 
Raw Data 𝛼𝛼𝛼𝛼  p 𝛽𝛽𝛽𝛽  p 𝛼𝛼𝛼𝛼 + 𝛽𝛽𝛽𝛽  
Bitcoin -0.0000 0.9999 0.5972 0.2570 0.5972 
Panel B: 
Return Scales      
D1 0.5375 0.0000 0.2277 0.1682 0.7652 
D2 0.2453 0.0023 0.6544 0.0000 0.8997 
D3 0.4548 0.0000 -0.0000 0.9999 0.4548 
D4 0.9855 0.0000 0.0143 0.0000 0.9998 

Table 5. includes the analysis findings of Fear index (VIX) and Bitcoin raw data and 
different time scales. According to the findings, it can be concluded that the 𝛼𝛼𝛼𝛼  and 𝛽𝛽𝛽𝛽  
coefficients of Bitcoin raw data returns are not significant, and that the shocks and 
dynamic conditional correlations in the past period have no effect on the dynamic 
conditional correlations of VIX and Bitcoin returns in the current period. This result is 
also an indication that there is no dynamic relationship or volatility interaction between 
the Fear index and Bitcoin returns. When the predictions of wavelet-based DCC-
GARCH(1,1) models (from D1 to D4) are examined; It took values of 𝛼𝛼𝛼𝛼 + 𝛽𝛽𝛽𝛽  <1 at all time 
scales. However, it was concluded that 𝛼𝛼𝛼𝛼 +𝛽𝛽𝛽𝛽  <1 was statistically significant in the D2 and 
D4 time scales. This finding shows that dynamic correlations fluctuate around a fixed 
level in 4-8 month and 16-32 month investment cycles and have a process that tends to 
return to the mean. 

The 𝛼𝛼𝛼𝛼  coefficient estimates of the DCC-GARCH(1,1) models at all time scales are 
statistically significant at the 1% significance level, but the statistical significance of the 
𝛽𝛽𝛽𝛽  coefficients is significant at the 1% significance level in D2 and D4, but the 𝛽𝛽𝛽𝛽  
coefficients are not significant at the D1 and D3 time scales. has been observed. When 
these findings are evaluated, it can be said that past period conditional correlations on D1 
and D3 time scales do not have an effect on current period correlations, in other words, 
volatility shocks do not show permanence in 2-4 month and 8-16 month investment 
cycles. It can even be stated that there is no volatility interaction in these investment 
cycles. On the other hand, it can be stated that there are time-varying correlations between 
VIX and Bitcoin returns on the D2 and D4 time scales, and that past volatility shocks and 
conditional correlations are effective on these correlations. In other words, volatility 
shocks are permanent in both 4-8 month and 16-32 month investment cycles. In addition, 
in the 4-8 and 16-32 month investment cycles, although 𝛼𝛼𝛼𝛼 + 𝛽𝛽𝛽𝛽 <1, it is very close to l 
(one); with VIX, it can be stated that conditional volatility for Bitcoin is more likely to be 
permanent. 
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Table 6. Analysis Results for GEPU-Bitcoin Raw Data and Return ScalesTable 6. Analysis Results for GEPU-Bitcoin Raw Data and Return Scales 
 

Panel A: 
Raw Data 𝛼𝛼𝛼𝛼  p 𝛽𝛽𝛽𝛽  p 𝛼𝛼𝛼𝛼 + 𝛽𝛽𝛽𝛽  
Bitcoin -0.0000 0.9999 0.0891 0.7611 0.0891 
Panel B: 
Return Scales      
D1 0.5647 0.0000 0.1465 0.1721 0.7103 
D2 0.4292 0.0000 0.4567 0.0000 0.8859 
D3 0.2816 0.0000 -0.0000 0.9999 0.2816 
D4 0.2295 0.0000 -0.0000 0.9999 0.2295 

Table 6. shows the findings regarding GEPU and Bitcoin raw data and different time 
scales. According to the findings, the 𝛼𝛼𝛼𝛼  and 𝛽𝛽𝛽𝛽  parameter coefficients regarding Bitcoin 
raw data returns are not statistically significant. Therefore, shocks and dynamic 
conditional correlations in the past period are an indication that GEPU and Bitcoin returns 
in the current period have no effect on dynamic conditional correlations. In other words, 
it can be stated that there is neither a dynamic relationship nor a volatility interaction 
between the global economic political index and Bitcoin returns. When the predictions of 
wavelet-based DCC-GARCH(1,1) models (from D1 to D4) are examined; The 𝛼𝛼𝛼𝛼  
coefficient estimates of the DCC-GARCH(1,1) models at all time scales are positive and 
statistically significant at the 1% significance level, but the statistical significance of the 
𝛽𝛽𝛽𝛽  coefficients is only significant at the D2 1% significance level; However, it was 
concluded that the 𝛽𝛽𝛽𝛽  coefficients were not significant at the time scales D1, D3  and D4. 
When these findings are evaluated; In the investment cycle periods of 2-4 months, 8-16 
months and 16-32 months, past period conditional correlations do not have an effect on 
current period correlations, in other words, volatility shocks are affected according to the 
investment cycle periods of 2-4 months, 8-16 and 16-32 months. It can be stated that it is 
not permanent. It can even be stated that there is no volatility interaction during these 
investment cycle periods. On the other hand, it can be stated that there are time-varying 
correlations between GEPU and Bitcoin returns during D2, that is, the 4-8 month 
investment cycle period, and that past volatility shocks and conditional correlations are 
effective on these correlations. In other words, volatility shocks are permanent in the 4-8 
month investment cycle. In addition, in the investment cycle period of 4-8 months, 
although 𝛼𝛼𝛼𝛼 + 𝛽𝛽𝛽𝛽 <1, it is very close to l (one); with GEPU, it can be stated that conditional 
volatility for Bitcoin is more likely to be permanent. 
Table 7. Analysis Results for VIX-Ethereum Raw Data and Return Scales 
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D2 0.1792 0.2102 0.6596 0.0169 0.8388 
D3 -0.0013 0.9589 0.1807 0.0000 0.1794 
D4 0.8100 0.0000 -0.0000 0.9999 0.8100 
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different time scales. According to these findings, the 𝛼𝛼𝛼𝛼  and 𝛽𝛽𝛽𝛽  parameter estimation 
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conditional correlations in the past period are an indication that GEPU and Bitcoin returns 
in the current period have no effect on dynamic conditional correlations. In other words, 
it can be stated that there is neither a dynamic relationship nor a volatility interaction 
between the global economic political index and Bitcoin returns. When the predictions of 
wavelet-based DCC-GARCH(1,1) models (from D1 to D4) are examined; The 𝛼𝛼𝛼𝛼  
coefficient estimates of the DCC-GARCH(1,1) models at all time scales are positive and 
statistically significant at the 1% significance level, but the statistical significance of the 
𝛽𝛽𝛽𝛽  coefficients is only significant at the D2 1% significance level; However, it was 
concluded that the 𝛽𝛽𝛽𝛽  coefficients were not significant at the time scales D1, D3  and D4. 
When these findings are evaluated; In the investment cycle periods of 2-4 months, 8-16 
months and 16-32 months, past period conditional correlations do not have an effect on 
current period correlations, in other words, volatility shocks are affected according to the 
investment cycle periods of 2-4 months, 8-16 and 16-32 months. It can be stated that it is 
not permanent. It can even be stated that there is no volatility interaction during these 
investment cycle periods. On the other hand, it can be stated that there are time-varying 
correlations between GEPU and Bitcoin returns during D2, that is, the 4-8 month 
investment cycle period, and that past volatility shocks and conditional correlations are 
effective on these correlations. In other words, volatility shocks are permanent in the 4-8 
month investment cycle. In addition, in the investment cycle period of 4-8 months, 
although 𝛼𝛼𝛼𝛼 + 𝛽𝛽𝛽𝛽 <1, it is very close to l (one); with GEPU, it can be stated that conditional 
volatility for Bitcoin is more likely to be permanent. 
Table 7. Analysis Results for VIX-Ethereum Raw Data and Return Scales 
 

Panel A: 
Raw Data 𝛼𝛼𝛼𝛼  p 𝛽𝛽𝛽𝛽  p 𝛼𝛼𝛼𝛼 + 𝛽𝛽𝛽𝛽  
Ethereum -0.0000 0.9999 0.3350 0.1654 0.3350 
Panel B: 
Return Scales      
D1 0.3251 0.0469 0.3188 0.4781 0.6439 
D2 0.1792 0.2102 0.6596 0.0169 0.8388 
D3 -0.0013 0.9589 0.1807 0.0000 0.1794 
D4 0.8100 0.0000 -0.0000 0.9999 0.8100 

 
Table 7. includes the Fear index (VIX) and Ethereum raw data and analysis findings for 
different time scales. According to these findings, the 𝛼𝛼𝛼𝛼  and 𝛽𝛽𝛽𝛽  parameter estimation 
coefficients of Ethereum raw data returns are not statistically significant. According to 

 

When these findings are evaluated; In the investment cycle periods of 2-4 months, 8-16 months and 16-32 months, 
past period conditional correlations do not have an effect on current period correlations, in other words, volatility 
shocks are affected according to the investment cycle periods of 2-4 months, 8-16 and 16-32 months. It can be stated 
that it is not permanent. It can even be stated that there is no volatility interaction during these investment cycle 
periods. On the other hand, it can be stated that there are time-varying correlations between GEPU and Bitcoin 
returns during , that is, the 4-8 month investment cycle period, and that past volatility shocks and conditional 
correlations are effective on these correlations. In other words, volatility shocks are permanent in the 4-8 month 
investment cycle. In addition, in the investment cycle period of 4-8 months, although 𝛼+ 𝛽<1, it is very close to l 
(one); with GEPU, it can be stated that conditional volatility for Bitcoin is more likely to be permanent.

Table 7. Analysis Results for VIX-Ethereum Raw Data and Return Scales

Table 6. Analysis Results for GEPU-Bitcoin Raw Data and Return Scales 
 

Panel A: 
Raw Data 𝛼𝛼𝛼𝛼  p 𝛽𝛽𝛽𝛽  p 𝛼𝛼𝛼𝛼 + 𝛽𝛽𝛽𝛽  
Bitcoin -0.0000 0.9999 0.0891 0.7611 0.0891 
Panel B: 
Return Scales      
D1 0.5647 0.0000 0.1465 0.1721 0.7103 
D2 0.4292 0.0000 0.4567 0.0000 0.8859 
D3 0.2816 0.0000 -0.0000 0.9999 0.2816 
D4 0.2295 0.0000 -0.0000 0.9999 0.2295 

Table 6. shows the findings regarding GEPU and Bitcoin raw data and different time 
scales. According to the findings, the 𝛼𝛼𝛼𝛼  and 𝛽𝛽𝛽𝛽  parameter coefficients regarding Bitcoin 
raw data returns are not statistically significant. Therefore, shocks and dynamic 
conditional correlations in the past period are an indication that GEPU and Bitcoin returns 
in the current period have no effect on dynamic conditional correlations. In other words, 
it can be stated that there is neither a dynamic relationship nor a volatility interaction 
between the global economic political index and Bitcoin returns. When the predictions of 
wavelet-based DCC-GARCH(1,1) models (from D1 to D4) are examined; The 𝛼𝛼𝛼𝛼  
coefficient estimates of the DCC-GARCH(1,1) models at all time scales are positive and 
statistically significant at the 1% significance level, but the statistical significance of the 
𝛽𝛽𝛽𝛽  coefficients is only significant at the D2 1% significance level; However, it was 
concluded that the 𝛽𝛽𝛽𝛽  coefficients were not significant at the time scales D1, D3  and D4. 
When these findings are evaluated; In the investment cycle periods of 2-4 months, 8-16 
months and 16-32 months, past period conditional correlations do not have an effect on 
current period correlations, in other words, volatility shocks are affected according to the 
investment cycle periods of 2-4 months, 8-16 and 16-32 months. It can be stated that it is 
not permanent. It can even be stated that there is no volatility interaction during these 
investment cycle periods. On the other hand, it can be stated that there are time-varying 
correlations between GEPU and Bitcoin returns during D2, that is, the 4-8 month 
investment cycle period, and that past volatility shocks and conditional correlations are 
effective on these correlations. In other words, volatility shocks are permanent in the 4-8 
month investment cycle. In addition, in the investment cycle period of 4-8 months, 
although 𝛼𝛼𝛼𝛼 + 𝛽𝛽𝛽𝛽 <1, it is very close to l (one); with GEPU, it can be stated that conditional 
volatility for Bitcoin is more likely to be permanent. 
Table 7. Analysis Results for VIX-Ethereum Raw Data and Return Scales 
 

Panel A: 
Raw Data 𝛼𝛼𝛼𝛼  p 𝛽𝛽𝛽𝛽  p 𝛼𝛼𝛼𝛼 + 𝛽𝛽𝛽𝛽  
Ethereum -0.0000 0.9999 0.3350 0.1654 0.3350 
Panel B: 
Return Scales      
D1 0.3251 0.0469 0.3188 0.4781 0.6439 
D2 0.1792 0.2102 0.6596 0.0169 0.8388 
D3 -0.0013 0.9589 0.1807 0.0000 0.1794 
D4 0.8100 0.0000 -0.0000 0.9999 0.8100 

 
Table 7. includes the Fear index (VIX) and Ethereum raw data and analysis findings for 
different time scales. According to these findings, the 𝛼𝛼𝛼𝛼  and 𝛽𝛽𝛽𝛽  parameter estimation 
coefficients of Ethereum raw data returns are not statistically significant. According to 

Table 7. includes the Fear index (VIX) and Ethereum raw data and analysis findings for different time scales. 
According to these findings, the 𝛼 and 𝛽 parameter estimation coefficients of Ethereum raw data returns are not 
statistically significant. According to this result, volatility shocks and dynamic conditional correlations in the past 
period show that there is no effect on the fear index and Ethereum returns dynamic conditional correlations in 
the current period. In other words, it is an indication that there is no volatility interaction between the fear index 
and Ethereum returns. When the estimates of the wavelet-based DCC-GARCH(1,1) models

this result, volatility shocks and dynamic conditional correlations in the past period show 
that there is no effect on the fear index and Ethereum returns dynamic conditional 
correlations in the current period. In other words, it is an indication that there is no 
volatility interaction between the fear index and Ethereum returns. When the estimates of 
the wavelet-based DCC-GARCH(1,1) models (from D1 to D4) were examined, it was 
determined that the 𝛼𝛼𝛼𝛼  coefficient estimates of the DCC-GARCH (1,1) models were not 
statistically significant at all time scales. When the 𝛽𝛽𝛽𝛽  coefficient estimates are examined, 
it is not statistically significant in the 2-4 month and 16-32 month investment cycles, but 
it is statistically significant in the 4-8 month and 8-16 month investment cycles. 
According to these findings, it has been determined that there is no relationship between 
the fear index and volatility shocks and dynamic correlations in the past period, volatility 
shocks and dynamic conditional correlations in the current period in Ethereum returns 
according to different time scales. 
Table 8. Analysis Results for GEPU-Ethereum Raw Data and Return Scales 
 

Panel A: 
Raw Data 𝛼𝛼𝛼𝛼  p 𝛽𝛽𝛽𝛽  p 𝛼𝛼𝛼𝛼 + 𝛽𝛽𝛽𝛽  
Ethereum -0.0000 0.9999 0.4132 0.3956 0.4132 
Panel B: 
Return Scales      
D1 0.3023 0.0139 0.2152 0.2535 0.5175 
D2 0.3271 0.0112 0.4845 0.0020 0.8116 
D3 0.3239 0.0000 -0.0000 0.9999 0.3239 
D4 0.8268 0.0000 0.0883 0.0000 0.9151 

 
Table 8. includes the Global Economic Political Uncertainty Index (GEPU) and Ethereum 
raw data and analysis findings for different time scales. According to the findings, it can 
be concluded that the 𝛼𝛼𝛼𝛼  and 𝛽𝛽𝛽𝛽  coefficients of Ethereum raw data returns are not 
significant, and that the shocks and dynamic conditional correlations in the past period 
have no effect on the global economic political uncertainty index and Ethereum returns 
dynamic conditional correlations in the current period. This result is also an indication 
that there is no dynamic relationship or volatility interaction between the global economic 
political uncertainty index and Ethereum returns. When the predictions of wavelet-based 
DCC-GARCH(1,1) models (from D1 to D4) are examined; It took values of 𝛼𝛼𝛼𝛼 + 𝛽𝛽𝛽𝛽 <1 at 
all time scales. However, it was concluded that 𝛼𝛼𝛼𝛼 + 𝛽𝛽𝛽𝛽 <1 was statistically significant in 
the D2 and D4 time scales. This finding shows that dynamic correlations fluctuate around 
a fixed level in the 4-8 month and 16-32 month investment cycles and have a process that 
tends to return to the mean. The 𝛼𝛼𝛼𝛼  coefficient estimates of the DCC-GARCH(1,1) models 
at all time scales are positive and statistically significant at the 1% significance level, but 
the statistical significance of the 𝛽𝛽𝛽𝛽  coefficients is significant at the 1% significance level 
in D2 and D4, but the 𝛽𝛽𝛽𝛽  coefficients are significant at D1 and D3 time scales. It was 
observed that it was not significant. 
When these findings are evaluated, it can be said that past period conditional correlations 
have no effect on current period correlations in D1 and D3 time scales, in other words, 
volatility shocks do not show permanence in 2-4 month and 8-16 month investment 
cycles. It can even be stated that there is no volatility interaction in these investment 
cycles. On the other hand, it can be stated that there are time-varying correlations between 
GEPU and Ethereum returns on the D2 and D4, time scales, and past volatility shocks and 
conditional correlations are effective on these correlations. In other words, volatility 

 
were examined, it was determined that the 𝛼 coefficient estimates of the DCC-GARCH (1,1) models were not 
statistically significant at all time scales. When the 𝛽 coefficient estimates are examined, it is not statistically 
significant in the 2-4 month and 16-32 month investment cycles, but it is statistically significant in the 4-8 month 
and 8-16 month investment cycles. According to these findings, it has been determined that there is no relationship 
between the fear index and volatility shocks and dynamic correlations in the past period, volatility shocks and 
dynamic conditional correlations in the current period in Ethereum returns according to different time scales.
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Table 8. Analysis Results for GEPU-Ethereum Raw Data and Return Scales

this result, volatility shocks and dynamic conditional correlations in the past period show 
that there is no effect on the fear index and Ethereum returns dynamic conditional 
correlations in the current period. In other words, it is an indication that there is no 
volatility interaction between the fear index and Ethereum returns. When the estimates of 
the wavelet-based DCC-GARCH(1,1) models (from D1 to D4) were examined, it was 
determined that the 𝛼𝛼𝛼𝛼  coefficient estimates of the DCC-GARCH (1,1) models were not 
statistically significant at all time scales. When the 𝛽𝛽𝛽𝛽  coefficient estimates are examined, 
it is not statistically significant in the 2-4 month and 16-32 month investment cycles, but 
it is statistically significant in the 4-8 month and 8-16 month investment cycles. 
According to these findings, it has been determined that there is no relationship between 
the fear index and volatility shocks and dynamic correlations in the past period, volatility 
shocks and dynamic conditional correlations in the current period in Ethereum returns 
according to different time scales. 
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Panel A: 
Raw Data 𝛼𝛼𝛼𝛼  p 𝛽𝛽𝛽𝛽  p 𝛼𝛼𝛼𝛼 + 𝛽𝛽𝛽𝛽  
Ethereum -0.0000 0.9999 0.4132 0.3956 0.4132 
Panel B: 
Return Scales      
D1 0.3023 0.0139 0.2152 0.2535 0.5175 
D2 0.3271 0.0112 0.4845 0.0020 0.8116 
D3 0.3239 0.0000 -0.0000 0.9999 0.3239 
D4 0.8268 0.0000 0.0883 0.0000 0.9151 

 
Table 8. includes the Global Economic Political Uncertainty Index (GEPU) and Ethereum 
raw data and analysis findings for different time scales. According to the findings, it can 
be concluded that the 𝛼𝛼𝛼𝛼  and 𝛽𝛽𝛽𝛽  coefficients of Ethereum raw data returns are not 
significant, and that the shocks and dynamic conditional correlations in the past period 
have no effect on the global economic political uncertainty index and Ethereum returns 
dynamic conditional correlations in the current period. This result is also an indication 
that there is no dynamic relationship or volatility interaction between the global economic 
political uncertainty index and Ethereum returns. When the predictions of wavelet-based 
DCC-GARCH(1,1) models (from D1 to D4) are examined; It took values of 𝛼𝛼𝛼𝛼 + 𝛽𝛽𝛽𝛽 <1 at 
all time scales. However, it was concluded that 𝛼𝛼𝛼𝛼 + 𝛽𝛽𝛽𝛽 <1 was statistically significant in 
the D2 and D4 time scales. This finding shows that dynamic correlations fluctuate around 
a fixed level in the 4-8 month and 16-32 month investment cycles and have a process that 
tends to return to the mean. The 𝛼𝛼𝛼𝛼  coefficient estimates of the DCC-GARCH(1,1) models 
at all time scales are positive and statistically significant at the 1% significance level, but 
the statistical significance of the 𝛽𝛽𝛽𝛽  coefficients is significant at the 1% significance level 
in D2 and D4, but the 𝛽𝛽𝛽𝛽  coefficients are significant at D1 and D3 time scales. It was 
observed that it was not significant. 
When these findings are evaluated, it can be said that past period conditional correlations 
have no effect on current period correlations in D1 and D3 time scales, in other words, 
volatility shocks do not show permanence in 2-4 month and 8-16 month investment 
cycles. It can even be stated that there is no volatility interaction in these investment 
cycles. On the other hand, it can be stated that there are time-varying correlations between 
GEPU and Ethereum returns on the D2 and D4, time scales, and past volatility shocks and 
conditional correlations are effective on these correlations. In other words, volatility 

Table 8. includes the Global Economic Political Uncertainty Index (GEPU) and Ethereum raw data and analysis 
findings for different time scales. According to the findings, it can be concluded that the 𝛼 and 𝛽 coefficients of 
Ethereum raw data returns are not significant, and that the shocks and dynamic conditional correlations in the past 
period have no effect on the global economic political uncertainty index and Ethereum returns dynamic conditional 
correlations in the current period. This result is also an indication that there is no dynamic relationship or volatility 
interaction between the global economic political uncertainty index and Ethereum returns. When the predictions 
of wavelet-based DCC-GARCH(1,1) models 

this result, volatility shocks and dynamic conditional correlations in the past period show 
that there is no effect on the fear index and Ethereum returns dynamic conditional 
correlations in the current period. In other words, it is an indication that there is no 
volatility interaction between the fear index and Ethereum returns. When the estimates of 
the wavelet-based DCC-GARCH(1,1) models (from D1 to D4) were examined, it was 
determined that the 𝛼𝛼𝛼𝛼  coefficient estimates of the DCC-GARCH (1,1) models were not 
statistically significant at all time scales. When the 𝛽𝛽𝛽𝛽  coefficient estimates are examined, 
it is not statistically significant in the 2-4 month and 16-32 month investment cycles, but 
it is statistically significant in the 4-8 month and 8-16 month investment cycles. 
According to these findings, it has been determined that there is no relationship between 
the fear index and volatility shocks and dynamic correlations in the past period, volatility 
shocks and dynamic conditional correlations in the current period in Ethereum returns 
according to different time scales. 
Table 8. Analysis Results for GEPU-Ethereum Raw Data and Return Scales 
 

Panel A: 
Raw Data 𝛼𝛼𝛼𝛼  p 𝛽𝛽𝛽𝛽  p 𝛼𝛼𝛼𝛼 + 𝛽𝛽𝛽𝛽  
Ethereum -0.0000 0.9999 0.4132 0.3956 0.4132 
Panel B: 
Return Scales      
D1 0.3023 0.0139 0.2152 0.2535 0.5175 
D2 0.3271 0.0112 0.4845 0.0020 0.8116 
D3 0.3239 0.0000 -0.0000 0.9999 0.3239 
D4 0.8268 0.0000 0.0883 0.0000 0.9151 

 
Table 8. includes the Global Economic Political Uncertainty Index (GEPU) and Ethereum 
raw data and analysis findings for different time scales. According to the findings, it can 
be concluded that the 𝛼𝛼𝛼𝛼  and 𝛽𝛽𝛽𝛽  coefficients of Ethereum raw data returns are not 
significant, and that the shocks and dynamic conditional correlations in the past period 
have no effect on the global economic political uncertainty index and Ethereum returns 
dynamic conditional correlations in the current period. This result is also an indication 
that there is no dynamic relationship or volatility interaction between the global economic 
political uncertainty index and Ethereum returns. When the predictions of wavelet-based 
DCC-GARCH(1,1) models (from D1 to D4) are examined; It took values of 𝛼𝛼𝛼𝛼 + 𝛽𝛽𝛽𝛽 <1 at 
all time scales. However, it was concluded that 𝛼𝛼𝛼𝛼 + 𝛽𝛽𝛽𝛽 <1 was statistically significant in 
the D2 and D4 time scales. This finding shows that dynamic correlations fluctuate around 
a fixed level in the 4-8 month and 16-32 month investment cycles and have a process that 
tends to return to the mean. The 𝛼𝛼𝛼𝛼  coefficient estimates of the DCC-GARCH(1,1) models 
at all time scales are positive and statistically significant at the 1% significance level, but 
the statistical significance of the 𝛽𝛽𝛽𝛽  coefficients is significant at the 1% significance level 
in D2 and D4, but the 𝛽𝛽𝛽𝛽  coefficients are significant at D1 and D3 time scales. It was 
observed that it was not significant. 
When these findings are evaluated, it can be said that past period conditional correlations 
have no effect on current period correlations in D1 and D3 time scales, in other words, 
volatility shocks do not show permanence in 2-4 month and 8-16 month investment 
cycles. It can even be stated that there is no volatility interaction in these investment 
cycles. On the other hand, it can be stated that there are time-varying correlations between 
GEPU and Ethereum returns on the D2 and D4, time scales, and past volatility shocks and 
conditional correlations are effective on these correlations. In other words, volatility 

 are examined; It took values of 𝛼+ 𝛽<1 at all 
time scales. However, it was concluded that 𝛼+ 𝛽<1 was statistically significant in the 

this result, volatility shocks and dynamic conditional correlations in the past period show 
that there is no effect on the fear index and Ethereum returns dynamic conditional 
correlations in the current period. In other words, it is an indication that there is no 
volatility interaction between the fear index and Ethereum returns. When the estimates of 
the wavelet-based DCC-GARCH(1,1) models (from D1 to D4) were examined, it was 
determined that the 𝛼𝛼𝛼𝛼  coefficient estimates of the DCC-GARCH (1,1) models were not 
statistically significant at all time scales. When the 𝛽𝛽𝛽𝛽  coefficient estimates are examined, 
it is not statistically significant in the 2-4 month and 16-32 month investment cycles, but 
it is statistically significant in the 4-8 month and 8-16 month investment cycles. 
According to these findings, it has been determined that there is no relationship between 
the fear index and volatility shocks and dynamic correlations in the past period, volatility 
shocks and dynamic conditional correlations in the current period in Ethereum returns 
according to different time scales. 
Table 8. Analysis Results for GEPU-Ethereum Raw Data and Return Scales 
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Raw Data 𝛼𝛼𝛼𝛼  p 𝛽𝛽𝛽𝛽  p 𝛼𝛼𝛼𝛼 + 𝛽𝛽𝛽𝛽  
Ethereum -0.0000 0.9999 0.4132 0.3956 0.4132 
Panel B: 
Return Scales      
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D2 0.3271 0.0112 0.4845 0.0020 0.8116 
D3 0.3239 0.0000 -0.0000 0.9999 0.3239 
D4 0.8268 0.0000 0.0883 0.0000 0.9151 

 
Table 8. includes the Global Economic Political Uncertainty Index (GEPU) and Ethereum 
raw data and analysis findings for different time scales. According to the findings, it can 
be concluded that the 𝛼𝛼𝛼𝛼  and 𝛽𝛽𝛽𝛽  coefficients of Ethereum raw data returns are not 
significant, and that the shocks and dynamic conditional correlations in the past period 
have no effect on the global economic political uncertainty index and Ethereum returns 
dynamic conditional correlations in the current period. This result is also an indication 
that there is no dynamic relationship or volatility interaction between the global economic 
political uncertainty index and Ethereum returns. When the predictions of wavelet-based 
DCC-GARCH(1,1) models (from D1 to D4) are examined; It took values of 𝛼𝛼𝛼𝛼 + 𝛽𝛽𝛽𝛽 <1 at 
all time scales. However, it was concluded that 𝛼𝛼𝛼𝛼 + 𝛽𝛽𝛽𝛽 <1 was statistically significant in 
the D2 and D4 time scales. This finding shows that dynamic correlations fluctuate around 
a fixed level in the 4-8 month and 16-32 month investment cycles and have a process that 
tends to return to the mean. The 𝛼𝛼𝛼𝛼  coefficient estimates of the DCC-GARCH(1,1) models 
at all time scales are positive and statistically significant at the 1% significance level, but 
the statistical significance of the 𝛽𝛽𝛽𝛽  coefficients is significant at the 1% significance level 
in D2 and D4, but the 𝛽𝛽𝛽𝛽  coefficients are significant at D1 and D3 time scales. It was 
observed that it was not significant. 
When these findings are evaluated, it can be said that past period conditional correlations 
have no effect on current period correlations in D1 and D3 time scales, in other words, 
volatility shocks do not show permanence in 2-4 month and 8-16 month investment 
cycles. It can even be stated that there is no volatility interaction in these investment 
cycles. On the other hand, it can be stated that there are time-varying correlations between 
GEPU and Ethereum returns on the D2 and D4, time scales, and past volatility shocks and 
conditional correlations are effective on these correlations. In other words, volatility 

 and 

this result, volatility shocks and dynamic conditional correlations in the past period show 
that there is no effect on the fear index and Ethereum returns dynamic conditional 
correlations in the current period. In other words, it is an indication that there is no 
volatility interaction between the fear index and Ethereum returns. When the estimates of 
the wavelet-based DCC-GARCH(1,1) models (from D1 to D4) were examined, it was 
determined that the 𝛼𝛼𝛼𝛼  coefficient estimates of the DCC-GARCH (1,1) models were not 
statistically significant at all time scales. When the 𝛽𝛽𝛽𝛽  coefficient estimates are examined, 
it is not statistically significant in the 2-4 month and 16-32 month investment cycles, but 
it is statistically significant in the 4-8 month and 8-16 month investment cycles. 
According to these findings, it has been determined that there is no relationship between 
the fear index and volatility shocks and dynamic correlations in the past period, volatility 
shocks and dynamic conditional correlations in the current period in Ethereum returns 
according to different time scales. 
Table 8. Analysis Results for GEPU-Ethereum Raw Data and Return Scales 
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Raw Data 𝛼𝛼𝛼𝛼  p 𝛽𝛽𝛽𝛽  p 𝛼𝛼𝛼𝛼 + 𝛽𝛽𝛽𝛽  
Ethereum -0.0000 0.9999 0.4132 0.3956 0.4132 
Panel B: 
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D2 0.3271 0.0112 0.4845 0.0020 0.8116 
D3 0.3239 0.0000 -0.0000 0.9999 0.3239 
D4 0.8268 0.0000 0.0883 0.0000 0.9151 

 
Table 8. includes the Global Economic Political Uncertainty Index (GEPU) and Ethereum 
raw data and analysis findings for different time scales. According to the findings, it can 
be concluded that the 𝛼𝛼𝛼𝛼  and 𝛽𝛽𝛽𝛽  coefficients of Ethereum raw data returns are not 
significant, and that the shocks and dynamic conditional correlations in the past period 
have no effect on the global economic political uncertainty index and Ethereum returns 
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observed that it was not significant. 
When these findings are evaluated, it can be said that past period conditional correlations 
have no effect on current period correlations in D1 and D3 time scales, in other words, 
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cycles. It can even be stated that there is no volatility interaction in these investment 
cycles. On the other hand, it can be stated that there are time-varying correlations between 
GEPU and Ethereum returns on the D2 and D4, time scales, and past volatility shocks and 
conditional correlations are effective on these correlations. In other words, volatility 
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, time scales, and past volatility shocks and conditional correlations are effective on 
these correlations. In other words, volatility shocks are permanent in both 4-8 month and 16-32 month investment 
cycles. In addition, in the 4-8 and 16-32 month investment cycles, although 𝛼+ 𝛽<1, it is very close to l (one); with 
GEPU, it can be said that conditional volatility for Ethereum is more likely to be permanent.

5. CONCLUSION

Cryptocurrencies have recently become an alternative investment tool and an area of regulation that attracts the 
attention of both individual investors and corporate authorities. However, the high volatility in cryptocurrencies 
and the impact of some international developments on cryptocurrencies worry investors. In this context, the 
relationship between crypto currencies and developments involving global economic and political uncertainty has 
become a matter of curiosity. Whether there is a dynamic interaction between crypto currencies and the global 
economic political uncertainty index and fear index, and the direction of the relationship, is a phenomenon that 
should be carefully evaluated by both investors and policy makers. Therefore, the purpose of this study is to 
examine the impact of price movements in the Global Economic Political Uncertainty Index (GEPU) and the Fear 
Index (VIX) on crypto currencies. Thus, it is aimed to contribute new empirical findings to the literature examining 
the volatility interaction between crypto currencies, global economic political uncertainty and the fear index, and 
to reveal important findings for investors and policy makers. For this purpose, firstly, index and crypto currencies 
(Bitcoin, Ethereum) return series were separated into different time scales by wavelet decomposition analysis and 
then examined with the DCC-GARCH method between these series. In the study, the period between GEPU, VIX 
and Bitcoin was April 2012-April 2024; monthly data for Ethereum between April 2016 and April 2024 used. 
While creating the data set of the study, these dates were determined due to data constraints for the variables.

As a result of the analysis; Findings were obtained in terms of the volatility interaction between cryptocurrencies 
and GEPU and VIX and four different time scales representing the short, medium and long term. The findings 
obtained based on raw data and disaggregated return series were evaluated separately. As a result of the analyzes 
carried out based on raw data; Analyzes based on raw data have obtained evidence that there is no volatility 
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interaction between cryptocurrencies (Bitcoin, Ethereum) and GEPU and VIX returns. According to this finding, 
it is an indication that the shocks and dynamic conditional correlations between Bitcoin and Ethereum returns and 
GEPU and VIX returns in the past period have no effect on the dynamic conditional correlations between Bitcoin 
and Ethereum returns and GEPU and VIX returns in the current period. This result can also be expressed as there 
is no dynamic relationship or volatility interaction between Bitcoin and Ethereum returns and GEPU and VIX 
returns. When the predictions of the wavelet-based DCC-GARCH(1,1) models were evaluated, it was concluded 
that 𝛼+ 𝛽<1 in the 

this result, volatility shocks and dynamic conditional correlations in the past period show 
that there is no effect on the fear index and Ethereum returns dynamic conditional 
correlations in the current period. In other words, it is an indication that there is no 
volatility interaction between the fear index and Ethereum returns. When the estimates of 
the wavelet-based DCC-GARCH(1,1) models (from D1 to D4) were examined, it was 
determined that the 𝛼𝛼𝛼𝛼  coefficient estimates of the DCC-GARCH (1,1) models were not 
statistically significant at all time scales. When the 𝛽𝛽𝛽𝛽  coefficient estimates are examined, 
it is not statistically significant in the 2-4 month and 16-32 month investment cycles, but 
it is statistically significant in the 4-8 month and 8-16 month investment cycles. 
According to these findings, it has been determined that there is no relationship between 
the fear index and volatility shocks and dynamic correlations in the past period, volatility 
shocks and dynamic conditional correlations in the current period in Ethereum returns 
according to different time scales. 
Table 8. Analysis Results for GEPU-Ethereum Raw Data and Return Scales 
 

Panel A: 
Raw Data 𝛼𝛼𝛼𝛼  p 𝛽𝛽𝛽𝛽  p 𝛼𝛼𝛼𝛼 + 𝛽𝛽𝛽𝛽  
Ethereum -0.0000 0.9999 0.4132 0.3956 0.4132 
Panel B: 
Return Scales      
D1 0.3023 0.0139 0.2152 0.2535 0.5175 
D2 0.3271 0.0112 0.4845 0.0020 0.8116 
D3 0.3239 0.0000 -0.0000 0.9999 0.3239 
D4 0.8268 0.0000 0.0883 0.0000 0.9151 

 
Table 8. includes the Global Economic Political Uncertainty Index (GEPU) and Ethereum 
raw data and analysis findings for different time scales. According to the findings, it can 
be concluded that the 𝛼𝛼𝛼𝛼  and 𝛽𝛽𝛽𝛽  coefficients of Ethereum raw data returns are not 
significant, and that the shocks and dynamic conditional correlations in the past period 
have no effect on the global economic political uncertainty index and Ethereum returns 
dynamic conditional correlations in the current period. This result is also an indication 
that there is no dynamic relationship or volatility interaction between the global economic 
political uncertainty index and Ethereum returns. When the predictions of wavelet-based 
DCC-GARCH(1,1) models (from D1 to D4) are examined; It took values of 𝛼𝛼𝛼𝛼 + 𝛽𝛽𝛽𝛽 <1 at 
all time scales. However, it was concluded that 𝛼𝛼𝛼𝛼 + 𝛽𝛽𝛽𝛽 <1 was statistically significant in 
the D2 and D4 time scales. This finding shows that dynamic correlations fluctuate around 
a fixed level in the 4-8 month and 16-32 month investment cycles and have a process that 
tends to return to the mean. The 𝛼𝛼𝛼𝛼  coefficient estimates of the DCC-GARCH(1,1) models 
at all time scales are positive and statistically significant at the 1% significance level, but 
the statistical significance of the 𝛽𝛽𝛽𝛽  coefficients is significant at the 1% significance level 
in D2 and D4, but the 𝛽𝛽𝛽𝛽  coefficients are significant at D1 and D3 time scales. It was 
observed that it was not significant. 
When these findings are evaluated, it can be said that past period conditional correlations 
have no effect on current period correlations in D1 and D3 time scales, in other words, 
volatility shocks do not show permanence in 2-4 month and 8-16 month investment 
cycles. It can even be stated that there is no volatility interaction in these investment 
cycles. On the other hand, it can be stated that there are time-varying correlations between 
GEPU and Ethereum returns on the D2 and D4, time scales, and past volatility shocks and 
conditional correlations are effective on these correlations. In other words, volatility 

  and 

this result, volatility shocks and dynamic conditional correlations in the past period show 
that there is no effect on the fear index and Ethereum returns dynamic conditional 
correlations in the current period. In other words, it is an indication that there is no 
volatility interaction between the fear index and Ethereum returns. When the estimates of 
the wavelet-based DCC-GARCH(1,1) models (from D1 to D4) were examined, it was 
determined that the 𝛼𝛼𝛼𝛼  coefficient estimates of the DCC-GARCH (1,1) models were not 
statistically significant at all time scales. When the 𝛽𝛽𝛽𝛽  coefficient estimates are examined, 
it is not statistically significant in the 2-4 month and 16-32 month investment cycles, but 
it is statistically significant in the 4-8 month and 8-16 month investment cycles. 
According to these findings, it has been determined that there is no relationship between 
the fear index and volatility shocks and dynamic correlations in the past period, volatility 
shocks and dynamic conditional correlations in the current period in Ethereum returns 
according to different time scales. 
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Table 8. includes the Global Economic Political Uncertainty Index (GEPU) and Ethereum 
raw data and analysis findings for different time scales. According to the findings, it can 
be concluded that the 𝛼𝛼𝛼𝛼  and 𝛽𝛽𝛽𝛽  coefficients of Ethereum raw data returns are not 
significant, and that the shocks and dynamic conditional correlations in the past period 
have no effect on the global economic political uncertainty index and Ethereum returns 
dynamic conditional correlations in the current period. This result is also an indication 
that there is no dynamic relationship or volatility interaction between the global economic 
political uncertainty index and Ethereum returns. When the predictions of wavelet-based 
DCC-GARCH(1,1) models (from D1 to D4) are examined; It took values of 𝛼𝛼𝛼𝛼 + 𝛽𝛽𝛽𝛽 <1 at 
all time scales. However, it was concluded that 𝛼𝛼𝛼𝛼 + 𝛽𝛽𝛽𝛽 <1 was statistically significant in 
the D2 and D4 time scales. This finding shows that dynamic correlations fluctuate around 
a fixed level in the 4-8 month and 16-32 month investment cycles and have a process that 
tends to return to the mean. The 𝛼𝛼𝛼𝛼  coefficient estimates of the DCC-GARCH(1,1) models 
at all time scales are positive and statistically significant at the 1% significance level, but 
the statistical significance of the 𝛽𝛽𝛽𝛽  coefficients is significant at the 1% significance level 
in D2 and D4, but the 𝛽𝛽𝛽𝛽  coefficients are significant at D1 and D3 time scales. It was 
observed that it was not significant. 
When these findings are evaluated, it can be said that past period conditional correlations 
have no effect on current period correlations in D1 and D3 time scales, in other words, 
volatility shocks do not show permanence in 2-4 month and 8-16 month investment 
cycles. It can even be stated that there is no volatility interaction in these investment 
cycles. On the other hand, it can be stated that there are time-varying correlations between 
GEPU and Ethereum returns on the D2 and D4, time scales, and past volatility shocks and 
conditional correlations are effective on these correlations. In other words, volatility 

 time scales of Bitcoin and VIX returns was statistically significant. This finding 
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and have a process that tends to return to the mean. Both 𝛼 coefficient estimates of DCC-GARCH(1,1) models 
at all time scales are statistically significant; However, the statistical significance of the 𝛽 coefficients was found 
to be significant at the 

this result, volatility shocks and dynamic conditional correlations in the past period show 
that there is no effect on the fear index and Ethereum returns dynamic conditional 
correlations in the current period. In other words, it is an indication that there is no 
volatility interaction between the fear index and Ethereum returns. When the estimates of 
the wavelet-based DCC-GARCH(1,1) models (from D1 to D4) were examined, it was 
determined that the 𝛼𝛼𝛼𝛼  coefficient estimates of the DCC-GARCH (1,1) models were not 
statistically significant at all time scales. When the 𝛽𝛽𝛽𝛽  coefficient estimates are examined, 
it is not statistically significant in the 2-4 month and 16-32 month investment cycles, but 
it is statistically significant in the 4-8 month and 8-16 month investment cycles. 
According to these findings, it has been determined that there is no relationship between 
the fear index and volatility shocks and dynamic correlations in the past period, volatility 
shocks and dynamic conditional correlations in the current period in Ethereum returns 
according to different time scales. 
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Table 8. includes the Global Economic Political Uncertainty Index (GEPU) and Ethereum 
raw data and analysis findings for different time scales. According to the findings, it can 
be concluded that the 𝛼𝛼𝛼𝛼  and 𝛽𝛽𝛽𝛽  coefficients of Ethereum raw data returns are not 
significant, and that the shocks and dynamic conditional correlations in the past period 
have no effect on the global economic political uncertainty index and Ethereum returns 
dynamic conditional correlations in the current period. This result is also an indication 
that there is no dynamic relationship or volatility interaction between the global economic 
political uncertainty index and Ethereum returns. When the predictions of wavelet-based 
DCC-GARCH(1,1) models (from D1 to D4) are examined; It took values of 𝛼𝛼𝛼𝛼 + 𝛽𝛽𝛽𝛽 <1 at 
all time scales. However, it was concluded that 𝛼𝛼𝛼𝛼 + 𝛽𝛽𝛽𝛽 <1 was statistically significant in 
the D2 and D4 time scales. This finding shows that dynamic correlations fluctuate around 
a fixed level in the 4-8 month and 16-32 month investment cycles and have a process that 
tends to return to the mean. The 𝛼𝛼𝛼𝛼  coefficient estimates of the DCC-GARCH(1,1) models 
at all time scales are positive and statistically significant at the 1% significance level, but 
the statistical significance of the 𝛽𝛽𝛽𝛽  coefficients is significant at the 1% significance level 
in D2 and D4, but the 𝛽𝛽𝛽𝛽  coefficients are significant at D1 and D3 time scales. It was 
observed that it was not significant. 
When these findings are evaluated, it can be said that past period conditional correlations 
have no effect on current period correlations in D1 and D3 time scales, in other words, 
volatility shocks do not show permanence in 2-4 month and 8-16 month investment 
cycles. It can even be stated that there is no volatility interaction in these investment 
cycles. On the other hand, it can be stated that there are time-varying correlations between 
GEPU and Ethereum returns on the D2 and D4, time scales, and past volatility shocks and 
conditional correlations are effective on these correlations. In other words, volatility 
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this result, volatility shocks and dynamic conditional correlations in the past period show 
that there is no effect on the fear index and Ethereum returns dynamic conditional 
correlations in the current period. In other words, it is an indication that there is no 
volatility interaction between the fear index and Ethereum returns. When the estimates of 
the wavelet-based DCC-GARCH(1,1) models (from D1 to D4) were examined, it was 
determined that the 𝛼𝛼𝛼𝛼  coefficient estimates of the DCC-GARCH (1,1) models were not 
statistically significant at all time scales. When the 𝛽𝛽𝛽𝛽  coefficient estimates are examined, 
it is not statistically significant in the 2-4 month and 16-32 month investment cycles, but 
it is statistically significant in the 4-8 month and 8-16 month investment cycles. 
According to these findings, it has been determined that there is no relationship between 
the fear index and volatility shocks and dynamic correlations in the past period, volatility 
shocks and dynamic conditional correlations in the current period in Ethereum returns 
according to different time scales. 
Table 8. Analysis Results for GEPU-Ethereum Raw Data and Return Scales 
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Return Scales      
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D3 0.3239 0.0000 -0.0000 0.9999 0.3239 
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Table 8. includes the Global Economic Political Uncertainty Index (GEPU) and Ethereum 
raw data and analysis findings for different time scales. According to the findings, it can 
be concluded that the 𝛼𝛼𝛼𝛼  and 𝛽𝛽𝛽𝛽  coefficients of Ethereum raw data returns are not 
significant, and that the shocks and dynamic conditional correlations in the past period 
have no effect on the global economic political uncertainty index and Ethereum returns 
dynamic conditional correlations in the current period. This result is also an indication 
that there is no dynamic relationship or volatility interaction between the global economic 
political uncertainty index and Ethereum returns. When the predictions of wavelet-based 
DCC-GARCH(1,1) models (from D1 to D4) are examined; It took values of 𝛼𝛼𝛼𝛼 + 𝛽𝛽𝛽𝛽 <1 at 
all time scales. However, it was concluded that 𝛼𝛼𝛼𝛼 + 𝛽𝛽𝛽𝛽 <1 was statistically significant in 
the D2 and D4 time scales. This finding shows that dynamic correlations fluctuate around 
a fixed level in the 4-8 month and 16-32 month investment cycles and have a process that 
tends to return to the mean. The 𝛼𝛼𝛼𝛼  coefficient estimates of the DCC-GARCH(1,1) models 
at all time scales are positive and statistically significant at the 1% significance level, but 
the statistical significance of the 𝛽𝛽𝛽𝛽  coefficients is significant at the 1% significance level 
in D2 and D4, but the 𝛽𝛽𝛽𝛽  coefficients are significant at D1 and D3 time scales. It was 
observed that it was not significant. 
When these findings are evaluated, it can be said that past period conditional correlations 
have no effect on current period correlations in D1 and D3 time scales, in other words, 
volatility shocks do not show permanence in 2-4 month and 8-16 month investment 
cycles. It can even be stated that there is no volatility interaction in these investment 
cycles. On the other hand, it can be stated that there are time-varying correlations between 
GEPU and Ethereum returns on the D2 and D4, time scales, and past volatility shocks and 
conditional correlations are effective on these correlations. In other words, volatility 

 time scales. According to these findings, it is an indicator of the persistence of 
volatility shocks in both 4-8 month and 16-32 month investment cycles. In addition, in the 4-8 and 16-32 month 
investment cycles, although 𝛼+ 𝛽<1, it is very close to l (one); With VIX, it can be said that conditional volatility 
for Bitcoin is more likely to be permanent. In other words, there is a positive and strong relationship between 
returns that varies over time.

When the time scales between Bitcoin and GEPU are examined, it is concluded that there are time-varying 
correlations between GEPU and Bitcoin returns only in 

this result, volatility shocks and dynamic conditional correlations in the past period show 
that there is no effect on the fear index and Ethereum returns dynamic conditional 
correlations in the current period. In other words, it is an indication that there is no 
volatility interaction between the fear index and Ethereum returns. When the estimates of 
the wavelet-based DCC-GARCH(1,1) models (from D1 to D4) were examined, it was 
determined that the 𝛼𝛼𝛼𝛼  coefficient estimates of the DCC-GARCH (1,1) models were not 
statistically significant at all time scales. When the 𝛽𝛽𝛽𝛽  coefficient estimates are examined, 
it is not statistically significant in the 2-4 month and 16-32 month investment cycles, but 
it is statistically significant in the 4-8 month and 8-16 month investment cycles. 
According to these findings, it has been determined that there is no relationship between 
the fear index and volatility shocks and dynamic correlations in the past period, volatility 
shocks and dynamic conditional correlations in the current period in Ethereum returns 
according to different time scales. 
Table 8. Analysis Results for GEPU-Ethereum Raw Data and Return Scales 
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Panel B: 
Return Scales      
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D3 0.3239 0.0000 -0.0000 0.9999 0.3239 
D4 0.8268 0.0000 0.0883 0.0000 0.9151 

 
Table 8. includes the Global Economic Political Uncertainty Index (GEPU) and Ethereum 
raw data and analysis findings for different time scales. According to the findings, it can 
be concluded that the 𝛼𝛼𝛼𝛼  and 𝛽𝛽𝛽𝛽  coefficients of Ethereum raw data returns are not 
significant, and that the shocks and dynamic conditional correlations in the past period 
have no effect on the global economic political uncertainty index and Ethereum returns 
dynamic conditional correlations in the current period. This result is also an indication 
that there is no dynamic relationship or volatility interaction between the global economic 
political uncertainty index and Ethereum returns. When the predictions of wavelet-based 
DCC-GARCH(1,1) models (from D1 to D4) are examined; It took values of 𝛼𝛼𝛼𝛼 + 𝛽𝛽𝛽𝛽 <1 at 
all time scales. However, it was concluded that 𝛼𝛼𝛼𝛼 + 𝛽𝛽𝛽𝛽 <1 was statistically significant in 
the D2 and D4 time scales. This finding shows that dynamic correlations fluctuate around 
a fixed level in the 4-8 month and 16-32 month investment cycles and have a process that 
tends to return to the mean. The 𝛼𝛼𝛼𝛼  coefficient estimates of the DCC-GARCH(1,1) models 
at all time scales are positive and statistically significant at the 1% significance level, but 
the statistical significance of the 𝛽𝛽𝛽𝛽  coefficients is significant at the 1% significance level 
in D2 and D4, but the 𝛽𝛽𝛽𝛽  coefficients are significant at D1 and D3 time scales. It was 
observed that it was not significant. 
When these findings are evaluated, it can be said that past period conditional correlations 
have no effect on current period correlations in D1 and D3 time scales, in other words, 
volatility shocks do not show permanence in 2-4 month and 8-16 month investment 
cycles. It can even be stated that there is no volatility interaction in these investment 
cycles. On the other hand, it can be stated that there are time-varying correlations between 
GEPU and Ethereum returns on the D2 and D4, time scales, and past volatility shocks and 
conditional correlations are effective on these correlations. In other words, volatility 

 , that is, the 4-8 month investment cycle period, and 
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Both 𝛼 coefficient estimates of DCC-GARCH(1,1) models at all time scales are statistically significant; However, 
the statistical significance of the 𝛽 coefficients was found to be significant at the 

this result, volatility shocks and dynamic conditional correlations in the past period show 
that there is no effect on the fear index and Ethereum returns dynamic conditional 
correlations in the current period. In other words, it is an indication that there is no 
volatility interaction between the fear index and Ethereum returns. When the estimates of 
the wavelet-based DCC-GARCH(1,1) models (from D1 to D4) were examined, it was 
determined that the 𝛼𝛼𝛼𝛼  coefficient estimates of the DCC-GARCH (1,1) models were not 
statistically significant at all time scales. When the 𝛽𝛽𝛽𝛽  coefficient estimates are examined, 
it is not statistically significant in the 2-4 month and 16-32 month investment cycles, but 
it is statistically significant in the 4-8 month and 8-16 month investment cycles. 
According to these findings, it has been determined that there is no relationship between 
the fear index and volatility shocks and dynamic correlations in the past period, volatility 
shocks and dynamic conditional correlations in the current period in Ethereum returns 
according to different time scales. 
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Table 8. includes the Global Economic Political Uncertainty Index (GEPU) and Ethereum 
raw data and analysis findings for different time scales. According to the findings, it can 
be concluded that the 𝛼𝛼𝛼𝛼  and 𝛽𝛽𝛽𝛽  coefficients of Ethereum raw data returns are not 
significant, and that the shocks and dynamic conditional correlations in the past period 
have no effect on the global economic political uncertainty index and Ethereum returns 
dynamic conditional correlations in the current period. This result is also an indication 
that there is no dynamic relationship or volatility interaction between the global economic 
political uncertainty index and Ethereum returns. When the predictions of wavelet-based 
DCC-GARCH(1,1) models (from D1 to D4) are examined; It took values of 𝛼𝛼𝛼𝛼 + 𝛽𝛽𝛽𝛽 <1 at 
all time scales. However, it was concluded that 𝛼𝛼𝛼𝛼 + 𝛽𝛽𝛽𝛽 <1 was statistically significant in 
the D2 and D4 time scales. This finding shows that dynamic correlations fluctuate around 
a fixed level in the 4-8 month and 16-32 month investment cycles and have a process that 
tends to return to the mean. The 𝛼𝛼𝛼𝛼  coefficient estimates of the DCC-GARCH(1,1) models 
at all time scales are positive and statistically significant at the 1% significance level, but 
the statistical significance of the 𝛽𝛽𝛽𝛽  coefficients is significant at the 1% significance level 
in D2 and D4, but the 𝛽𝛽𝛽𝛽  coefficients are significant at D1 and D3 time scales. It was 
observed that it was not significant. 
When these findings are evaluated, it can be said that past period conditional correlations 
have no effect on current period correlations in D1 and D3 time scales, in other words, 
volatility shocks do not show permanence in 2-4 month and 8-16 month investment 
cycles. It can even be stated that there is no volatility interaction in these investment 
cycles. On the other hand, it can be stated that there are time-varying correlations between 
GEPU and Ethereum returns on the D2 and D4, time scales, and past volatility shocks and 
conditional correlations are effective on these correlations. In other words, volatility 
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this result, volatility shocks and dynamic conditional correlations in the past period show 
that there is no effect on the fear index and Ethereum returns dynamic conditional 
correlations in the current period. In other words, it is an indication that there is no 
volatility interaction between the fear index and Ethereum returns. When the estimates of 
the wavelet-based DCC-GARCH(1,1) models (from D1 to D4) were examined, it was 
determined that the 𝛼𝛼𝛼𝛼  coefficient estimates of the DCC-GARCH (1,1) models were not 
statistically significant at all time scales. When the 𝛽𝛽𝛽𝛽  coefficient estimates are examined, 
it is not statistically significant in the 2-4 month and 16-32 month investment cycles, but 
it is statistically significant in the 4-8 month and 8-16 month investment cycles. 
According to these findings, it has been determined that there is no relationship between 
the fear index and volatility shocks and dynamic correlations in the past period, volatility 
shocks and dynamic conditional correlations in the current period in Ethereum returns 
according to different time scales. 
Table 8. Analysis Results for GEPU-Ethereum Raw Data and Return Scales 
 

Panel A: 
Raw Data 𝛼𝛼𝛼𝛼  p 𝛽𝛽𝛽𝛽  p 𝛼𝛼𝛼𝛼 + 𝛽𝛽𝛽𝛽  
Ethereum -0.0000 0.9999 0.4132 0.3956 0.4132 
Panel B: 
Return Scales      
D1 0.3023 0.0139 0.2152 0.2535 0.5175 
D2 0.3271 0.0112 0.4845 0.0020 0.8116 
D3 0.3239 0.0000 -0.0000 0.9999 0.3239 
D4 0.8268 0.0000 0.0883 0.0000 0.9151 

 
Table 8. includes the Global Economic Political Uncertainty Index (GEPU) and Ethereum 
raw data and analysis findings for different time scales. According to the findings, it can 
be concluded that the 𝛼𝛼𝛼𝛼  and 𝛽𝛽𝛽𝛽  coefficients of Ethereum raw data returns are not 
significant, and that the shocks and dynamic conditional correlations in the past period 
have no effect on the global economic political uncertainty index and Ethereum returns 
dynamic conditional correlations in the current period. This result is also an indication 
that there is no dynamic relationship or volatility interaction between the global economic 
political uncertainty index and Ethereum returns. When the predictions of wavelet-based 
DCC-GARCH(1,1) models (from D1 to D4) are examined; It took values of 𝛼𝛼𝛼𝛼 + 𝛽𝛽𝛽𝛽 <1 at 
all time scales. However, it was concluded that 𝛼𝛼𝛼𝛼 + 𝛽𝛽𝛽𝛽 <1 was statistically significant in 
the D2 and D4 time scales. This finding shows that dynamic correlations fluctuate around 
a fixed level in the 4-8 month and 16-32 month investment cycles and have a process that 
tends to return to the mean. The 𝛼𝛼𝛼𝛼  coefficient estimates of the DCC-GARCH(1,1) models 
at all time scales are positive and statistically significant at the 1% significance level, but 
the statistical significance of the 𝛽𝛽𝛽𝛽  coefficients is significant at the 1% significance level 
in D2 and D4, but the 𝛽𝛽𝛽𝛽  coefficients are significant at D1 and D3 time scales. It was 
observed that it was not significant. 
When these findings are evaluated, it can be said that past period conditional correlations 
have no effect on current period correlations in D1 and D3 time scales, in other words, 
volatility shocks do not show permanence in 2-4 month and 8-16 month investment 
cycles. It can even be stated that there is no volatility interaction in these investment 
cycles. On the other hand, it can be stated that there are time-varying correlations between 
GEPU and Ethereum returns on the D2 and D4, time scales, and past volatility shocks and 
conditional correlations are effective on these correlations. In other words, volatility 

 time scales. According 
to these findings, it is an indicator of the persistence of volatility shocks in both 4-8 month and 16-32 month 
investment cycles. In addition, in the 4-8 and 16-32 month investment cycles, although 𝛼+ 𝛽<1, it is very close to l 
(one); It can be said that conditional volatility for Ethereum and GEPU is more likely to persist. On the other hand, 
it has been determined that there is no relationship between the fear index and the volatility shocks and dynamic 
correlations in the past period and the volatility shocks and dynamic conditional correlations in the current period 
in Ethereum returns according to different time scales.

In conclusion, these findings have practical implications for both investors and policy makers. As both the 
economic and political uncertainty index and the fear index are the volatility interaction between global currencies, 
this study shows that this affects the cryptocurrencies Bitcoin and Ethereum. Therefore, investors need to have 
comprehensive information about changes in the global economy and politics. Information-related policy changes 
should be factored into portfolio selection to avoid random market fluctuations. In addition, investors can obtain 
comprehensive information about the global economy and policy changes in the market, which is more turbulent 
and subject to sudden changes in the short term due to its unregulated structure. It is thought that these results will 
provide insight for both investors and policy makers.
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Abstract

We address the classical errors-in-variables (EIV) problem in multivariate linear regression with N dependent 
variables where each left-hand-side variable is a function of a common predictor X subject to measurement error. 
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2 EIV in multivariate regression

1 Introduction

Errors-in-variables (EIV) occur when the observations of one or more variables

in a regression model do not match their true values and, consequently, contain

a measurement error. Basically, EIV in the left and/or right-hand-side variables

in a statistical model can be read as the observation equals the true values

plus measurement error with side effects ranging from “mild” to “severe” to

the researcher. The econometric treatment of EIV is at the origin of a rich

yet inconclusive literature going back as far as to Frisch, Berkson or Durbin’s

pioneering works (Frisch, 1934; Berkson, 1950; Durbin, 1954). More recent

and exhaustive treatments of the topic include, among others, Feng et al.

(2020), Racicot (2015), Chen et al. (2011), Buonaccorsi (2010), Davidson and

MacKinnon (2004, ch. 8), Hausman (2001), Bound et al. (2001), Hyslop and

Imbens (2001), Cheng and Van Ness (1999), Dagenais and Dagenais (1997),

Griliches (1987) or Fuller (1987), only to cite a few. This paper’s primary

objective is to contribute to this literature by addressing the classical EIV

model in the context of a linear regression setting with multiple dependent

variables where a single independent variable X, possibly measured with error,

is linked to N dependent variables Y1, ..., YN .

Specifically, we extend the work of Satman and Diyarbakirlioglu (2015) who

develop a modern approach to deal with EIV that requires no extra information

nor additional data to mitigate the bias generated by the measurement error

in the independent variable. We consider this feature of our approach as the

central block that marks off our work from previous studies in the field. A

detailed exposition of existing methods would inevitably extend the paper’s

scope beyond acceptable limits, so we outline a concise discussion in due course.

A first, and rather naive, way of addressing the measurement error consists

in simply ignoring the problem by admitting that it is a difficult one to solve
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and extra data may not be available to the researcher. A second approach,

known as Berkson’s approach (Berkson, 1950) considers the observed X values

as predetermined given, say, a controlled scientific study or under a laboratory

setting. Then, one would consider the observed values of X swinging around

their true equivalents due to measurement error. Under this setup, it is then

reasonable to assume that the measurement error is no longer correlated with

the observed values of the independent variable, which enables one to show

that the traditional least-squares estimator of the slope remains still unbiased

even when X is mismeasured (Durbin, 1954, p. 24-25). When it comes to social

and economic phenomena, however, such controlled experiment settings do not

truly exist outside the laboratory.

Another approach relies on correcting the bias in the estimates assuming

that the variance of the measurement error in the predictor or that of the

unobserved predictor is known. This would then make it possible to derive

unbiased estimates of model parameters using the signal-to-total variance, typ-

ically known as the reliability ratio. (Fuller, 1987, p. 5-6) gives a list of some

situations where the reliability ratio can be considered as known like IQ test

scores. Such situations where one would plausibly assume that the reliability

ratio is known are however mostly limited to survey studies in which the data

about a particular feature of a set of respondents are obtained over repeated

studies of the same nature over time and space.

Given the shortcomings associated with the approaches described briefly

above and to the extent that EIV naturally induces a specification error in

regression models, instrumental-variables estimation of EIV models consti-

tutes the central prescription to address the issue. The main idea of IV-based

processing of EIV consists in using instruments correlated with the true but

unobserved values of the predictor and uncorrelated with the measurement
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error, see, among others, Fuller (1987), Davidson and MacKinnon (2004),

Carroll et al. (2006) or Wooldridge (2010) for further developments on the

IV-estimation of EIV models. As noted by (Buonaccorsi, 2010, p. 130), the

instruments are supposed to carry independent information about the mismea-

sured predictor which can be used to obtain estimates of the coefficients. That

being said, the validity condition of good instruments just stated previously is

ironically the unique but also the most critical potential drawback associated

with the IV-estimation of EIV models to the extent that poor instruments lead

to even more serious consequences (Wooldridge, 2013, p. 499).

The bottomline is that existing approaches commonly require additional

information in the form of either better data or valid instruments (Shalabh

et al., 2010, p. 718). While there are nice examples where the researcher comes

up with an ingenious solution to overcome the impact of a badly measured

variable like the studies on the estimates of the economic return to schooling

(Ashenfelter and Krueger, 1994; Harmon and Walker, 1995), such additional

information may not be available in other situations or there may be no con-

sensus in the field as to what makes an instrument a good one (Klepper and

Leamer (1984, p. 163), Dagenais and Dagenais (1997, p. 194)). The approach

proposed here is free from such considerations. It does not require any out-

of-the-system information about the data-generating process to mitigate the

EIV problem. This is a key feature in that the unique extra information re-

quired lies in the additional dependent variables of the system. We conceive

the mismeasured variable X⋆ as consisting of two blocks, one deterministic

and the other stochastic where the deterministic part refers to the true but

unobserved portion of it. We then devise an optimization problem that min-

imizes the squared deviations from the expectation of the response variable

conditional on the estimated values of the mismeasured predictor. The latter
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variable in turn is the result of an auxiliary dummy regression of the initial

variable subject to measurement error. The key difference with the initial Sat-

man and Diyarbakirlioglu (2015) study is that we consider the case where

several dependent variables are connected to the same independent variable,

potentially measured with error.1

We employ numerical experiments to gain insights into the performance of

our method. Following a parsimonious strategy to devise the simulations, we

consider 36 different configurations to control for features like the relative ratio

of regression vs. measurement error variances, low vs. high R2 models, the

sample size and the number of dependent variables. For each configuration, we

repeat the estimations 1,000 times. We report the bias, the variance and the

mean-square-error of the coefficient estimates for the first dependent variable.2

The results are promising. The algorithm does capture and correct the bias due

to the measurement error in the independent variable, which, when ignored,

distorts seriously the parameter estimates. The bias in the slope tends to vanish

as the sample size or the number of left-hand-side variables increases. This

comes with some cost in the increase of the estimator’s variance but overall

the increase in the variance is largely offset by the decrease in the bias. This,

collectively, yields much smaller MSEs, giving further credit to our approach.

The paper is organized as follows. After a brief discussion of the classical

EIV model, section 2 describes our algorithm and gives a short discussion some

of its important features. Section 3 presents the simulation results. In section 4,

1One should also highlight that the solution presented in Satman and Diyarbakirlioglu (2015)
can be considered as a specific case of the setup we develop therein with the number of dependent
variables set to 1.

2This choice is motivated by the fact that it would be nearly impossible to report every single
intercept and slope estimate for each Yi in the model as this would make the size of the paper cross
the acceptable limits. That being said, we saved the entire output from each set of estimations.
We have also performed the procedure for 18 additional configurations where we controlled for the
performance of our approach when there is no measurement error in the independent variable. For
sake of brevity, we do not report the results of these additional simulations in the paper. These
results are available upon request.
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we give a simple example to illustrate the implementation of our algorithm.

Section 5 concludes.

2 Methodology

2.1 The multivariate CGA Algorithm

We first give a sketch of the consequences of the classical EIV model and

present our methodology afterwards.

Consider the population model Y ⋆
t = β0 + β1X

⋆
t + ϵt for t = 1, ..., T with

ϵ ∼ iid(0, σ2
e). The classical errors-in-variables (EIV) model is introduced by

assuming that the observations on Y ⋆ and/or X⋆ are recorded with error

as Yt = Y ⋆
t + νt and/or Xt = X⋆

t + δt where ν and δ are observation, or

measurement errors on Y and X respectively.3. While the cost of ν is limited to

an inflated variance of the regression error, matters are different when it comes

to δ.4 Assuming V ar(ν) = 0, V ar(δ) > 0, E (X⋆δ) = 0 and E (δϵ) = 05, simple

algebra shows that the model can now be expressed as Yt = β0 + β1Xt + ωt

where ωt = ϵt − β1δt.

Thus, we obtain a composite regression error and the predictor X

becomes correlated with the new disturbance term as Cov (Xt, ωt) =

Cov ((X⋆
t + δt) , (ϵt − β1δt)) = −β1V ar(δ). This implies that the least-squares

estimate will be biased and inconsistent even in large samples.6 In addition,

given the probability limit plim β̂LS
1 = β1+

Cov(Xt,ωt)
V ar(Xt)

, which is also commonly

expressed as plim β̂LS
1 = β1

(
V ar(X⋆

t )
V ar(X⋆

t )+V ar(δt)

)
, it can be seen that the slope

3Typically, these equations read “the observation is the sum of the true value plus measurement
error”

4If V ar(ν) > 0 and V ar(δ) = 0, the model can be rewritten as Yt = β0 +β1X
⋆
t +(ϵt + νt). The

new disturbance term is ϵ + ν. The least-squares estimates of parameters will still be unbiased.
5One last assumption holds that the measurement error, by definition, has zero mean, E (δ) = 0.
6To see the non-zero covariance between X and ω, note that E(Xt) = E (X⋆

t + δt) =
X⋆

t because E(δt) = 0. Next, substituting ωt = ϵt − β1δt back into Cov(Xt, ωt) =
E

[(
X⋆

t + δt − X̄⋆
)
(ϵt − β1δt)

]
and developing the terms, we obtain Cov(Xt, ωt) = −β1V ar(δ).
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estimate is downwards biased as long as V ar(X⋆
t )+V ar(δt) > V ar(X⋆

t ).
7 The

bias in β̂ is known as the least-squares attenuation, which Hausman (2001)

refers to as the iron law of econometrics – “the magnitude of the estimate is

usually smaller than expected”. The attenuation in β̂ also suggests that the

bias gets worse when V ar(δt) increases relative to V ar(X⋆
t ).

8 Finally, when

there is more than one predictor subject to error, it is no longer possible to de-

rive exact formulas to express neither the sign nor the magnitude of the bias in

the slope coefficients because the measurement error on a particular Xt spills

over to other model parameters, raising a further puzzling issue, which Cragg

(1994) qualifies as the contamination effect.

We now turn to our approach and extend the previous setup to accommo-

date for N dependent variables specified as a function of the same predictor

variable. We assume the population model is Y = 1Tβββ
⊤
0 + X⋆βββ⊤

1 + ϵϵϵ.9 The

true values of X are not directly given but observed as X = X⋆ + δδδ where δδδ

is a T × 1 vector of measurement errors. The multivariate EIV model can be

rewritten as Y = 1Tβββ
⊤
0 +Xβββ⊤

1 +ωωω where ωωω = ϵϵϵ−δδδβββ⊤
1 is the T ×N matrix of

composite error terms, which make the least-squares estimation of the N slope

estimates inconsistent and biased in the same way it does when N = 1. To de-

scribe how our algorithm works, consider the first two equations of the system

that relates the first and second dependent variables Ytj , j = 1, 2 to Xt:

Yt1 = β01 + β11Xt + ωt1

Yt2 = β02 + β12Xt + ωt2

7Consistent estimation of the slope using generalized least-squares is actually possible if the
value of the reliability ratio λ = V ar(X∗)/ (V ar(X∗) + V ar(δ)) is known. This is however a big
“if” because the true value of the reliability ratio is also unknown outside controlled experiment
settings (Buonaccorsi, 2010).

8The results of our simulations also highlight this fact whereby we pinpoint the case of a high
ratio of measurement error variance to independent variable variance.

9Y is a T ×N matrix that contains T observations for N dependent variables, X⋆ is a T -vector
of the observations on the true values of the independent variable, 1 is a conforming vector of ones,
βββ0 is a N-vector of intercepts, βββ1 is a N-vector of slopes, and ϵϵϵ is a T × N matrix of residuals.
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The objective is to estimate the parameters β01 and β11 for the first

equation (as well as σ2
ω), but also the parameters β02 and β12 for the second

equation too, and so on for any additional Y . The departure point of the ex-

tension we propose in this paper relative to the original approach developed in

Satman and Diyarbakirlioglu (2015) consists in employing the additional vari-

ables Yti to obtain a new series X̂mCGA
t for the regressor that can be seen as

a filtered version of the true yet unobserved values X⋆
t . This can be achieved

by running the following auxiliary regression of the observed Xt on a set of m

dummy variables as,

Xt = α0 + α1Dt1 + · · ·+ αmDtm + ηt (1)

where αj are unknown parameters that must be estimated, Dtj are j = 1, ...,m

dummy variables and ηt are regression residuals. Just like any other regression

model one would conceive, this auxiliary regression breaks down the observed

series Xt into two components, one deterministic and one random. By con-

struction, the stochastic part η is an estimate of the measurement error δ while

the deterministic part represents the series X̂mCGA
t . With no closed-form solu-

tion available, the fitted coefficients α̂j are devised as solution to the following

problem,

argmin
{D1,...,Dm}

N∑
i=1

T∑
t=1

(
Yti −

(
β̂0i + β̂1iX̂

mCGA
t

))2

(2)

where X̂mCGA
t are themselves the fitted values of the original variable obtained

from the auxiliary regression as,

X̂mCGA
t = α̂0 + α̂1Dt1 + · · ·+ α̂mDtm (3)
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Finally, the series X̂mCGA
t is plugged back into the system to estimate Yti as,

Ŷt1 = β̂01 + β̂11X̂
mCGA
t

Ŷt2 = β̂02 + β̂12X̂
mCGA
t

...
...

ŶtN = β̂0N + β̂1N X̂mCGA
t (4)

for each i = 1, ..., N . Equation (2) defines a quadratic objective function sub-

ject to the constraint defined in equation (3). With T observations and T ×m

unknown binary values10, the problem admits theoretically an infinite number

of solutions for there is no explicit rules about the appropriate number of dum-

mies that must be used. In their original paper, Satman and Diyarbakirlioglu

(2015) address this issue by observing the behaviour of the estimated inter-

cept and slope coefficients. They note that the MSE’s of the estimates tend to

stabilize about m = 10. We follow the same empirical rule in this paper too

and use 10 as the default value of this parameter. Besides, even if the num-

ber of dummies was known, the results of the algorithm should still be seen as

approximations sharing, nonetheless, the important feature of systematically

smaller MSE’s for the estimated regression parameters.11

2.2 Discussion

Having set up the mechanics of our approach, we briefly discuss some of its

main building blocks.

10Recall that m is the number of dummy variables in the auxiliary regression.
11One should bear this feature of our method in mind: The procedure does not yield a single

exact output, the results are likely to vary, at least marginally, from one iteration to another. That
does not however mean that the algorithm does not converge, so we conceive these approximations
as solutions of the system.
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First, unlike the mainstream literature on EIV models, we conjecture that

the additional information to mitigate the EIV bias can be found within the re-

lationship between the set of N dependent variables and the predictor X. One

should also underline that the procedure does not require further assumptions

about the stochastic behaviour of X, such as its distributional properties. That

is one of the key features of the approach initially adopted by Satman and

Diyarbakirlioglu (2015), which we aim to develop further in this work, to the

extent that standard methods generally require outside information to address

the EIV problem. However, as pointed out by (Buonaccorsi, 2010, p. 4-5), get-

ting such extra information either in the form of better data or instrumental

variables that satisfy many conditions can be difficult.

Second, we explain briefly the reason why we implement a (compact)

genetic algorithm-based solution. Equations (2) and (3) form together a two-

stage discrete optimization problem whose objective is to minimize the squared

deviations from the conditional expectation of the independent variable on a

set of dummy variables and model parameters. Regression of the error-prone

variable onto these dummies aims to break down this variable into a clean, but

unobserved component and another one that captures the measurement error

in X. Since the decision variables of the optimization problem take exclusively

binary values, e.g. Dtm ∈ {0, 1}, a genetic algorithm (GA) happens to be one

natural solver to estimate the dummy coefficients α of the auxiliary regression.

Developed by pioneering studies like Holland (1975), Holland (1987) or Gold-

berg (1989), among others, a GA mimics the process of natural selection with,

consequently, a related vocabulary borrowing extensively from the Theory of

Evolution. A typical GA starts by encoding an array of randomly selected can-

didate solutions in binary forms, assimilated to chromosomes, each member

of a larger population. The chances a chromosome survives for mating with
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another one to generate an offspring is determined by a fitness value, which

is a score associated with an objective function. Iterations continue until no

incremental improvement is obtained in terms of the fitness value.

A potential issue associated with GAs concerns the computational difficul-

ties associated with the optimization of the objective function. This is where

Compact Genetic Algorithms (CGAs) may be of practical help as they are de-

signed to overcome the issue of computational memory one would face when

working with a GA (Harik et al., 2006). Although one would not assert that

CGAs are superior to GAs in reaching the global optimum, they represent

several advantages. Specifically, in a CGA, candidate solutions are sampled

from a given population using a probability vector rather than screening the

entire population. The number of iterations is defined with respect to the the

population size (Harik et al., 1999). The absence of genetic operators and the

sampling strategy employed by a CGA make it a member of Estimation of

Distribution Algorithms (EDA) as it always converges to a probability vec-

tor through iterations (Pelikan et al., 2002; Baluja, 1994; Larranaga, 2002).

Therefore, our choice in implementing the CGA is simply motivated by the

fact that the algorithm provides a suitable method to solve the discrete opti-

mization problem defined in equation (3), yet it should be acknowledged that

another optimizer handling a similar problem would also be used instead.

Finally, we present some practical, but equally important, aspects of our

methodology.12 Given a set of T observations on i = 1, ..., N dependent vari-

ables Yi and one independent variable X observed with some error δ, the

procedure is initialized by setting two user-defined parameters; namely, (1)

the number of dummy variables m used in the auxiliary regression specified

in equation (3), and (2) the population size. Although there are no specific

12We provide in the appendix a pseudo-code of our entire algorithm and an R package (Satman
and Diyarbakirlioglu, 2022) including all necessary functions to perform the calculations is readily
available on CRAN repositories.
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guidelines concerning an adequate value for m, Satman and Diyarbakirlioglu

(2015) show using simulations that the mean-square-errors of the slope βCGA
1

and intercept βCGA
0 estimators stabilize around m = 10.13 For a given m, the

iterations begin with a probability vector that represents, to speak CGA, a

chromosome. For example, a 4-m length chromosome like,

P = [0.8, 0.1, 0.7, 0.2]

tells that the probability of getting the first dummy equal to 1 is 0.8, the prob-

ability of D2 = 1 is 0.1, and so on.14 Accordingly, given the P in this example,

sampling a chromosome like C = [1, 0, 1, 0] is much more likely than sam-

pling another chromosome like C ′ = [0, 1, 0, 1]. Once the number of dummies

is chosen, which we set to 10, iterations begin with a probability vector whose

elements are initially all equal to 0.5, guaranteeing that no specific dummy

coefficient is favoured relative to others. In the next step, the procedure sam-

ples two parents using the initial P , say C1 and C2. The winner is the one

with the lowest score of the cost function, which is specified as the sum of the

squared residuals of the corresponding dummy regression. Once the winner C

is determined, the vector P is updated using the formula,

Pi+1 =



Pi +

1
pop. size if Cwinner

i = 1

Pi − 1
pop. size if Cwinner

i = 0

(5)

Given the new Pi+1, the process moves forward by sampling new parents,

generating new offsprings and updating thereby Pi. Iterations continue until all

13See Satman and Diyarbakirlioglu (2015), figure 1, p. 3225. We also follow the same empirical
rule suggested by the authors in the original paper and set m = 10 in our applications.

14The term probability vector should then not be understood in the sense the elements of the
vector must sum up to 1. Instead, each element of P defines the probability that the corresponding
dummy variable to be equal to 1.
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elements of the vector P take either the value of 1 or 0. Note that the population

size is there for updating iteratively to the probability vector until the stability

condition for the auxiliary dummy variables regression is obtained.15

3 Simulations

3.1 Setup

We investigate the statistical properties of our approach by Monte Carlo

simulations. We specify our data-generating process as follows:

Yti = 5 + 5Xt + ϵti

Xt = X⋆
t + δt

ϵt ∼ iid N
(
0, σ2

ϵ

)

δt ∼ iid N
(
0, σ2

δ

)

The index t = 1, . . . , T shows the sample size and i = 1, ..., N the number of

left-hand-side variables. Each configuration is described by four parameters:

(1) The number of left-hand-side variables N , (2) the sample size T , (3) The

regression error variance σ2
ϵ and, (4) the measurement error variance σ2

δ .

We choose three different values for N ∈ {2, 5, 25} to construct the multi-

variate regression setting and three different sample sizes as T ∈ {30, 50, 100}.

The measurement error δ is introduced as X = X⋆+δ. ϵ and δ are both gener-

ated as iid normal random variables with zero-mean and constant variance as

ϵ ∼ N(0, σ2
ϵ ) and δ ∼ N(0, σ2

δ ). Regarding the “regression error ϵ & measure-

ment error δ” pairs, we distinguish four configurations as we set σϵ ∈ {1, 3}

15The choice of the population size takes into consideration the trade-off between the conver-
gence speed vs. the risk of a local optimum trap. Again, we follow the recommendations of Satman
and Diyarbakirlioglu (2015) who suggest that the population size should be 20 or higher. That is
said, the authors also note that beyond this limit, the population size has negligible effect on the
results. For the record, this parameter is set to 40 in our applications.
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together with σδ ∈ {0.5, 0.9}.16 Therefore, we distinguish between small vs.

large samples as well as low vs. high R2 models by considering different pairs

of regression error vs. measurement error variances, σϵ vs. σδ. This allows to

study the performance of our method with small vs. large attenuation bias.

Collectively, there are 36 different configurations, which we run 1,000 times

each. We thus report the results using a total of 36,000 simulated regressions.

We also repeat the experiment for 18 additional configurations17 whereby we

control for the case with no measurement error inX and keep other parameters

constant. Our objective is to verify the accuracy of the process in the idealized

case and to compare the least-squares with the mCGA method. We find no

significant difference between the statistical properties of the two methods. The

mCGA therefore conveys no erroneous signal in the absence of measurement

error.

3.2 Simulation results

We report our results in Tables 1 to 3. These tables show the results by the

number of dependent variables, i.e. N = 2, 5, and 25, respectively. We calculate

for each configuration the parameter bias as E(θ̂)−θ, the variance V ar(θ̂) and

the MSE =
(
E(θ̂)− θ

)2

+V ar(θ̂) of the intercept β0 and slope β1 estimates.

We also provide two additional tables in which we organize the results by σϵ&σδ

pairs and for increasing number of observations T to enable a complementary

reading of our numerical experiments. These are given in Tables 4 and 5. As

a supplement, we also provide a graphical summary of part of the output in

Figures 1 and 2 where we show the bias and the MSE scores of the slope

estimates, broken down by the number of dependent variables.

We can make several observations on the basis of our numerical experiment.

16We also consider the case with no measurement error by setting σδ = 0. For sake of brevity,
we do not report the results of these configurations, which are available upon request.

17The results are available upon request.
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First, we observe, regardless of the configuration, that the least-squares

estimate of the slope suffers from the attenuation bias when the predictor is

subject to measurement error. For example, when we set σϵ = 1 and σδ = 0.5,

one would expect that the least-squares estimate of the slope to be biased

downwards by 20% relative to the true value of the parameter, which implies

that β1 set initially to 5 will be cut down to 4. This observation holds indeed

for the case (σϵ = 1, σδ = 0.5) in Tables 1 to 3 regardless of the sample size

chosen. The bias in β1 is even more pronounced when the variability of the

measurement error increases relative to that of the regression error.

Second, the performance of our method in mitigating the attenuation bias

in the slope is noticeable. In some cases, especially for the σϵ = 1 & σδ = 0.5

pair, the algorithm comes up with an estimate of the slope fairly close to the

true value of the parameter. In addition, we observe, as one would expect

from our setup, even better-behaved results for the bias in β1 as we increase

the number of dependent variables across Tables 2 and 3. That is said, the

decrease in the bias of the slope estimate is not homogeneous as for larger

values of the regression error variance. To sum up, the simulations yield a

systematically lower bias of the CGA-estimate of the slope β̂mCGA
1 relative to

that the least-squares estimate β̂LS
1 for all configurations.

Third, we look at the variance and mean-square errors (MSE) of the es-

timates. Overall, we note that the variance of the estimates remains stable

across different simulation configurations; while the number of left-hand-side

variables has seemingly no effect on the variance, the sample size appears to

significantly flatten the variance of the mCGA estimates within a given simu-

lation configuration. Given the decrease in the bias, this results in lower MSE

associated with β̂mCGA
1 , as suggested in Tables 2 to 3 for any configuration

one would consider. For a given number of dependent variables N and the σϵ
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& σδ pair, we observe that the MSEs decrease systematically as the sample

size increases. This can be easily observed in Table 4. The same observations

also hold for the MSE values of the intercept estimates. On the other hand,

when we consider the results for the intercept in Tables 1 to 3 and 5, we note

that, as expected, the least-squares estimator tends to outperform the mCGA

as β̂LS
0 remains unbiased with minimum variance even with measurement er-

ror. β̂mCGA
0 , however, bears bias and variance values comparable to those of

the least-squares. For example, in the first row of table 3 with σϵ = 1 and

σδ = 0.5, we read the bias in β̂mCGA
0 as 0.0072 while it is −0.0032 for the LS.

In addition, the MSEs of β̂0’s are insensitive to the simulation configurations,

seemingly independent of the number of dependent variables and decreasing

as the sample size increases. We also note that an increase in the measurement

error standard deviation and that of the disturbances tend to degrade the sta-

tistical properties of the intercept estimator while an increase in σδ has more

destructive effects than an increase in σϵ.

To conclude this section, we also give a graphical summary of the message

carried out by our numerical experiments. Specifically, in figures 1 and 2, we

show using bar charts how the bias and the MSE of estimated β1’s change

when one applies the m-CGA estimator (dark bars) relative to least-squares

(grey bars). We consider three panels to distinguish the three different values

we chose for the number of dependent variables N . The x-axis labels consist

of three consecutive numbers that define a given simulation configuration,

namely (1) the regression error standard deviation σϵ, (2) the measurement

error standard deviation σδ, and (3) the sample size T .

The bars are of the same length regardless of these values for the bias

and MSE scores associated with the LS estimates. In a nutshell, the shorter

the bars, the better the results, which is the case for every configuration we

consider in terms of both bias and MSE of the estimates: The CGA estimates of
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Figure 1: Comparing Bias(β̂1), OLS vs. mCGA
(a) Panel A: N = 2

(b) Panel B: N = 5

(c) Panel C: N = 25

the regression slope have better statistical properties than those of their least-

squares equivalents. The downward bias caused by the measurement error is
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Figure 2: Comparing MSE(β̂1), OLS vs. mCGA
(a) Panel A: N = 2

(b) Panel B: N = 5

(c) Panel C: N = 25

noticeable based on the plots on the left-side of the figures. The CGA estimator

is on the other hand successful in pulling the estimate back to its original
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value in such a way that Bias
β1


nearly disappears as suggested in panel C

of figure 1 where we consider the case with 25 left-hand-side variables in the

multivariate regression.

4 Empirical illustration

We provide a simple empirical illustration of our approach. We prefer an ide-

alized setup for ease of tractability of the results in a multivariate multiple

regression model with two response variables and three predictor variables,

one of which is measured with error. For t = 1, ..., 25 observations and the ith

response variable, i = 1, 2, we consider the following data generating process:

Yti = α+ βX⋆
t + γ1Wt1 + γ2Wt2 + ϵti

ϵi ∼ iid N (0, 1)

X⋆,W1,W2 ∼ iid N (0, 1)

Table 6 shows our artificial dataset. The model parameters α, β, γ1 and γ2

are all equal to 5. Therefore, the population regression function for the first

response variable is Yt1 = 5 + 5X⋆
t + 5Wt1 + 5Wt2 + ϵt1. Then, we introduce

the measurement error in X⋆ using Xt = X⋆
t + δt where δ ∼ iid N

�
0, 0.52


.

We focus on the β coefficient associated with the variable X and fit the

following regressions to analyze the behaviour of the coefficient β in,

Yt1 =




αi + βX⋆
t + γ1Wt1 + γ2Wt2 + ϵt1 Model 1: No EIV

αi + βXt + γ1Wt1 + γ2Wt2 + ωt1 Model 2: EIV

αi + βXmCGA
t + γ1Wt1 + γ2Wt2 + ut1 Model 3: mCGA
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The first model is the initial case with no measurement error whereby the

least-squares method is expected to yield a BLUE estimator of β. The second

model involves the errors-in-variables case where we expect an attenuation

bias by 80% in β. The true beta being equal to 5, the fitted beta with error in

X should be close to β ×
(
1/(1 + 0.52)

)
= 4.18 Model 3 shows the case where

we implement our method to mitigate the errors-in-variables bias. Table 7

summarizes the estimation results.

The message of the example is conspicuous. With no error in X⋆, on the

first column of table 7, the OLS yields virtually “perfect” results as long as we

consider the idealized where several assumptions of the estimator hold within

the simulation setting from the very beginning. When we add the measurement

error δ and run the model using X, as reported by model 2, the point estimate

of β is downsized, unsurprisingly, by more than 20%, going down from 5.048

to 3.931, with a standard error nearly twice as much as the one found by the

OLS. Finally, the mCGA estimator is remarkably successful as it pulls the β

associated with the mismeasured variable back to 4.662.

Additional practical and important observations concern the pairwise rela-

tionships between the variables of interest. We mentioned earlier in section ??

that the principal feature of the algorithm we devise consists in filtering out

the variable X into two components as X = X̂mCGA + η̂: The random com-

ponent stands for the estimate of the additive measurement error δ while the

deterministic component X̂mCGA matches the fitted X, which we use in the

second-stage regressions.19 These two parts must then be uncorrelated. This

is indeed the case: The sample correlation between the measurement error

δ and the fitted errors is Cor(δ, η̂) = 0.8786, suggesting that the algorithm

18The calculation is possible thanks to the knowledge about the measurement error and
regression error variances.

19There are other instances in the EIV literature following a similar two-stage path like the one
we introduce here. See, among others, Dagenais and Dagenais (1997), Racicot (2015).
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comes up with an accurate estimate of the measurement error. In addition,

by assumptions of the classical EIV model, we expect the measurement er-

ror δ to be uncorrelated with the true values of the predictor X⋆. The weak

sample correlation between the two series in our data validates this insight:

Cor(δ,X⋆) = 0.2007. Finally, and above all else, the filtered series X̂mCGA has

a very strong correlation with the true values X⋆ (assumed unobserved). The

correlation between X̂mCGA and X⋆ is 0.9726. In words, the method comes

up with a clean series for the variable of interest, by providing very close to

the true but unobserved series.

5 Conclusion

This paper addresses the classical errors-in-variables problem in multivariate

linear regression by introducing a compact genetic algorithm-based estimator

designed to mitigate the EIV bias. We build on the original work by Satman

and Diyarbakirlioglu (2015). The authors developed a framework that consid-

ers the measurement error problem within a constrained convex optimization

setting and generates a cleaner version of the error-prone regressor with no

outside information. This paper extends their idea in a multivariate regression

system involving N response variables, where each variable is a function of the

same regressor and, doing so, aims to take advantage of the additional infor-

mation provided by the N − 1 variables to obtain better-behaved estimates of

model coefficients.

In the same spirit as the original paper, our approach consists of a two-stage

optimization process in which the first stage comes up with a filtered version

of the independent variable through an auxiliary dummy-variables regression.

The new series is then plugged back into the initial model in the second stage

to mitigate the EIV problem. We perform extensive simulation analyses to
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assess our approach. We consider several control parameters like the sample

size, the number of dependent variables of the multivariate regression or the

regression vs. measurement error variances. We also provide a simple empirical

application of our method again using simulated data to further highlight

the accuracy of our approach. To summarize, the results overall suggest that

the inclusion of additional response variables as extra information reduces the

bias at the expense of a relatively tolerable increase in the variance. That is

said, the increase in the variance is largely offset as we observe systematically

smaller MSE’s in all simulation configurations, endorsing the performance of

our approach.

There are several options for future studies. A direct extension would fo-

cus on an in-depth investigation of the statistical properties of our estimator.

Although the slight increase in the variance is substantially offset by lower

bias in the coefficient estimates, yielding, collectively, systematically lower

mean-square-errors, studying other features of our method like the consistency,

decision error probabilities or robustness is equally desirable. Therefore, we

consider such a simulation-driven study as a starting point for future work

to provide further credit to the framework we aim to develop. Another av-

enue for future work concerns the empirical ground so that one would check

the CGA estimator in action with real data.20 There are of course several in-

stances in different disciplines in which the model involves a linear relationship

between several response variables each function of the same set of regres-

sors. For example, a particularly interesting case in financial economics is the

so-called factor pricing models where many dependent variables, i.e. returns

on a set of assets or portfolios, are modelled as a linear function of a given

set of independent variables, i.e. risk factors. In a recent study conducted by

20As a matter of fact, the main issue related to empirical work is that it is rarely possible to
know about the population model, making the comparison of the results with those obtained from
simulations difficult.
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Diyarbakirlioglu et al. (2022), the authors provide a real-world data applica-

tion of the original method developed in Satman and Diyarbakirlioglu (2015).

Specifically, they focus on the impact of the measurement error on the market

risk factor for a large number of test assets across three popular asset pricing

models, namely the Capital Asset Pricing Model, the Fama-French three-factor

model and the Fama-French five-factor model. We thus leave the investigation

of the behaviour of our method in these financial models, which are basically

multivariate-multiple regressions, for future work.
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Table 4: Simulation results for β1

σϵ σδ T Bias β̂LS
1 Bias β̂mCGA

1 V ar(β̂LS
1 ) V ar(β̂mCGA

1 ) MSE β̂LS
1 MSE β̂mCGA

1

Panel A: Number of dependent variables, N = 2

1 0.5 30 -1.0021 0.0876 0.1736 0.2419 1.1778 0.2495
50 -0.9963 0.0937 0.1004 0.1704 1.0930 0.1792
100 -0.9941 0.0914 0.0484 0.0804 1.0366 0.0887

1 0.9 30 -2.2521 -0.1240 0.2413 0.6710 5.3134 0.6863
50 -2.2391 -0.0721 0.1383 0.3637 5.1518 0.3689
100 -2.2369 0.0161 0.0684 0.2227 5.0720 0.2230

3 0.5 30 -1.0029 0.8016 0.4324 0.8770 1.4381 1.5195
50 -0.9966 0.8482 0.2343 0.4902 1.2275 1.2096
100 -0.9982 0.8713 0.1096 0.2374 1.1060 0.9965

3 0.9 30 -2.2389 0.4999 0.4123 1.1643 5.4251 1.4142
50 -2.2527 0.6207 0.2444 0.7463 5.3189 1.1315
100 -2.2424 0.7515 0.1995 0.3820 5.1480 0.9468

Panel B: N = 5

1 0.5 30 -0.9876 0.0131 0.1713 0.2748 1.1467 0.2750
50 -1.0052 0.0166 0.1030 0.1650 1.1135 0.1653
100 -1.0065 0.0229 0.0543 0.0823 1.0674 0.0828

1 0.9 30 -2.2589 -0.2095 0.2557 0.5540 5.3582 0.5979
50 -2.2357 -0.0812 0.1361 0.4095 5.1346 0.4161
100 -2.2379 -0.0501 0.0749 0.1953 5.0832 0.1978

3 0.5 30 -0.9715 0.3680 0.4332 0.7208 1.3770 0.8562
50 -1.0225 0.3303 0.2312 0.4015 1.2766 0.5106
100 -1.0177 0.3513 0.1043 0.1835 1.1400 0.3069

3 0.9 30 -2.2260 0.1230 0.3907 0.9173 5.3458 0.9324
50 -2.2359 0.1811 0.2381 0.6141 5.2375 0.6469
100 -2.2449 0.2349 0.1185 0.3429 5.1580 0.3981

Panel C: N = 25

1 0.5 30 -1.0087 -0.0445 0.1717 0.2671 1.1891 0.2691
50 -1.0225 0.0037 0.1086 0.1592 1.1540 0.1593
100 -0.9960 0.0127 0.0500 0.0785 1.0420 0.0787

1 0.9 30 -2.2353 -0.1845 0.2545 0.6258 5.2509 0.6598
50 -2.2302 -0.0969 0.1392 0.4075 5.1129 0.4169
100 -2.2544 -0.0433 0.0749 0.2070 5.1572 0.2089

3 0.5 30 -0.9725 0.0969 0.4306 0.6313 1.3763 0.6407
50 -1.0134 0.0283 0.2248 0.3352 1.2519 0.3360
100 -0.9946 0.0717 0.1172 0.1768 1.1065 0.1820

3 0.9 30 -2.2341 -0.1492 0.4196 0.9235 5.4106 0.9457
50 -2.2545 -0.0456 0.2419 0.6059 5.3246 0.6079
100 -2.2386 0.0053 0.1234 0.2884 5.1349 0.2885

The table shows the bias, variance and the mean-square error of the regression slope es-
timates β̂mCGA

1 . The data generating process is specified as Yti = 5 + 5Xt + ϵti, where
i = 1, ..., N is the number of dependent variables and t = 1, ..., T the sample size. A given
configuration is described by four parameters, namely the standard deviation of regression
error σϵ, the standard deviation of measurement error σδ , the sample size T , and the number
of dependent variables N .
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Table 5: Simulation results for β0

σϵ σδ T Bias β̂LS
0 Bias β̂mCGA

0 V ar(β̂LS
0 ) V ar(β̂mCGA

0 ) MSE β̂LS
0 MSE β̂mCGA

0

Panel A: Number of dependent variables, N = 2

1 0.5 30 -0.0100 -0.0144 0.2129 0.2717 0.2130 0.2719
50 -0.0018 0.0019 0.1215 0.1580 0.1215 0.1580
100 -0.0053 -0.0068 0.0626 0.0763 0.0626 0.0764

1 0.9 30 -0.0001 -0.0222 0.4900 0.8026 0.4900 0.8031
50 0.0290 0.0101 0.2489 0.4336 0.2498 0.4337
100 0.0028 -0.0146 0.1230 0.2121 0.1230 0.2123

3 0.5 30 -0.0097 -0.0178 0.4880 0.6680 0.4881 0.6683
50 0.0186 0.0071 0.3179 0.4276 0.3182 0.4276
100 -0.0055 -0.0043 0.1580 0.2005 0.1581 0.2005

3 0.9 30 0.0324 0.0294 0.7209 1.1841 0.7220 1.1850
50 -0.0023 -0.0444 0.4195 0.7585 0.4195 0.7604
100 -0.0489 -0.0465 0.2259 0.3787 0.2283 0.3809

Panel B: N = 5

1 0.5 30 -0.0195 -0.0140 0.1971 0.2486 0.1974 0.2488
50 -0.0131 -0.0066 0.1167 0.1461 0.1169 0.1461
100 -0.0018 -0.0033 0.0603 0.0744 0.0603 0.0744

1 0.9 30 -0.0036 -0.0020 0.4200 0.6908 0.4200 0.6908
50 -0.0091 0.0023 0.2602 0.4494 0.2602 0.4494
100 -0.0051 -0.0147 0.1177 0.2136 0.1177 0.2138

3 0.5 30 -0.0296 -0.0187 0.4699 0.5622 0.4708 0.5626
50 0.0066 0.0048 0.2818 0.3353 0.2819 0.3353
100 -0.0072 -0.0079 0.1346 0.1665 0.1346 0.1666

3 0.9 30 0.0044 -0.0058 0.6706 1.0244 0.6706 1.0244
50 0.0244 0.0015 0.4208 0.6434 0.4214 0.6434
100 -0.0009 -0.0036 0.1982 0.3197 0.1982 0.3197

Panel C: N = 25

1 0.5 30 -0.0032 0.0072 0.2222 0.2547 0.2222 0.2547
50 0.0125 0.0119 0.1198 0.1476 0.1199 0.1477
100 0.0083 0.0121 0.0601 0.0730 0.0602 0.0731

1 0.9 30 0.0071 -0.0080 0.4104 0.6660 0.4104 0.6661
50 -0.0308 -0.0144 0.2465 0.3983 0.2475 0.3985
100 0.0224 0.0263 0.1279 0.2120 0.1284 0.2127

3 0.5 30 -0.0154 -0.0117 0.5158 0.5778 0.5161 0.5779
50 -0.0126 -0.0108 0.2707 0.3081 0.2709 0.3082
100 0.0085 0.0117 0.1469 0.1607 0.1470 0.1609

3 0.9 30 0.0110 0.0325 0.6817 0.9573 0.6818 0.9583
50 0.0156 0.0074 0.4292 0.6543 0.4294 0.6544
100 -0.0040 -0.0017 0.2054 0.3125 0.2054 0.3125

The table shows the bias, variance and the mean-square error of the regression intercept
estimates β̂mCGA

0 . The data generating process is specified as Yti = 5 + 5Xt + ϵti, where
i = 1, ..., N is the number of dependent variables and t = 1, ..., T the sample size. A given
configuration is described by four parameters, namely the standard deviation of regression
error σϵ, the standard deviation of measurement error σδ , the sample size T , and the number
of dependent variables N .
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Table 6: Artificial multivariate errors-in-variables model dataset

t Y1 Y2 X⋆ δ X W1 W2

1 7.882 7.940 -0.560 -0.843 -1.404 0.253 1.026
2 2.539 2.518 -0.230 0.419 0.189 -0.029 -0.285
3 6.229 6.554 1.559 0.077 1.635 -0.043 -1.221
4 12.755 12.140 0.071 -0.569 -0.499 1.369 0.181
5 2.872 3.752 0.129 0.627 0.756 -0.226 -0.139
6 21.141 22.631 1.715 0.213 1.928 1.516 0.006
7 0.702 1.939 0.461 -0.148 0.313 -1.549 0.385
8 -1.923 -0.214 -1.265 0.448 -0.817 0.585 -0.371
9 5.027 4.984 -0.687 0.439 -0.248 0.124 0.644
10 3.668 0.696 -0.446 0.411 -0.035 0.216 -0.220
11 14.102 15.809 1.224 0.344 1.568 0.380 0.332
12 10.380 8.311 0.360 0.277 0.637 -0.502 1.097
13 5.896 8.254 0.401 -0.031 0.370 -0.333 0.435
14 -1.225 0.740 0.111 -0.153 -0.042 -1.019 -0.326
15 3.125 1.162 -0.556 -0.190 -0.746 -1.072 1.149
16 20.721 21.122 1.787 -0.347 1.440 0.304 0.994
17 12.578 12.210 0.498 -0.104 0.394 0.448 0.548
18 -4.015 -4.947 -1.967 -0.633 -2.599 0.053 0.239
19 9.129 8.464 0.701 1.084 1.786 0.922 -0.628
20 18.666 18.088 -0.473 0.604 0.131 2.050 1.361
21 -5.678 -6.326 -1.068 -0.562 -1.629 -0.491 -0.600
22 2.353 1.839 -0.218 -0.201 -0.419 -2.309 2.187
23 12.071 13.250 -1.026 -0.233 -1.259 1.006 1.533
24 -3.625 -1.269 -0.729 0.390 -0.339 -0.709 -0.236
25 -4.853 -7.984 -0.625 -0.042 -0.667 -0.688 -1.026

The table shows the dataset used in the empirical example. Y1 and Y2 are the response
variables. X⋆ refers to the true regressor, with no measurement error. X is the error-prone
regressor, defined as X = X⋆ + δ. W1 and W2 are additional regressors, generated with no
errors-in-variables.
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Table 7: Estimation results

Model 1: OLS Model 2: EIV Model 3: mCGA

β 5.048 3.931 4.662
(0.174) (0.418) (0.208)

γ1 4.86 4.592 5.489
(0.169) (0.481) (0.215)

γ2 4.776 5.199 5.118
(0.197) (0.561) (0.255)

α 4.789 4.434 4.436
(0.169) (0.476) (0.217)

Observations 25 25 25
Adjusted R2 0.989 0.918 0.982

The table shows the estimation results for the regression model Yti = α + βX⋆
t + γ1Wt1 +

γ2Wt2 + ϵti using the artificial dataset for the first response variable Y1. The population
parameters are all equal to 5. Model 1 refers to the initial case where the true observations
on X⋆ are assumed to be available. Model 2 considers the classical errors-in-variables case
where the values X⋆ are observed with error as X = X⋆ + δ. Model 3 shows the output
obtained using the mCGA method.
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