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Abstract

This research analyzes the dynamic relationships between the economic and political uncertainty index and the fear 
index in global markets and cryptocurrencies using the wavelet-based DCC-GARCH method, considering different 
time scales. Monthly data sets for the periods 2012–April 2024 for GEPU,VIX, and Bitcoin and April 2016–April 
2024 for Ethereum are used in the study. Findings are obtained in terms of the volatility interaction between 
cryptocurrencies (Bitcoin and Ethereum) and GEPU and VIX, as well as four different time scales representing the 
short, medium, and long term. As a result of the analysis based on raw data, it was found that there is no volatility 
interaction between cryptocurrencies and GEPU and VIX returns. However, there is a volatility interaction between 
past volatility shocks and current period volatility shocks in the 4-8 and 16-32 month investment cycle periods of 
VIX, Bitcoin, GEPU, and Ethereum  and  time scales. These results, which show that volatility shocks persist in 
both 4-month and 16-month investment cycles, have significant implications for investors and policymakers. They 
highlight the need for comprehensive information about changes in the global economy and politics, and they are 
expected to provide insights for both investors and policymakers.
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1. INTRODUCTION

The concept of investment is generally divided into capital investments and financial investments, and both methods 
aim to transform savings into capital accumulation. In this context, today’s investors prefer many alternative 
investment instruments to obtain more capital accumulation. However, recently, there has been an orientation 
towards a different investment instrument. One of these alternative investment instruments is cryptocurrencies. 
The reasons for the orientation towards cryptocurrencies are technological developments in the payments system, 
which is a necessity of the digital age that awaits us in the future, and the changing risk perception (Tuncel and 
Gürsoy, 2020:2000). 

The perception that the dollar, which was seen as the safest currency in global markets until the 2008 mortgage 
crisis, would be dethroned with the crisis, and Nakamoto, who took advantage of this gap, proposed Bitcoin in 
2008 and in the following years, different cryptocurrencies such as Ethereum and Ripple emerged. In addition to 
these cryptocurrencies, the number of cryptocurrencies in actual circulation in the cryptocurrency market is more 
than 22,000 as of March 2023, with a market capitalization exceeding 1 trillion dollars, showing a significant 
growth potential (CoinMarketCap, 2023; Aydoğdu, 2024: p.1). Cryptocurrencies, whose functions as money were 
initially discussed, have recently started to be evaluated as an investment instrument and have been accepted as an 
alternative investment instrument by a significant mass of investors. With the impact of recent developments, such 
as; the pandemic and, the Russia-Ukraine crisis, the relationship between the crypto asset market and conventional 
financial assets has become curious. Especially after the Russia-Ukraine crisis, many people worldwide have 
questioned financial markets, and decentralized currencies have become a more popular alternative. 

Volatility of financial instruments is one of the most important indicators that investors pay attention to when 
making investment decisions. In addition to the volatility in the national market, investors also follow the volatility 
in the international market. With the acceleration of globalisation, financial markets are interrelated with each 
other and a volatility occurring in one of them affects the others. Therefore, investors also take into account the 
volatility in international markets when making decisions. In this context, the VIX fear index is a volatility index 
considered by investors (Akdağ, 2019: 236).This index is a risk indicator calculated by the Chicago Options 
Exchange in the United States based on the differences between the option bid and option ask prices of stocks.

The Volatility Index is an indicator that measures anxiety and fear in the markets and is also known as the VIX 
Fear Index. Various forecasting methods have been developed to assess the uncertainties in the global economy, 
and new indexing methods have been emphasised in academic studies. In particular, index that analyse economic 
and political uncertainties stand out as methods that examine political situations as well as financial risks. The 
Global Economic Political Uncertainty Index (GEPU), which is the basis of this study, is an index developed by 
Baker et al. in 2013, representing the economies of 16 countries. This index includes national EPU index based on 
the frequency of newspaper reports on the economy, uncertainty and politics, and currently includes indices for 21 
countries. These 21 countries represent approximately 71 per cent of global output adjusted for purchasing power 
parity and 80 per cent at market exchange rates (Keser, 2022: p. 121).

Investors portfolio diversification strategies to manage financial risk may vary depending on their investment 
horizons (short, medium, and long-term). Accordingly, active investors, such as risk-seeker institutional and 
retail investors, are interested in the interactions between high-frequency (low time-scale) cryptocurrencies 
and the returns of economic and political uncertainty and fear indices, i.e., short-term fluctuations. On the other 
hand, passive investors, such as risk-averse and risk-neutral institutional and retail investors, are interested in 
the interactions between cryptocurrencies at low frequencies (high time-scale) and the returns of the economic 
political uncertainty index and the fear index, i.e., long-term fluctuations. As a result, investors from different 
groups face different risks. Studying the relationships between cryptocurrencies and the returns on the economic, 
political uncertainty, and fear indexes at different time scales is crucial for risk management. As a matter of fact, for 
investors seeking alternative investment instruments, determining the time scale in which the correlation between 
the financial assets in the portfolio is low will ensure that the investor will benefit from portfolio diversification 
(Benhmad, 2013) because a high correlation between assets in a portfolio may cause the investor to make meager 
gains in terms of risk management. The heterogeneity caused by investors with different investment horizons in the 
market may cause the spillover effects between markets to change over time and at different frequencies. However, 
studies examining the relationship between cryptocurrencies and the economic political uncertainty index and the 
fear index mainly focus on a single time scale and ignore the risks that investors may face according to different 
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time scales and the spillovers between these risks (Uyar and Kangalı Uyar, 2021: p. 310)

With wavelet decomposition analysis, it is possible to examine the change in the relationship between two-
time series according to time and different frequencies. Thus, the wavelet approach can help to reveal potential 
spillover effects by allowing the existence of spillover effects between cryptocurrencies and the economic political 
uncertainty index, and the fear index returns to be examined according to different time scales. There are many 
studies on cryptocurrencies in the literature. However, studies on the volatility spillovers between cryptocurrencies 
and the global economic uncertainty and fear indexes are limited. In addition, no study has been found in the 
literature that analyses the interaction between cryptocurrencies and GEPU and VIX returns according to different 
time scales. In short, such a study on cryptocurrencies, whose popularity is increasing day by day and which are at 
the centre of various debates, will be beneficial to the literature. In addition, analyses based on the combination of 
both methods can provide inferences on determining the appropriate time periods to benefit from the advantages 
of portfolio diversification.

Therefore, the purpose of this study is to examine the impact of price movements in the Global Economic Political 
Uncertainty Index (GEPU) and the Fear Index (VIX) on crypto currencies. For this purpose, in the first section, 
information on cryptocurrencies, the economic policy uncertainty index (EPI), and the fear index (VIX) are given. 
A literature review is included in the second part of the study, and studies on volatility spillovers are included. The 
third section explains information about the data used in the analysis, wavelet decomposition analysis, and the 
DCC-GARCH model theory. In the fourth section, the findings obtained are interpreted. In the last section, some 
evaluations are made as a result of these findings.

2.  LITERATURE REVIEW

Studies have carried out a comprehensive examination of the relationship between cryptocurrencies and other 
economic indicators in different time periods and using various analysis methods. These studies aimed to analyse 
the effects of economic indicators on cryptocurrency markets in detail with the variety of data sets used. However, 
all of these methods are based on a single time scale. However, recently, studies using methods that take into 
account different time scales and/or different investment horizons have also taken their place in the literature. The 
literature on the subject is presented in Table 1. 

Table 1. Literature ReviewTable 1. Literature Review 

Imprint Aim Sampling 
Period 

Method/ 
Model Result 

Corbet vd. 

(2018) 

It aims to investigate the 
relationships and frequency 
fields between crypto 
currencies and different 
financial assets. 

Daily data set 
for the periods 
29.04.201307.
02.2014 
10.02.201430.
04.2017. 

Diebold and 
Yilmaz 
analysis 
method/Baruni
k and Krehlik 
method of 
analysis 

It is concluded that cryptocurrencies can 
provide diversification benefits for 
investors with short investment 
horizons. Moreover, time variation in 
linkages is found to reflect external 
economic and financial shocks. 

İltaş 

(2020) 

This research aims to 
examine the relationship 
between BIST 100 Index 
and economic, political, 
financial and geopolitical 
risks. 

Monthly data 
set for the 
period January 
1999-
December 
2014. 

Toda-
Yamamoto 
causality test/ 
Hacker 
Hatemi-J 
bootstrap 
causality test 

It has been concluded that economic, 
political and geopolitical risks have a 
symmetric and asymmetric causal 
relationship with stock prices in Turkey. 

 

Bakır 

(2021) 

This research aims to 
examine the relationship 
between cryptocurrencies 
and economic indicators. 

Daily data set 
for the period 
03.12.2019-
03.20.2020. 

Pedroni 
cointegration 
test 

Granger 
causality test 

As a result of the analysis, it is 
concluded that Bitcoin and Ethereum do 
not have a long-run relationship with 
some commodities and economic 
indicators. However, bidirectional and 
unidirectional causality relationships 
were found between Bitcoin and 
Ethereum and G20 stock market 
indices, some commodities and 
volatility indices. Moreover, these 
cryptocurrencies are found to have 
significant regression relationships with 
market volumes, some commodities and 
economic indicators. 

Khan vd. 

(2021) 

It aims to examine the 
relationship between global 
economic policy 
uncertainty and bitcoin 
prices. 

Monthly data 
set between 
April 2011 and 
March 2020. 

Rolling 
window 
method 

Granger 
causality 

According to the results of the analyses, 
it is determined that there is no causality 
relationship between GEPU and BCP. 
However, considering the structural 
changes, it is concluded that the full 
sample causality relationship between 
the variables may be different. 
Moreover, the finding of the rolling 
window test shows that there is 
causality in different sub-samples; both 
positive and negative bidirectional 
causality between GEPU and BCP were 
found in these sub-samples. 

Gürsoy ve 
Kılıç 

(2021) 

This research aims to 
analyse the impact of 
global economic and 
political uncertainties on 
financial markets in 
Turkey. 

Monthly data 
set for the 
period March 
2010-October 
2020. 

DCC-GARCH The analyses reveal that there is a strong 
volatility relationship between GEPU 
index, CDS premium and BIST banking 
index. 
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index, CDS premium and BIST banking 
index. 

Sajeev and 
Afjal 
(2021) 

It is aimed to examine the 
contagion effect of Bitcoin 
on the National Stock 
Exchange, Shanghai Stock 
Exchange, London Stock 
Exchange and Dow Jones 
Industrial Average by 
analysing the volatility 
spread and correlation 
between these markets. 

Daily data set 
for the period 
March 2017-
May 2021. 

BEKK-
GARCH / 

DCC-GARCH 

The overall time-varying correlation 
between Bitcoin and stock markets is 
low, indicating that Bitcoin can be taken 
as an asset to hedge against the risk of 
these stock markets. It was also 
concluded that these stock markets 
reacted more to negative shocks than to 
positive shocks in the Bitcoin market in 
2018 and 2021. 

İmre 
(2021) 

It is aimed to examine the 
volatility interaction 
between Bitcoin and Euro 
returns. 

Daily data set 
for the period 
02 February 
2014-28 
February 2021 

BEKK-
GARCH / 

DCC-GARCH 

The analyses revealed a bidirectional 
volatility interaction between the Euro 
and Bitcoin. In addition, an asymmetry 
relationship and a positive, strong 
dynamic correlation between the two 
returns were found. 

Ghorbel 
and Jeribi 

(2021) 

It aims to analyse the 
relationships between five 
cryptocurrencies and the 
volatilities of S&P500, 
Nasdaq and VIX indices, 
oil and gold. 

Daily data set 
for the period 
01 January 
2016 - 01 April 
2020 

BEKK-
GARCH / 

DCC-GARCH 

The results of both analyses show 
evidence of a higher volatility spread 
between cryptocurrencies and a lower 
volatility spread between 
cryptocurrencies and financial assets, 
and the introduction of Bitcoin futures 
is found to have a significant impact. 

Gökalp 

(2022) 

This research aims to 
investigate the impact of 
cryptocurrency market 
developments on Borsa 
Istanbul (BIST) indices. 

Daily data set 
for the period 
01/01/2014-
31/12/2021. 

BEKK-
GARHCH/DC
C-GARCH 

According to the analysis results, a 
positive spillover effect from the 
cryptocurrency markets to indices has 
been identified. Oil prices, as one of the 
control variables, have shown a 
significant impact on volatility across 
all models. Furthermore, varying results 
were observed concerning the influence 
of the fear index. 

Keser 

(2023) 

This research aims to 
investigate the causality 
relationship between global 
economic political 
uncertainty and 
geopolitical risk and 
Bitcoin energy 
consumption. 

Monthly data 
set from May 
2011 to 
February 
2022. 

Lee-Strazich 
unit root test 

Hatemi-J 
(2012) 
causality test 

According to the analysis results, it has 
been determined that global economic 
political uncertainty and geopolitical 
risk have an impact on bitcoin energy 
consumption. It has also been concluded 
that the negative effects of global 
uncertainty and geopolitical risks are 
more dominant. 
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political uncertainties and changes in the fear index on cryptocurrencies. In this context, 
the global economic and political uncertainty index (GEPU) developed by Baker et al. 
(2016) and Davis (2016), the fear index (VIX) created by CBOE, and the cryptocurrencies 



JAME, Volume : 4 -  Issue : 1 -  Year: 2024

17

Sajeev and 
Afjal 
(2021) 

It is aimed to examine the 
contagion effect of Bitcoin 
on the National Stock 
Exchange, Shanghai Stock 
Exchange, London Stock 
Exchange and Dow Jones 
Industrial Average by 
analysing the volatility 
spread and correlation 
between these markets. 

Daily data set 
for the period 
March 2017-
May 2021. 

BEKK-
GARCH / 

DCC-GARCH 

The overall time-varying correlation 
between Bitcoin and stock markets is 
low, indicating that Bitcoin can be taken 
as an asset to hedge against the risk of 
these stock markets. It was also 
concluded that these stock markets 
reacted more to negative shocks than to 
positive shocks in the Bitcoin market in 
2018 and 2021. 

İmre 
(2021) 

It is aimed to examine the 
volatility interaction 
between Bitcoin and Euro 
returns. 

Daily data set 
for the period 
02 February 
2014-28 
February 2021 

BEKK-
GARCH / 

DCC-GARCH 

The analyses revealed a bidirectional 
volatility interaction between the Euro 
and Bitcoin. In addition, an asymmetry 
relationship and a positive, strong 
dynamic correlation between the two 
returns were found. 

Ghorbel 
and Jeribi 

(2021) 

It aims to analyse the 
relationships between five 
cryptocurrencies and the 
volatilities of S&P500, 
Nasdaq and VIX indices, 
oil and gold. 

Daily data set 
for the period 
01 January 
2016 - 01 April 
2020 

BEKK-
GARCH / 

DCC-GARCH 

The results of both analyses show 
evidence of a higher volatility spread 
between cryptocurrencies and a lower 
volatility spread between 
cryptocurrencies and financial assets, 
and the introduction of Bitcoin futures 
is found to have a significant impact. 

Gökalp 

(2022) 

This research aims to 
investigate the impact of 
cryptocurrency market 
developments on Borsa 
Istanbul (BIST) indices. 

Daily data set 
for the period 
01/01/2014-
31/12/2021. 

BEKK-
GARHCH/DC
C-GARCH 

According to the analysis results, a 
positive spillover effect from the 
cryptocurrency markets to indices has 
been identified. Oil prices, as one of the 
control variables, have shown a 
significant impact on volatility across 
all models. Furthermore, varying results 
were observed concerning the influence 
of the fear index. 

Keser 

(2023) 

This research aims to 
investigate the causality 
relationship between global 
economic political 
uncertainty and 
geopolitical risk and 
Bitcoin energy 
consumption. 

Monthly data 
set from May 
2011 to 
February 
2022. 

Lee-Strazich 
unit root test 

Hatemi-J 
(2012) 
causality test 

According to the analysis results, it has 
been determined that global economic 
political uncertainty and geopolitical 
risk have an impact on bitcoin energy 
consumption. It has also been concluded 
that the negative effects of global 
uncertainty and geopolitical risks are 
more dominant. 

 

 

3. METHODOLOGY 

3.1. Purpose of the Research and Data Set 

The main objective of this research is to examine the impact of global economic and 
political uncertainties and changes in the fear index on cryptocurrencies. In this context, 
the global economic and political uncertainty index (GEPU) developed by Baker et al. 
(2016) and Davis (2016), the fear index (VIX) created by CBOE, and the cryptocurrencies 

3. METHODOLOGY

3.1. Purpose of the Research and Data Set

The main objective of this research is to examine the impact of global economic and political uncertainties and 
changes in the fear index on cryptocurrencies. In this context, the global economic and political uncertainty index 
(GEPU) developed by Baker et al. (2016) and Davis (2016), the fear index (VIX) created by CBOE, and the 
cryptocurrencies Bitcoin and Ethereum are determined as the main variables used in this study. Data for the 
variables were obtained by using the “policyuncertainty.com” database for the global economic uncertainty index. 
Fear index, Bitcoin and Ethereum data were obtained using the “investing.com” database. In the study, the period 
between GEPU, VIX and Bitcoin is April 2012-April 2024; For Ethereum, the wavelet-based DCC-GARCH model 
was run using monthly data between April 2016 and April 2024. While creating the data set of the study, these 
dates were determined due to data constraints for the variables. In the study, the Wavelet-based DCC-GARCH 
model determines the volatility interaction and transfer according to different time scales and also indicates the 
relationship between variables. For this reason, the DCC-GARCH model based on Wavelet was preferred in the 
study. The returns of the variables were calculated according to the formula in equation (1):

The main objective of this research is to examine the impact of global economic and 
political uncertainties and changes in the fear index on cryptocurrencies. In this context, 
the global economic and political uncertainty index (GEPU) developed by Baker et al. 
(2016) and Davis (2016), the fear index (VIX) created by CBOE, and the cryptocurrencies 
Bitcoin and Ethereum are determined as the main variables used in this study. Data for 
the variables were obtained by using the "policyuncertainty.com" database for the global 
economic uncertainty index. Fear index, Bitcoin and Ethereum data were obtained using 
the “investing.com” database. In the study, the period between GEPU, VIX and Bitcoin 
is April 2012-April 2024; For Ethereum, the wavelet-based DCC-GARCH model was run 
using monthly data between April 2016 and April 2024. While creating the data set of the 
study, these dates were determined due to data constraints for the variables. In the study, 
the Wavelet-based DCC-GARCH model determines the volatility interaction and transfer 
according to different time scales and also indicates the relationship between variables. 
For this reason, the DCC-GARCH model based on Wavelet was preferred in the study. 
The returns of the variables were calculated according to the formula in equation (1): 

𝑟𝑟𝑟𝑟𝑖𝑖𝑖𝑖,𝑡𝑡𝑡𝑡 = log�
𝑃𝑃𝑃𝑃𝑖𝑖𝑖𝑖,𝑡𝑡𝑡𝑡
𝑃𝑃𝑃𝑃𝑖𝑖𝑖𝑖,𝑡𝑡𝑡𝑡𝑡𝑡

� ∗ 100                                                                                                             (1) 

Here 𝑟𝑟𝑟𝑟𝑖𝑖𝑖𝑖,𝑡𝑡𝑡𝑡, represents the return series of the i’th financial asset at time t; 𝑃𝑃𝑃𝑃𝑖𝑖𝑖𝑖,𝑡𝑡𝑡𝑡 and 𝑃𝑃𝑃𝑃𝑖𝑖𝑖𝑖,𝑡𝑡𝑡𝑡𝑡𝑡 
show the closing prices of financial assets at time t and t-1, respectively. 
 

3.2. Wavelet Decomposition Analysis 

Wavelets can be explained as short fluctuations in time with a specific start and end point 
(Lehkonen and Heimonen, 2014: p.92).Although the Wavelet approach is more 
comprehensive than the Fourier approach, it is an approach that allows the behavior of a 
time series to be separated and examined according to different frequencies over time. 
This flexibility provided by the wavelet approach allows revealing time series behavior 
or features that cannot be revealed with only time-dependent approaches. This is because 
it can be examined how the relationships between variables change over time according 
to different frequencies. Thus, instead of examining financial asset returns for different 
periods in finance applications, various return layers that make up the total return can be 
examined. Similarly, instead of examining volatility for different periods, various 
volatility layers that make up volatility can be obtained through wavelet decomposition 
and how the behavior of risk evolves over time can be observed. The wavelet approach 
allows time series to be analyzed without applying any transformation to non-stationary 
time series and therefore without loss of observation (Schleicher, 2002:p.27). 
Moreover, the non-parametric nature of the wavelet approach allows non-linear 
relationships between variables to be taken into account without any loss of information. 
These advantages of the wavelet approach, which is based on time and frequency, are the 
most important reasons why it is a more effective technique than time-only approaches. 
The wavelet approach was first applied in the field of economics by Ramsey and Lampart 
(1998a,b) in order to analyze the relationships with money supply (M1 and M2). In recent 
years, Rua and Nunes (2009), Jammazi and Aloui (2010), Masih etal., (2010), Ismail et 
al., (2016), Omane-Adjepong and Alagidede (2019), Uyar and Kangallı Uyar (2021), 
Hairudin and Mohamad (2023), Aydoğdu (2024) etc. It has been introduced to the 
literature in economics and finance by researchers such as using this approach. 

 � (1)

Here 

The main objective of this research is to examine the impact of global economic and 
political uncertainties and changes in the fear index on cryptocurrencies. In this context, 
the global economic and political uncertainty index (GEPU) developed by Baker et al. 
(2016) and Davis (2016), the fear index (VIX) created by CBOE, and the cryptocurrencies 
Bitcoin and Ethereum are determined as the main variables used in this study. Data for 
the variables were obtained by using the "policyuncertainty.com" database for the global 
economic uncertainty index. Fear index, Bitcoin and Ethereum data were obtained using 
the “investing.com” database. In the study, the period between GEPU, VIX and Bitcoin 
is April 2012-April 2024; For Ethereum, the wavelet-based DCC-GARCH model was run 
using monthly data between April 2016 and April 2024. While creating the data set of the 
study, these dates were determined due to data constraints for the variables. In the study, 
the Wavelet-based DCC-GARCH model determines the volatility interaction and transfer 
according to different time scales and also indicates the relationship between variables. 
For this reason, the DCC-GARCH model based on Wavelet was preferred in the study. 
The returns of the variables were calculated according to the formula in equation (1): 

𝑟𝑟𝑟𝑟𝑖𝑖𝑖𝑖,𝑡𝑡𝑡𝑡 = log�
𝑃𝑃𝑃𝑃𝑖𝑖𝑖𝑖,𝑡𝑡𝑡𝑡
𝑃𝑃𝑃𝑃𝑖𝑖𝑖𝑖,𝑡𝑡𝑡𝑡𝑡𝑡

� ∗ 100                                                                                                             (1) 

Here 𝑟𝑟𝑟𝑟𝑖𝑖𝑖𝑖,𝑡𝑡𝑡𝑡, represents the return series of the i’th financial asset at time t; 𝑃𝑃𝑃𝑃𝑖𝑖𝑖𝑖,𝑡𝑡𝑡𝑡 and 𝑃𝑃𝑃𝑃𝑖𝑖𝑖𝑖,𝑡𝑡𝑡𝑡𝑡𝑡 
show the closing prices of financial assets at time t and t-1, respectively. 
 

3.2. Wavelet Decomposition Analysis 

Wavelets can be explained as short fluctuations in time with a specific start and end point 
(Lehkonen and Heimonen, 2014: p.92).Although the Wavelet approach is more 
comprehensive than the Fourier approach, it is an approach that allows the behavior of a 
time series to be separated and examined according to different frequencies over time. 
This flexibility provided by the wavelet approach allows revealing time series behavior 
or features that cannot be revealed with only time-dependent approaches. This is because 
it can be examined how the relationships between variables change over time according 
to different frequencies. Thus, instead of examining financial asset returns for different 
periods in finance applications, various return layers that make up the total return can be 
examined. Similarly, instead of examining volatility for different periods, various 
volatility layers that make up volatility can be obtained through wavelet decomposition 
and how the behavior of risk evolves over time can be observed. The wavelet approach 
allows time series to be analyzed without applying any transformation to non-stationary 
time series and therefore without loss of observation (Schleicher, 2002:p.27). 
Moreover, the non-parametric nature of the wavelet approach allows non-linear 
relationships between variables to be taken into account without any loss of information. 
These advantages of the wavelet approach, which is based on time and frequency, are the 
most important reasons why it is a more effective technique than time-only approaches. 
The wavelet approach was first applied in the field of economics by Ramsey and Lampart 
(1998a,b) in order to analyze the relationships with money supply (M1 and M2). In recent 
years, Rua and Nunes (2009), Jammazi and Aloui (2010), Masih etal., (2010), Ismail et 
al., (2016), Omane-Adjepong and Alagidede (2019), Uyar and Kangallı Uyar (2021), 
Hairudin and Mohamad (2023), Aydoğdu (2024) etc. It has been introduced to the 
literature in economics and finance by researchers such as using this approach. 

 , represents the return series of the i’th financial asset at time 

The main objective of this research is to examine the impact of global economic and 
political uncertainties and changes in the fear index on cryptocurrencies. In this context, 
the global economic and political uncertainty index (GEPU) developed by Baker et al. 
(2016) and Davis (2016), the fear index (VIX) created by CBOE, and the cryptocurrencies 
Bitcoin and Ethereum are determined as the main variables used in this study. Data for 
the variables were obtained by using the "policyuncertainty.com" database for the global 
economic uncertainty index. Fear index, Bitcoin and Ethereum data were obtained using 
the “investing.com” database. In the study, the period between GEPU, VIX and Bitcoin 
is April 2012-April 2024; For Ethereum, the wavelet-based DCC-GARCH model was run 
using monthly data between April 2016 and April 2024. While creating the data set of the 
study, these dates were determined due to data constraints for the variables. In the study, 
the Wavelet-based DCC-GARCH model determines the volatility interaction and transfer 
according to different time scales and also indicates the relationship between variables. 
For this reason, the DCC-GARCH model based on Wavelet was preferred in the study. 
The returns of the variables were calculated according to the formula in equation (1): 

𝑟𝑟𝑟𝑟𝑖𝑖𝑖𝑖,𝑡𝑡𝑡𝑡 = log�
𝑃𝑃𝑃𝑃𝑖𝑖𝑖𝑖,𝑡𝑡𝑡𝑡
𝑃𝑃𝑃𝑃𝑖𝑖𝑖𝑖,𝑡𝑡𝑡𝑡𝑡𝑡

� ∗ 100                                                                                                             (1) 

Here 𝑟𝑟𝑟𝑟𝑖𝑖𝑖𝑖,𝑡𝑡𝑡𝑡, represents the return series of the i’th financial asset at time t; 𝑃𝑃𝑃𝑃𝑖𝑖𝑖𝑖,𝑡𝑡𝑡𝑡 and 𝑃𝑃𝑃𝑃𝑖𝑖𝑖𝑖,𝑡𝑡𝑡𝑡𝑡𝑡 
show the closing prices of financial assets at time t and t-1, respectively. 
 

3.2. Wavelet Decomposition Analysis 

Wavelets can be explained as short fluctuations in time with a specific start and end point 
(Lehkonen and Heimonen, 2014: p.92).Although the Wavelet approach is more 
comprehensive than the Fourier approach, it is an approach that allows the behavior of a 
time series to be separated and examined according to different frequencies over time. 
This flexibility provided by the wavelet approach allows revealing time series behavior 
or features that cannot be revealed with only time-dependent approaches. This is because 
it can be examined how the relationships between variables change over time according 
to different frequencies. Thus, instead of examining financial asset returns for different 
periods in finance applications, various return layers that make up the total return can be 
examined. Similarly, instead of examining volatility for different periods, various 
volatility layers that make up volatility can be obtained through wavelet decomposition 
and how the behavior of risk evolves over time can be observed. The wavelet approach 
allows time series to be analyzed without applying any transformation to non-stationary 
time series and therefore without loss of observation (Schleicher, 2002:p.27). 
Moreover, the non-parametric nature of the wavelet approach allows non-linear 
relationships between variables to be taken into account without any loss of information. 
These advantages of the wavelet approach, which is based on time and frequency, are the 
most important reasons why it is a more effective technique than time-only approaches. 
The wavelet approach was first applied in the field of economics by Ramsey and Lampart 
(1998a,b) in order to analyze the relationships with money supply (M1 and M2). In recent 
years, Rua and Nunes (2009), Jammazi and Aloui (2010), Masih etal., (2010), Ismail et 
al., (2016), Omane-Adjepong and Alagidede (2019), Uyar and Kangallı Uyar (2021), 
Hairudin and Mohamad (2023), Aydoğdu (2024) etc. It has been introduced to the 
literature in economics and finance by researchers such as using this approach. 

 and 

The main objective of this research is to examine the impact of global economic and 
political uncertainties and changes in the fear index on cryptocurrencies. In this context, 
the global economic and political uncertainty index (GEPU) developed by Baker et al. 
(2016) and Davis (2016), the fear index (VIX) created by CBOE, and the cryptocurrencies 
Bitcoin and Ethereum are determined as the main variables used in this study. Data for 
the variables were obtained by using the "policyuncertainty.com" database for the global 
economic uncertainty index. Fear index, Bitcoin and Ethereum data were obtained using 
the “investing.com” database. In the study, the period between GEPU, VIX and Bitcoin 
is April 2012-April 2024; For Ethereum, the wavelet-based DCC-GARCH model was run 
using monthly data between April 2016 and April 2024. While creating the data set of the 
study, these dates were determined due to data constraints for the variables. In the study, 
the Wavelet-based DCC-GARCH model determines the volatility interaction and transfer 
according to different time scales and also indicates the relationship between variables. 
For this reason, the DCC-GARCH model based on Wavelet was preferred in the study. 
The returns of the variables were calculated according to the formula in equation (1): 

𝑟𝑟𝑟𝑟𝑖𝑖𝑖𝑖,𝑡𝑡𝑡𝑡 = log�
𝑃𝑃𝑃𝑃𝑖𝑖𝑖𝑖,𝑡𝑡𝑡𝑡
𝑃𝑃𝑃𝑃𝑖𝑖𝑖𝑖,𝑡𝑡𝑡𝑡𝑡𝑡

� ∗ 100                                                                                                             (1) 

Here 𝑟𝑟𝑟𝑟𝑖𝑖𝑖𝑖,𝑡𝑡𝑡𝑡, represents the return series of the i’th financial asset at time t; 𝑃𝑃𝑃𝑃𝑖𝑖𝑖𝑖,𝑡𝑡𝑡𝑡 and 𝑃𝑃𝑃𝑃𝑖𝑖𝑖𝑖,𝑡𝑡𝑡𝑡𝑡𝑡 
show the closing prices of financial assets at time t and t-1, respectively. 
 

3.2. Wavelet Decomposition Analysis 

Wavelets can be explained as short fluctuations in time with a specific start and end point 
(Lehkonen and Heimonen, 2014: p.92).Although the Wavelet approach is more 
comprehensive than the Fourier approach, it is an approach that allows the behavior of a 
time series to be separated and examined according to different frequencies over time. 
This flexibility provided by the wavelet approach allows revealing time series behavior 
or features that cannot be revealed with only time-dependent approaches. This is because 
it can be examined how the relationships between variables change over time according 
to different frequencies. Thus, instead of examining financial asset returns for different 
periods in finance applications, various return layers that make up the total return can be 
examined. Similarly, instead of examining volatility for different periods, various 
volatility layers that make up volatility can be obtained through wavelet decomposition 
and how the behavior of risk evolves over time can be observed. The wavelet approach 
allows time series to be analyzed without applying any transformation to non-stationary 
time series and therefore without loss of observation (Schleicher, 2002:p.27). 
Moreover, the non-parametric nature of the wavelet approach allows non-linear 
relationships between variables to be taken into account without any loss of information. 
These advantages of the wavelet approach, which is based on time and frequency, are the 
most important reasons why it is a more effective technique than time-only approaches. 
The wavelet approach was first applied in the field of economics by Ramsey and Lampart 
(1998a,b) in order to analyze the relationships with money supply (M1 and M2). In recent 
years, Rua and Nunes (2009), Jammazi and Aloui (2010), Masih etal., (2010), Ismail et 
al., (2016), Omane-Adjepong and Alagidede (2019), Uyar and Kangallı Uyar (2021), 
Hairudin and Mohamad (2023), Aydoğdu (2024) etc. It has been introduced to the 
literature in economics and finance by researchers such as using this approach. 

 show the closing prices 
of financial assets at time t and t-1, respectively.

3.2. Wavelet Decomposition Analysis

Wavelets can be explained as short fluctuations in time with a specific start and end point (Lehkonen and Heimonen, 
2014: p.92).Although the Wavelet approach is more comprehensive than the Fourier approach, it is an approach 
that allows the behavior of a time series to be separated and examined according to different frequencies over time. 
This flexibility provided by the wavelet approach allows revealing time series behavior or features that cannot be 
revealed with only time-dependent approaches. This is because it can be examined how the relationships between 
variables change over time according to different frequencies. Thus, instead of examining financial asset returns 
for different periods in finance applications, various return layers that make up the total return can be examined. 
Similarly, instead of examining volatility for different periods, various volatility layers that make up volatility can 
be obtained through wavelet decomposition and how the behavior of risk evolves over time can be observed. The 
wavelet approach allows time series to be analyzed without applying any transformation to non-stationary time 
series and therefore without loss of observation (Schleicher, 2002:p.27).



18

AYDOĞDU

Moreover, the non-parametric nature of the wavelet approach allows non-linear relationships between variables 
to be taken into account without any loss of information. These advantages of the wavelet approach, which is 
based on time and frequency, are the most important reasons why it is a more effective technique than time-only 
approaches. The wavelet approach was first applied in the field of economics by Ramsey and Lampart (1998a,b) 
in order to analyze the relationships with money supply (M1 and M2). In recent years, Rua and Nunes (2009), 
Jammazi and Aloui (2010), Masih etal., (2010), Ismail et al., (2016), Omane-Adjepong and Alagidede (2019), 
Uyar and Kangallı Uyar (2021), Hairudin and Mohamad (2023), Aydoğdu (2024) etc. It has been introduced to the 
literature in economics and finance by researchers such as using this approach.

In wavelet analysis, a time series can be decomposed into different time scales by applying wavelet transformation. 
Father wavelet in wavelet analysis Two basic functions are defined: mother wavelet and mother wavelet. The 
father wavelet contains the low-frequency components of the original series and shows the trend of the series; The 
mother wavelet contains the high-frequency components of the series and shows deviations from the trend, in other 
words, it reflects the details in the data (Crowley, 2007). The father  wavelet and mother wavelet can be defined as 
in equation (2) and equation (3), respectively (Ramsey and Lampart, 1998):

In wavelet analysis, a time series can be decomposed into different time scales by 
applying wavelet transformation. Father wavelet in wavelet analysis Two basic functions 
are defined: mother wavelet and mother wavelet. The father wavelet contains the low-
frequency components of the original series and shows the trend of the series; The mother 
wavelet contains the high-frequency components of the series and shows deviations from 
the trend, in other words, it reflects the details in the data (Crowley, 2007). The father  
wavelet and mother wavelet can be defined as in equation (2) and equation (3), 
respectively (Ramsey and Lampart, 1998): 

Ø𝑗𝑗𝑗𝑗,𝑘𝑘𝑘𝑘(𝑡𝑡𝑡𝑡) = 2−
1
2 Ø�2−𝑗𝑗𝑗𝑗 ∗ 𝑡𝑡𝑡𝑡 𝑡 𝑡𝑡𝑡𝑡𝑡, 𝑗𝑗𝑗𝑗 = 1,2, … , 𝐽𝐽𝐽𝐽; 𝑘𝑘𝑘𝑘 = 0,1, … , 2𝑗𝑗𝑗𝑗 − 1                                       (2) 
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Wavelet functions depend on the scale or frequency parameter j and the location 
parameter k. Although 2𝑗𝑗𝑗𝑗, is called the scale, it can be treated as a measure of the width 
of the Ø𝑗𝑗𝑗𝑗,𝑘𝑘𝑘𝑘(t) function. Accordingly, as the values of j increase, the function becomes 
shorter and spreads further. The scale parameter determines the size of the wavelet, while 
the position parameter sets the location of the wavelet. A scale parameter ranging from 1 
to J means that the time series is decomposed at J different levels according to the highest 
time scale J. Ø(.) ve 𝜓𝜓𝜓𝜓(.), (-∞,∞)  are real-valued functions defined on the real axis, and 
it is assumed that these functions meet the normalization conditions defined in equations 
(4) and (5): 
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A time series such as x(t) defined at 𝐿𝐿𝐿𝐿2(𝑅𝑅𝑅𝑅)3 can be expressed in terms of wavelet functions 
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−∞ . 𝑆𝑆𝑆𝑆𝐽𝐽𝐽𝐽,𝑘𝑘𝑘𝑘, 
are called smooth coefficients, while 𝑑𝑑𝑑𝑑𝑗𝑗𝑗𝑗,𝑘𝑘𝑘𝑘 are called detail functions. The sizes of these 
coefficients show the share of wavelet functions in the total data. In the expression in 
Equation (7); 

𝑆𝑆𝑆𝑆𝑡𝑡𝑡𝑡(𝑡𝑡𝑡𝑡) = � 𝑆𝑆𝑆𝑆𝐽𝐽𝐽𝐽,𝑘𝑘𝑘𝑘Ø𝐽𝐽𝐽𝐽,𝑘𝑘𝑘𝑘(𝑡𝑡𝑡𝑡)  
2𝑗𝑗𝑗𝑗−1

𝑘𝑘𝑘𝑘𝑘𝑘

                                                                                                            (7) 

ve  

𝐷𝐷𝐷𝐷𝑗𝑗𝑗𝑗(𝑡𝑡𝑡𝑡) = � 𝑑𝑑𝑑𝑑𝑗𝑗𝑗𝑗,𝑘𝑘𝑘𝑘

2𝑗𝑗𝑗𝑗−1

𝑘𝑘𝑘𝑘𝑘𝑘

𝜓𝜓𝜓𝜓𝑗𝑗𝑗𝑗,𝑘𝑘𝑘𝑘(𝑡𝑡𝑡𝑡), 𝑗𝑗𝑗𝑗 = 1,2, … . . , 𝐽𝐽𝐽𝐽                                                                                 (8) 

When defined as x(t) time series can be re-expressed as in equation (9): 

				�     (3)

Wavelet functions depend on the scale or frequency parameter j and the location parameter k. Although 

In wavelet analysis, a time series can be decomposed into different time scales by 
applying wavelet transformation. Father wavelet in wavelet analysis Two basic functions 
are defined: mother wavelet and mother wavelet. The father wavelet contains the low-
frequency components of the original series and shows the trend of the series; The mother 
wavelet contains the high-frequency components of the series and shows deviations from 
the trend, in other words, it reflects the details in the data (Crowley, 2007). The father  
wavelet and mother wavelet can be defined as in equation (2) and equation (3), 
respectively (Ramsey and Lampart, 1998): 

Ø𝑗𝑗𝑗𝑗,𝑘𝑘𝑘𝑘(𝑡𝑡𝑡𝑡) = 2−
1
2 Ø�2−𝑗𝑗𝑗𝑗 ∗ 𝑡𝑡𝑡𝑡 𝑡 𝑡𝑡𝑡𝑡𝑡, 𝑗𝑗𝑗𝑗 = 1,2, … , 𝐽𝐽𝐽𝐽; 𝑘𝑘𝑘𝑘 = 0,1, … , 2𝑗𝑗𝑗𝑗 − 1                                       (2) 

𝜓𝜓𝜓𝜓𝑗𝑗𝑗𝑗,𝑘𝑘𝑘𝑘(𝑡𝑡𝑡𝑡) = 2−
𝑗𝑗𝑗𝑗
2𝜓𝜓𝜓𝜓𝜓2−𝑗𝑗𝑗𝑗 ∗ 𝑡𝑡𝑡𝑡 −𝑘𝑘𝑘𝑘𝑘 , 𝑗𝑗𝑗𝑗 = 1,2, … . , 𝐽𝐽𝐽𝐽; 𝑘𝑘𝑘𝑘 = 1, … . , 2𝑗𝑗𝑗𝑗 − 1                                       (3) 

Wavelet functions depend on the scale or frequency parameter j and the location 
parameter k. Although 2𝑗𝑗𝑗𝑗, is called the scale, it can be treated as a measure of the width 
of the Ø𝑗𝑗𝑗𝑗,𝑘𝑘𝑘𝑘(t) function. Accordingly, as the values of j increase, the function becomes 
shorter and spreads further. The scale parameter determines the size of the wavelet, while 
the position parameter sets the location of the wavelet. A scale parameter ranging from 1 
to J means that the time series is decomposed at J different levels according to the highest 
time scale J. Ø(.) ve 𝜓𝜓𝜓𝜓(.), (-∞,∞)  are real-valued functions defined on the real axis, and 
it is assumed that these functions meet the normalization conditions defined in equations 
(4) and (5): 

� Ø(𝑡𝑡𝑡𝑡)𝑑𝑑𝑑𝑑𝑡𝑡𝑡𝑡 = 1 
+∞

−∞

                                                                                                                           (4) 

� 𝜓𝜓𝜓𝜓(𝑡𝑡𝑡𝑡)𝑑𝑑𝑑𝑑𝑡𝑡𝑡𝑡 = 1 
+∞

−∞

                                                                                                                           (5) 

A time series such as x(t) defined at 𝐿𝐿𝐿𝐿2(𝑅𝑅𝑅𝑅)3 can be expressed in terms of wavelet functions 
as in equation (6): 

𝑥𝑥𝑥𝑥(𝑡𝑡𝑡𝑡) = � 𝑆𝑆𝑆𝑆𝐽𝐽𝐽𝐽,𝑘𝑘𝑘𝑘Ø𝐽𝐽𝐽𝐽,𝑘𝑘𝑘𝑘(𝑡𝑡𝑡𝑡)
2𝑗𝑗𝑗𝑗−1

𝑘𝑘𝑘𝑘𝑘𝑘

+ � � 𝑑𝑑𝑑𝑑𝑗𝑗𝑗𝑗,𝑘𝑘𝑘𝑘 
𝑘𝑘𝑘𝑘𝑗𝑗𝑗𝑗−1

𝑘𝑘𝑘𝑘𝑘𝑘

𝐽𝐽𝐽𝐽

𝑗𝑗𝑗𝑗𝑗𝑗

𝜓𝜓𝜓𝜓𝑗𝑗𝑗𝑗,𝑘𝑘𝑘𝑘(𝑡𝑡𝑡𝑡)                                                                      (6) 

Here it is defined as𝑆𝑆𝑆𝑆𝐽𝐽𝐽𝐽,𝑘𝑘𝑘𝑘 = ∫ 𝑡𝑡𝑡𝑡(𝑡𝑡𝑡𝑡)Ø𝐽𝐽𝐽𝐽,𝑘𝑘𝑘𝑘(𝑡𝑡𝑡𝑡)𝑑𝑑𝑑𝑑𝑡𝑡𝑡𝑡 = 1 +∞
−∞ ve 𝑑𝑑𝑑𝑑𝑗𝑗𝑗𝑗,𝑘𝑘𝑘𝑘 = ∫ 𝑥𝑥𝑥𝑥(𝑡𝑡𝑡𝑡)𝜓𝜓𝜓𝜓𝑗𝑗𝑗𝑗,𝑘𝑘𝑘𝑘(𝑡𝑡𝑡𝑡)𝑑𝑑𝑑𝑑𝑡𝑡𝑡𝑡 = 1 +∞

−∞ . 𝑆𝑆𝑆𝑆𝐽𝐽𝐽𝐽,𝑘𝑘𝑘𝑘, 
are called smooth coefficients, while 𝑑𝑑𝑑𝑑𝑗𝑗𝑗𝑗,𝑘𝑘𝑘𝑘 are called detail functions. The sizes of these 
coefficients show the share of wavelet functions in the total data. In the expression in 
Equation (7); 

𝑆𝑆𝑆𝑆𝑡𝑡𝑡𝑡(𝑡𝑡𝑡𝑡) = � 𝑆𝑆𝑆𝑆𝐽𝐽𝐽𝐽,𝑘𝑘𝑘𝑘Ø𝐽𝐽𝐽𝐽,𝑘𝑘𝑘𝑘(𝑡𝑡𝑡𝑡)  
2𝑗𝑗𝑗𝑗−1

𝑘𝑘𝑘𝑘𝑘𝑘

                                                                                                            (7) 

ve  

𝐷𝐷𝐷𝐷𝑗𝑗𝑗𝑗(𝑡𝑡𝑡𝑡) = � 𝑑𝑑𝑑𝑑𝑗𝑗𝑗𝑗,𝑘𝑘𝑘𝑘

2𝑗𝑗𝑗𝑗−1

𝑘𝑘𝑘𝑘𝑘𝑘

𝜓𝜓𝜓𝜓𝑗𝑗𝑗𝑗,𝑘𝑘𝑘𝑘(𝑡𝑡𝑡𝑡), 𝑗𝑗𝑗𝑗 = 1,2, … . . , 𝐽𝐽𝐽𝐽                                                                                 (8) 

When defined as x(t) time series can be re-expressed as in equation (9): 

, is 
called the scale, it can be treated as a measure of the width of the 

In wavelet analysis, a time series can be decomposed into different time scales by 
applying wavelet transformation. Father wavelet in wavelet analysis Two basic functions 
are defined: mother wavelet and mother wavelet. The father wavelet contains the low-
frequency components of the original series and shows the trend of the series; The mother 
wavelet contains the high-frequency components of the series and shows deviations from 
the trend, in other words, it reflects the details in the data (Crowley, 2007). The father  
wavelet and mother wavelet can be defined as in equation (2) and equation (3), 
respectively (Ramsey and Lampart, 1998): 

Ø𝑗𝑗𝑗𝑗,𝑘𝑘𝑘𝑘(𝑡𝑡𝑡𝑡) = 2−
1
2 Ø�2−𝑗𝑗𝑗𝑗 ∗ 𝑡𝑡𝑡𝑡 𝑡 𝑡𝑡𝑡𝑡𝑡, 𝑗𝑗𝑗𝑗 = 1,2, … , 𝐽𝐽𝐽𝐽; 𝑘𝑘𝑘𝑘 = 0,1, … , 2𝑗𝑗𝑗𝑗 − 1                                       (2) 

𝜓𝜓𝜓𝜓𝑗𝑗𝑗𝑗,𝑘𝑘𝑘𝑘(𝑡𝑡𝑡𝑡) = 2−
𝑗𝑗𝑗𝑗
2𝜓𝜓𝜓𝜓𝜓2−𝑗𝑗𝑗𝑗 ∗ 𝑡𝑡𝑡𝑡 −𝑘𝑘𝑘𝑘𝑘 , 𝑗𝑗𝑗𝑗 = 1,2, … . , 𝐽𝐽𝐽𝐽; 𝑘𝑘𝑘𝑘 = 1, … . , 2𝑗𝑗𝑗𝑗 − 1                                       (3) 

Wavelet functions depend on the scale or frequency parameter j and the location 
parameter k. Although 2𝑗𝑗𝑗𝑗, is called the scale, it can be treated as a measure of the width 
of the Ø𝑗𝑗𝑗𝑗,𝑘𝑘𝑘𝑘(t) function. Accordingly, as the values of j increase, the function becomes 
shorter and spreads further. The scale parameter determines the size of the wavelet, while 
the position parameter sets the location of the wavelet. A scale parameter ranging from 1 
to J means that the time series is decomposed at J different levels according to the highest 
time scale J. Ø(.) ve 𝜓𝜓𝜓𝜓(.), (-∞,∞)  are real-valued functions defined on the real axis, and 
it is assumed that these functions meet the normalization conditions defined in equations 
(4) and (5): 

� Ø(𝑡𝑡𝑡𝑡)𝑑𝑑𝑑𝑑𝑡𝑡𝑡𝑡 = 1 
+∞

−∞

                                                                                                                           (4) 

� 𝜓𝜓𝜓𝜓(𝑡𝑡𝑡𝑡)𝑑𝑑𝑑𝑑𝑡𝑡𝑡𝑡 = 1 
+∞

−∞

                                                                                                                           (5) 

A time series such as x(t) defined at 𝐿𝐿𝐿𝐿2(𝑅𝑅𝑅𝑅)3 can be expressed in terms of wavelet functions 
as in equation (6): 

𝑥𝑥𝑥𝑥(𝑡𝑡𝑡𝑡) = � 𝑆𝑆𝑆𝑆𝐽𝐽𝐽𝐽,𝑘𝑘𝑘𝑘Ø𝐽𝐽𝐽𝐽,𝑘𝑘𝑘𝑘(𝑡𝑡𝑡𝑡)
2𝑗𝑗𝑗𝑗−1

𝑘𝑘𝑘𝑘𝑘𝑘

+ � � 𝑑𝑑𝑑𝑑𝑗𝑗𝑗𝑗,𝑘𝑘𝑘𝑘 
𝑘𝑘𝑘𝑘𝑗𝑗𝑗𝑗−1

𝑘𝑘𝑘𝑘𝑘𝑘

𝐽𝐽𝐽𝐽

𝑗𝑗𝑗𝑗𝑗𝑗

𝜓𝜓𝜓𝜓𝑗𝑗𝑗𝑗,𝑘𝑘𝑘𝑘(𝑡𝑡𝑡𝑡)                                                                      (6) 

Here it is defined as𝑆𝑆𝑆𝑆𝐽𝐽𝐽𝐽,𝑘𝑘𝑘𝑘 = ∫ 𝑡𝑡𝑡𝑡(𝑡𝑡𝑡𝑡)Ø𝐽𝐽𝐽𝐽,𝑘𝑘𝑘𝑘(𝑡𝑡𝑡𝑡)𝑑𝑑𝑑𝑑𝑡𝑡𝑡𝑡 = 1 +∞
−∞ ve 𝑑𝑑𝑑𝑑𝑗𝑗𝑗𝑗,𝑘𝑘𝑘𝑘 = ∫ 𝑥𝑥𝑥𝑥(𝑡𝑡𝑡𝑡)𝜓𝜓𝜓𝜓𝑗𝑗𝑗𝑗,𝑘𝑘𝑘𝑘(𝑡𝑡𝑡𝑡)𝑑𝑑𝑑𝑑𝑡𝑡𝑡𝑡 = 1 +∞

−∞ . 𝑆𝑆𝑆𝑆𝐽𝐽𝐽𝐽,𝑘𝑘𝑘𝑘, 
are called smooth coefficients, while 𝑑𝑑𝑑𝑑𝑗𝑗𝑗𝑗,𝑘𝑘𝑘𝑘 are called detail functions. The sizes of these 
coefficients show the share of wavelet functions in the total data. In the expression in 
Equation (7); 

𝑆𝑆𝑆𝑆𝑡𝑡𝑡𝑡(𝑡𝑡𝑡𝑡) = � 𝑆𝑆𝑆𝑆𝐽𝐽𝐽𝐽,𝑘𝑘𝑘𝑘Ø𝐽𝐽𝐽𝐽,𝑘𝑘𝑘𝑘(𝑡𝑡𝑡𝑡)  
2𝑗𝑗𝑗𝑗−1

𝑘𝑘𝑘𝑘𝑘𝑘

                                                                                                            (7) 

ve  

𝐷𝐷𝐷𝐷𝑗𝑗𝑗𝑗(𝑡𝑡𝑡𝑡) = � 𝑑𝑑𝑑𝑑𝑗𝑗𝑗𝑗,𝑘𝑘𝑘𝑘

2𝑗𝑗𝑗𝑗−1

𝑘𝑘𝑘𝑘𝑘𝑘

𝜓𝜓𝜓𝜓𝑗𝑗𝑗𝑗,𝑘𝑘𝑘𝑘(𝑡𝑡𝑡𝑡), 𝑗𝑗𝑗𝑗 = 1,2, … . . , 𝐽𝐽𝐽𝐽                                                                                 (8) 

When defined as x(t) time series can be re-expressed as in equation (9): 

 function. Accordingly, as the values of j 
increase, the function becomes shorter and spreads further. The scale parameter determines the size of the wavelet, 
while the position parameter sets the location of the wavelet. A scale parameter ranging from 1 to J means that the 
time series is decomposed at J different levels according to the highest time scale J. 

In wavelet analysis, a time series can be decomposed into different time scales by 
applying wavelet transformation. Father wavelet in wavelet analysis Two basic functions 
are defined: mother wavelet and mother wavelet. The father wavelet contains the low-
frequency components of the original series and shows the trend of the series; The mother 
wavelet contains the high-frequency components of the series and shows deviations from 
the trend, in other words, it reflects the details in the data (Crowley, 2007). The father  
wavelet and mother wavelet can be defined as in equation (2) and equation (3), 
respectively (Ramsey and Lampart, 1998): 

Ø𝑗𝑗𝑗𝑗,𝑘𝑘𝑘𝑘(𝑡𝑡𝑡𝑡) = 2−
1
2 Ø�2−𝑗𝑗𝑗𝑗 ∗ 𝑡𝑡𝑡𝑡 𝑡 𝑡𝑡𝑡𝑡𝑡, 𝑗𝑗𝑗𝑗 = 1,2, … , 𝐽𝐽𝐽𝐽; 𝑘𝑘𝑘𝑘 = 0,1, … , 2𝑗𝑗𝑗𝑗 − 1                                       (2) 

𝜓𝜓𝜓𝜓𝑗𝑗𝑗𝑗,𝑘𝑘𝑘𝑘(𝑡𝑡𝑡𝑡) = 2−
𝑗𝑗𝑗𝑗
2𝜓𝜓𝜓𝜓𝜓2−𝑗𝑗𝑗𝑗 ∗ 𝑡𝑡𝑡𝑡 −𝑘𝑘𝑘𝑘𝑘 , 𝑗𝑗𝑗𝑗 = 1,2, … . , 𝐽𝐽𝐽𝐽; 𝑘𝑘𝑘𝑘 = 1, … . , 2𝑗𝑗𝑗𝑗 − 1                                       (3) 

Wavelet functions depend on the scale or frequency parameter j and the location 
parameter k. Although 2𝑗𝑗𝑗𝑗, is called the scale, it can be treated as a measure of the width 
of the Ø𝑗𝑗𝑗𝑗,𝑘𝑘𝑘𝑘(t) function. Accordingly, as the values of j increase, the function becomes 
shorter and spreads further. The scale parameter determines the size of the wavelet, while 
the position parameter sets the location of the wavelet. A scale parameter ranging from 1 
to J means that the time series is decomposed at J different levels according to the highest 
time scale J. Ø(.) ve 𝜓𝜓𝜓𝜓(.), (-∞,∞)  are real-valued functions defined on the real axis, and 
it is assumed that these functions meet the normalization conditions defined in equations 
(4) and (5): 

� Ø(𝑡𝑡𝑡𝑡)𝑑𝑑𝑑𝑑𝑡𝑡𝑡𝑡 = 1 
+∞

−∞

                                                                                                                           (4) 

� 𝜓𝜓𝜓𝜓(𝑡𝑡𝑡𝑡)𝑑𝑑𝑑𝑑𝑡𝑡𝑡𝑡 = 1 
+∞

−∞

                                                                                                                           (5) 

A time series such as x(t) defined at 𝐿𝐿𝐿𝐿2(𝑅𝑅𝑅𝑅)3 can be expressed in terms of wavelet functions 
as in equation (6): 

𝑥𝑥𝑥𝑥(𝑡𝑡𝑡𝑡) = � 𝑆𝑆𝑆𝑆𝐽𝐽𝐽𝐽,𝑘𝑘𝑘𝑘Ø𝐽𝐽𝐽𝐽,𝑘𝑘𝑘𝑘(𝑡𝑡𝑡𝑡)
2𝑗𝑗𝑗𝑗−1

𝑘𝑘𝑘𝑘𝑘𝑘

+ � � 𝑑𝑑𝑑𝑑𝑗𝑗𝑗𝑗,𝑘𝑘𝑘𝑘 
𝑘𝑘𝑘𝑘𝑗𝑗𝑗𝑗−1

𝑘𝑘𝑘𝑘𝑘𝑘

𝐽𝐽𝐽𝐽

𝑗𝑗𝑗𝑗𝑗𝑗

𝜓𝜓𝜓𝜓𝑗𝑗𝑗𝑗,𝑘𝑘𝑘𝑘(𝑡𝑡𝑡𝑡)                                                                      (6) 

Here it is defined as𝑆𝑆𝑆𝑆𝐽𝐽𝐽𝐽,𝑘𝑘𝑘𝑘 = ∫ 𝑡𝑡𝑡𝑡(𝑡𝑡𝑡𝑡)Ø𝐽𝐽𝐽𝐽,𝑘𝑘𝑘𝑘(𝑡𝑡𝑡𝑡)𝑑𝑑𝑑𝑑𝑡𝑡𝑡𝑡 = 1 +∞
−∞ ve 𝑑𝑑𝑑𝑑𝑗𝑗𝑗𝑗,𝑘𝑘𝑘𝑘 = ∫ 𝑥𝑥𝑥𝑥(𝑡𝑡𝑡𝑡)𝜓𝜓𝜓𝜓𝑗𝑗𝑗𝑗,𝑘𝑘𝑘𝑘(𝑡𝑡𝑡𝑡)𝑑𝑑𝑑𝑑𝑡𝑡𝑡𝑡 = 1 +∞

−∞ . 𝑆𝑆𝑆𝑆𝐽𝐽𝐽𝐽,𝑘𝑘𝑘𝑘, 
are called smooth coefficients, while 𝑑𝑑𝑑𝑑𝑗𝑗𝑗𝑗,𝑘𝑘𝑘𝑘 are called detail functions. The sizes of these 
coefficients show the share of wavelet functions in the total data. In the expression in 
Equation (7); 

𝑆𝑆𝑆𝑆𝑡𝑡𝑡𝑡(𝑡𝑡𝑡𝑡) = � 𝑆𝑆𝑆𝑆𝐽𝐽𝐽𝐽,𝑘𝑘𝑘𝑘Ø𝐽𝐽𝐽𝐽,𝑘𝑘𝑘𝑘(𝑡𝑡𝑡𝑡)  
2𝑗𝑗𝑗𝑗−1

𝑘𝑘𝑘𝑘𝑘𝑘

                                                                                                            (7) 

ve  

𝐷𝐷𝐷𝐷𝑗𝑗𝑗𝑗(𝑡𝑡𝑡𝑡) = � 𝑑𝑑𝑑𝑑𝑗𝑗𝑗𝑗,𝑘𝑘𝑘𝑘

2𝑗𝑗𝑗𝑗−1

𝑘𝑘𝑘𝑘𝑘𝑘

𝜓𝜓𝜓𝜓𝑗𝑗𝑗𝑗,𝑘𝑘𝑘𝑘(𝑡𝑡𝑡𝑡), 𝑗𝑗𝑗𝑗 = 1,2, … . . , 𝐽𝐽𝐽𝐽                                                                                 (8) 

When defined as x(t) time series can be re-expressed as in equation (9): 

  are real-
valued functions defined on the real axis, and it is assumed that these functions meet the normalization conditions 
defined in equations (4) and (5):

In wavelet analysis, a time series can be decomposed into different time scales by 
applying wavelet transformation. Father wavelet in wavelet analysis Two basic functions 
are defined: mother wavelet and mother wavelet. The father wavelet contains the low-
frequency components of the original series and shows the trend of the series; The mother 
wavelet contains the high-frequency components of the series and shows deviations from 
the trend, in other words, it reflects the details in the data (Crowley, 2007). The father  
wavelet and mother wavelet can be defined as in equation (2) and equation (3), 
respectively (Ramsey and Lampart, 1998): 

Ø𝑗𝑗𝑗𝑗,𝑘𝑘𝑘𝑘(𝑡𝑡𝑡𝑡) = 2−
1
2 Ø�2−𝑗𝑗𝑗𝑗 ∗ 𝑡𝑡𝑡𝑡 𝑡 𝑡𝑡𝑡𝑡𝑡, 𝑗𝑗𝑗𝑗 = 1,2, … , 𝐽𝐽𝐽𝐽; 𝑘𝑘𝑘𝑘 = 0,1, … , 2𝑗𝑗𝑗𝑗 − 1                                       (2) 

𝜓𝜓𝜓𝜓𝑗𝑗𝑗𝑗,𝑘𝑘𝑘𝑘(𝑡𝑡𝑡𝑡) = 2−
𝑗𝑗𝑗𝑗
2𝜓𝜓𝜓𝜓𝜓2−𝑗𝑗𝑗𝑗 ∗ 𝑡𝑡𝑡𝑡 −𝑘𝑘𝑘𝑘𝑘 , 𝑗𝑗𝑗𝑗 = 1,2, … . , 𝐽𝐽𝐽𝐽; 𝑘𝑘𝑘𝑘 = 1, … . , 2𝑗𝑗𝑗𝑗 − 1                                       (3) 

Wavelet functions depend on the scale or frequency parameter j and the location 
parameter k. Although 2𝑗𝑗𝑗𝑗, is called the scale, it can be treated as a measure of the width 
of the Ø𝑗𝑗𝑗𝑗,𝑘𝑘𝑘𝑘(t) function. Accordingly, as the values of j increase, the function becomes 
shorter and spreads further. The scale parameter determines the size of the wavelet, while 
the position parameter sets the location of the wavelet. A scale parameter ranging from 1 
to J means that the time series is decomposed at J different levels according to the highest 
time scale J. Ø(.) ve 𝜓𝜓𝜓𝜓(.), (-∞,∞)  are real-valued functions defined on the real axis, and 
it is assumed that these functions meet the normalization conditions defined in equations 
(4) and (5): 

� Ø(𝑡𝑡𝑡𝑡)𝑑𝑑𝑑𝑑𝑡𝑡𝑡𝑡 = 1 
+∞

−∞

                                                                                                                           (4) 

� 𝜓𝜓𝜓𝜓(𝑡𝑡𝑡𝑡)𝑑𝑑𝑑𝑑𝑡𝑡𝑡𝑡 = 1 
+∞

−∞

                                                                                                                           (5) 

A time series such as x(t) defined at 𝐿𝐿𝐿𝐿2(𝑅𝑅𝑅𝑅)3 can be expressed in terms of wavelet functions 
as in equation (6): 

𝑥𝑥𝑥𝑥(𝑡𝑡𝑡𝑡) = � 𝑆𝑆𝑆𝑆𝐽𝐽𝐽𝐽,𝑘𝑘𝑘𝑘Ø𝐽𝐽𝐽𝐽,𝑘𝑘𝑘𝑘(𝑡𝑡𝑡𝑡)
2𝑗𝑗𝑗𝑗−1

𝑘𝑘𝑘𝑘𝑘𝑘

+ � � 𝑑𝑑𝑑𝑑𝑗𝑗𝑗𝑗,𝑘𝑘𝑘𝑘 
𝑘𝑘𝑘𝑘𝑗𝑗𝑗𝑗−1

𝑘𝑘𝑘𝑘𝑘𝑘

𝐽𝐽𝐽𝐽

𝑗𝑗𝑗𝑗𝑗𝑗

𝜓𝜓𝜓𝜓𝑗𝑗𝑗𝑗,𝑘𝑘𝑘𝑘(𝑡𝑡𝑡𝑡)                                                                      (6) 

Here it is defined as𝑆𝑆𝑆𝑆𝐽𝐽𝐽𝐽,𝑘𝑘𝑘𝑘 = ∫ 𝑡𝑡𝑡𝑡(𝑡𝑡𝑡𝑡)Ø𝐽𝐽𝐽𝐽,𝑘𝑘𝑘𝑘(𝑡𝑡𝑡𝑡)𝑑𝑑𝑑𝑑𝑡𝑡𝑡𝑡 = 1 +∞
−∞ ve 𝑑𝑑𝑑𝑑𝑗𝑗𝑗𝑗,𝑘𝑘𝑘𝑘 = ∫ 𝑥𝑥𝑥𝑥(𝑡𝑡𝑡𝑡)𝜓𝜓𝜓𝜓𝑗𝑗𝑗𝑗,𝑘𝑘𝑘𝑘(𝑡𝑡𝑡𝑡)𝑑𝑑𝑑𝑑𝑡𝑡𝑡𝑡 = 1 +∞

−∞ . 𝑆𝑆𝑆𝑆𝐽𝐽𝐽𝐽,𝑘𝑘𝑘𝑘, 
are called smooth coefficients, while 𝑑𝑑𝑑𝑑𝑗𝑗𝑗𝑗,𝑘𝑘𝑘𝑘 are called detail functions. The sizes of these 
coefficients show the share of wavelet functions in the total data. In the expression in 
Equation (7); 

𝑆𝑆𝑆𝑆𝑡𝑡𝑡𝑡(𝑡𝑡𝑡𝑡) = � 𝑆𝑆𝑆𝑆𝐽𝐽𝐽𝐽,𝑘𝑘𝑘𝑘Ø𝐽𝐽𝐽𝐽,𝑘𝑘𝑘𝑘(𝑡𝑡𝑡𝑡)  
2𝑗𝑗𝑗𝑗−1

𝑘𝑘𝑘𝑘𝑘𝑘

                                                                                                            (7) 

ve  

𝐷𝐷𝐷𝐷𝑗𝑗𝑗𝑗(𝑡𝑡𝑡𝑡) = � 𝑑𝑑𝑑𝑑𝑗𝑗𝑗𝑗,𝑘𝑘𝑘𝑘

2𝑗𝑗𝑗𝑗−1

𝑘𝑘𝑘𝑘𝑘𝑘

𝜓𝜓𝜓𝜓𝑗𝑗𝑗𝑗,𝑘𝑘𝑘𝑘(𝑡𝑡𝑡𝑡), 𝑗𝑗𝑗𝑗 = 1,2, … . . , 𝐽𝐽𝐽𝐽                                                                                 (8) 

When defined as x(t) time series can be re-expressed as in equation (9): 

� (4)

In wavelet analysis, a time series can be decomposed into different time scales by 
applying wavelet transformation. Father wavelet in wavelet analysis Two basic functions 
are defined: mother wavelet and mother wavelet. The father wavelet contains the low-
frequency components of the original series and shows the trend of the series; The mother 
wavelet contains the high-frequency components of the series and shows deviations from 
the trend, in other words, it reflects the details in the data (Crowley, 2007). The father  
wavelet and mother wavelet can be defined as in equation (2) and equation (3), 
respectively (Ramsey and Lampart, 1998): 

Ø𝑗𝑗𝑗𝑗,𝑘𝑘𝑘𝑘(𝑡𝑡𝑡𝑡) = 2−
1
2 Ø�2−𝑗𝑗𝑗𝑗 ∗ 𝑡𝑡𝑡𝑡 𝑡 𝑡𝑡𝑡𝑡𝑡, 𝑗𝑗𝑗𝑗 = 1,2, … , 𝐽𝐽𝐽𝐽; 𝑘𝑘𝑘𝑘 = 0,1, … , 2𝑗𝑗𝑗𝑗 − 1                                       (2) 

𝜓𝜓𝜓𝜓𝑗𝑗𝑗𝑗,𝑘𝑘𝑘𝑘(𝑡𝑡𝑡𝑡) = 2−
𝑗𝑗𝑗𝑗
2𝜓𝜓𝜓𝜓𝜓2−𝑗𝑗𝑗𝑗 ∗ 𝑡𝑡𝑡𝑡 −𝑘𝑘𝑘𝑘𝑘 , 𝑗𝑗𝑗𝑗 = 1,2, … . , 𝐽𝐽𝐽𝐽; 𝑘𝑘𝑘𝑘 = 1, … . , 2𝑗𝑗𝑗𝑗 − 1                                       (3) 

Wavelet functions depend on the scale or frequency parameter j and the location 
parameter k. Although 2𝑗𝑗𝑗𝑗, is called the scale, it can be treated as a measure of the width 
of the Ø𝑗𝑗𝑗𝑗,𝑘𝑘𝑘𝑘(t) function. Accordingly, as the values of j increase, the function becomes 
shorter and spreads further. The scale parameter determines the size of the wavelet, while 
the position parameter sets the location of the wavelet. A scale parameter ranging from 1 
to J means that the time series is decomposed at J different levels according to the highest 
time scale J. Ø(.) ve 𝜓𝜓𝜓𝜓(.), (-∞,∞)  are real-valued functions defined on the real axis, and 
it is assumed that these functions meet the normalization conditions defined in equations 
(4) and (5): 

� Ø(𝑡𝑡𝑡𝑡)𝑑𝑑𝑑𝑑𝑡𝑡𝑡𝑡 = 1 
+∞

−∞

                                                                                                                           (4) 

� 𝜓𝜓𝜓𝜓(𝑡𝑡𝑡𝑡)𝑑𝑑𝑑𝑑𝑡𝑡𝑡𝑡 = 1 
+∞

−∞

                                                                                                                           (5) 

A time series such as x(t) defined at 𝐿𝐿𝐿𝐿2(𝑅𝑅𝑅𝑅)3 can be expressed in terms of wavelet functions 
as in equation (6): 

𝑥𝑥𝑥𝑥(𝑡𝑡𝑡𝑡) = � 𝑆𝑆𝑆𝑆𝐽𝐽𝐽𝐽,𝑘𝑘𝑘𝑘Ø𝐽𝐽𝐽𝐽,𝑘𝑘𝑘𝑘(𝑡𝑡𝑡𝑡)
2𝑗𝑗𝑗𝑗−1

𝑘𝑘𝑘𝑘𝑘𝑘

+ � � 𝑑𝑑𝑑𝑑𝑗𝑗𝑗𝑗,𝑘𝑘𝑘𝑘 
𝑘𝑘𝑘𝑘𝑗𝑗𝑗𝑗−1

𝑘𝑘𝑘𝑘𝑘𝑘

𝐽𝐽𝐽𝐽

𝑗𝑗𝑗𝑗𝑗𝑗

𝜓𝜓𝜓𝜓𝑗𝑗𝑗𝑗,𝑘𝑘𝑘𝑘(𝑡𝑡𝑡𝑡)                                                                      (6) 

Here it is defined as𝑆𝑆𝑆𝑆𝐽𝐽𝐽𝐽,𝑘𝑘𝑘𝑘 = ∫ 𝑡𝑡𝑡𝑡(𝑡𝑡𝑡𝑡)Ø𝐽𝐽𝐽𝐽,𝑘𝑘𝑘𝑘(𝑡𝑡𝑡𝑡)𝑑𝑑𝑑𝑑𝑡𝑡𝑡𝑡 = 1 +∞
−∞ ve 𝑑𝑑𝑑𝑑𝑗𝑗𝑗𝑗,𝑘𝑘𝑘𝑘 = ∫ 𝑥𝑥𝑥𝑥(𝑡𝑡𝑡𝑡)𝜓𝜓𝜓𝜓𝑗𝑗𝑗𝑗,𝑘𝑘𝑘𝑘(𝑡𝑡𝑡𝑡)𝑑𝑑𝑑𝑑𝑡𝑡𝑡𝑡 = 1 +∞

−∞ . 𝑆𝑆𝑆𝑆𝐽𝐽𝐽𝐽,𝑘𝑘𝑘𝑘, 
are called smooth coefficients, while 𝑑𝑑𝑑𝑑𝑗𝑗𝑗𝑗,𝑘𝑘𝑘𝑘 are called detail functions. The sizes of these 
coefficients show the share of wavelet functions in the total data. In the expression in 
Equation (7); 

𝑆𝑆𝑆𝑆𝑡𝑡𝑡𝑡(𝑡𝑡𝑡𝑡) = � 𝑆𝑆𝑆𝑆𝐽𝐽𝐽𝐽,𝑘𝑘𝑘𝑘Ø𝐽𝐽𝐽𝐽,𝑘𝑘𝑘𝑘(𝑡𝑡𝑡𝑡)  
2𝑗𝑗𝑗𝑗−1

𝑘𝑘𝑘𝑘𝑘𝑘

                                                                                                            (7) 

ve  

𝐷𝐷𝐷𝐷𝑗𝑗𝑗𝑗(𝑡𝑡𝑡𝑡) = � 𝑑𝑑𝑑𝑑𝑗𝑗𝑗𝑗,𝑘𝑘𝑘𝑘

2𝑗𝑗𝑗𝑗−1

𝑘𝑘𝑘𝑘𝑘𝑘

𝜓𝜓𝜓𝜓𝑗𝑗𝑗𝑗,𝑘𝑘𝑘𝑘(𝑡𝑡𝑡𝑡), 𝑗𝑗𝑗𝑗 = 1,2, … . . , 𝐽𝐽𝐽𝐽                                                                                 (8) 

When defined as x(t) time series can be re-expressed as in equation (9): 

			�    (5)

A time series such as x(t) defined at  

In wavelet analysis, a time series can be decomposed into different time scales by 
applying wavelet transformation. Father wavelet in wavelet analysis Two basic functions 
are defined: mother wavelet and mother wavelet. The father wavelet contains the low-
frequency components of the original series and shows the trend of the series; The mother 
wavelet contains the high-frequency components of the series and shows deviations from 
the trend, in other words, it reflects the details in the data (Crowley, 2007). The father  
wavelet and mother wavelet can be defined as in equation (2) and equation (3), 
respectively (Ramsey and Lampart, 1998): 

Ø𝑗𝑗𝑗𝑗,𝑘𝑘𝑘𝑘(𝑡𝑡𝑡𝑡) = 2−
1
2 Ø�2−𝑗𝑗𝑗𝑗 ∗ 𝑡𝑡𝑡𝑡 𝑡 𝑡𝑡𝑡𝑡𝑡, 𝑗𝑗𝑗𝑗 = 1,2, … , 𝐽𝐽𝐽𝐽; 𝑘𝑘𝑘𝑘 = 0,1, … , 2𝑗𝑗𝑗𝑗 − 1                                       (2) 

𝜓𝜓𝜓𝜓𝑗𝑗𝑗𝑗,𝑘𝑘𝑘𝑘(𝑡𝑡𝑡𝑡) = 2−
𝑗𝑗𝑗𝑗
2𝜓𝜓𝜓𝜓𝜓2−𝑗𝑗𝑗𝑗 ∗ 𝑡𝑡𝑡𝑡 −𝑘𝑘𝑘𝑘𝑘 , 𝑗𝑗𝑗𝑗 = 1,2, … . , 𝐽𝐽𝐽𝐽; 𝑘𝑘𝑘𝑘 = 1, … . , 2𝑗𝑗𝑗𝑗 − 1                                       (3) 

Wavelet functions depend on the scale or frequency parameter j and the location 
parameter k. Although 2𝑗𝑗𝑗𝑗, is called the scale, it can be treated as a measure of the width 
of the Ø𝑗𝑗𝑗𝑗,𝑘𝑘𝑘𝑘(t) function. Accordingly, as the values of j increase, the function becomes 
shorter and spreads further. The scale parameter determines the size of the wavelet, while 
the position parameter sets the location of the wavelet. A scale parameter ranging from 1 
to J means that the time series is decomposed at J different levels according to the highest 
time scale J. Ø(.) ve 𝜓𝜓𝜓𝜓(.), (-∞,∞)  are real-valued functions defined on the real axis, and 
it is assumed that these functions meet the normalization conditions defined in equations 
(4) and (5): 

� Ø(𝑡𝑡𝑡𝑡)𝑑𝑑𝑑𝑑𝑡𝑡𝑡𝑡 = 1 
+∞

−∞

                                                                                                                           (4) 

� 𝜓𝜓𝜓𝜓(𝑡𝑡𝑡𝑡)𝑑𝑑𝑑𝑑𝑡𝑡𝑡𝑡 = 1 
+∞

−∞

                                                                                                                           (5) 

A time series such as x(t) defined at 𝐿𝐿𝐿𝐿2(𝑅𝑅𝑅𝑅)3 can be expressed in terms of wavelet functions 
as in equation (6): 

𝑥𝑥𝑥𝑥(𝑡𝑡𝑡𝑡) = � 𝑆𝑆𝑆𝑆𝐽𝐽𝐽𝐽,𝑘𝑘𝑘𝑘Ø𝐽𝐽𝐽𝐽,𝑘𝑘𝑘𝑘(𝑡𝑡𝑡𝑡)
2𝑗𝑗𝑗𝑗−1

𝑘𝑘𝑘𝑘𝑘𝑘

+ � � 𝑑𝑑𝑑𝑑𝑗𝑗𝑗𝑗,𝑘𝑘𝑘𝑘 
𝑘𝑘𝑘𝑘𝑗𝑗𝑗𝑗−1

𝑘𝑘𝑘𝑘𝑘𝑘

𝐽𝐽𝐽𝐽

𝑗𝑗𝑗𝑗𝑗𝑗

𝜓𝜓𝜓𝜓𝑗𝑗𝑗𝑗,𝑘𝑘𝑘𝑘(𝑡𝑡𝑡𝑡)                                                                      (6) 

Here it is defined as𝑆𝑆𝑆𝑆𝐽𝐽𝐽𝐽,𝑘𝑘𝑘𝑘 = ∫ 𝑡𝑡𝑡𝑡(𝑡𝑡𝑡𝑡)Ø𝐽𝐽𝐽𝐽,𝑘𝑘𝑘𝑘(𝑡𝑡𝑡𝑡)𝑑𝑑𝑑𝑑𝑡𝑡𝑡𝑡 = 1 +∞
−∞ ve 𝑑𝑑𝑑𝑑𝑗𝑗𝑗𝑗,𝑘𝑘𝑘𝑘 = ∫ 𝑥𝑥𝑥𝑥(𝑡𝑡𝑡𝑡)𝜓𝜓𝜓𝜓𝑗𝑗𝑗𝑗,𝑘𝑘𝑘𝑘(𝑡𝑡𝑡𝑡)𝑑𝑑𝑑𝑑𝑡𝑡𝑡𝑡 = 1 +∞

−∞ . 𝑆𝑆𝑆𝑆𝐽𝐽𝐽𝐽,𝑘𝑘𝑘𝑘, 
are called smooth coefficients, while 𝑑𝑑𝑑𝑑𝑗𝑗𝑗𝑗,𝑘𝑘𝑘𝑘 are called detail functions. The sizes of these 
coefficients show the share of wavelet functions in the total data. In the expression in 
Equation (7); 

𝑆𝑆𝑆𝑆𝑡𝑡𝑡𝑡(𝑡𝑡𝑡𝑡) = � 𝑆𝑆𝑆𝑆𝐽𝐽𝐽𝐽,𝑘𝑘𝑘𝑘Ø𝐽𝐽𝐽𝐽,𝑘𝑘𝑘𝑘(𝑡𝑡𝑡𝑡)  
2𝑗𝑗𝑗𝑗−1

𝑘𝑘𝑘𝑘𝑘𝑘

                                                                                                            (7) 

ve  

𝐷𝐷𝐷𝐷𝑗𝑗𝑗𝑗(𝑡𝑡𝑡𝑡) = � 𝑑𝑑𝑑𝑑𝑗𝑗𝑗𝑗,𝑘𝑘𝑘𝑘

2𝑗𝑗𝑗𝑗−1

𝑘𝑘𝑘𝑘𝑘𝑘

𝜓𝜓𝜓𝜓𝑗𝑗𝑗𝑗,𝑘𝑘𝑘𝑘(𝑡𝑡𝑡𝑡), 𝑗𝑗𝑗𝑗 = 1,2, … . . , 𝐽𝐽𝐽𝐽                                                                                 (8) 

When defined as x(t) time series can be re-expressed as in equation (9): 

 can be expressed in terms of wavelet functions as in equation (6):

In wavelet analysis, a time series can be decomposed into different time scales by 
applying wavelet transformation. Father wavelet in wavelet analysis Two basic functions 
are defined: mother wavelet and mother wavelet. The father wavelet contains the low-
frequency components of the original series and shows the trend of the series; The mother 
wavelet contains the high-frequency components of the series and shows deviations from 
the trend, in other words, it reflects the details in the data (Crowley, 2007). The father  
wavelet and mother wavelet can be defined as in equation (2) and equation (3), 
respectively (Ramsey and Lampart, 1998): 

Ø𝑗𝑗𝑗𝑗,𝑘𝑘𝑘𝑘(𝑡𝑡𝑡𝑡) = 2−
1
2 Ø�2−𝑗𝑗𝑗𝑗 ∗ 𝑡𝑡𝑡𝑡 𝑡 𝑡𝑡𝑡𝑡𝑡, 𝑗𝑗𝑗𝑗 = 1,2, … , 𝐽𝐽𝐽𝐽; 𝑘𝑘𝑘𝑘 = 0,1, … , 2𝑗𝑗𝑗𝑗 − 1                                       (2) 

𝜓𝜓𝜓𝜓𝑗𝑗𝑗𝑗,𝑘𝑘𝑘𝑘(𝑡𝑡𝑡𝑡) = 2−
𝑗𝑗𝑗𝑗
2𝜓𝜓𝜓𝜓𝜓2−𝑗𝑗𝑗𝑗 ∗ 𝑡𝑡𝑡𝑡 −𝑘𝑘𝑘𝑘𝑘 , 𝑗𝑗𝑗𝑗 = 1,2, … . , 𝐽𝐽𝐽𝐽; 𝑘𝑘𝑘𝑘 = 1, … . , 2𝑗𝑗𝑗𝑗 − 1                                       (3) 

Wavelet functions depend on the scale or frequency parameter j and the location 
parameter k. Although 2𝑗𝑗𝑗𝑗, is called the scale, it can be treated as a measure of the width 
of the Ø𝑗𝑗𝑗𝑗,𝑘𝑘𝑘𝑘(t) function. Accordingly, as the values of j increase, the function becomes 
shorter and spreads further. The scale parameter determines the size of the wavelet, while 
the position parameter sets the location of the wavelet. A scale parameter ranging from 1 
to J means that the time series is decomposed at J different levels according to the highest 
time scale J. Ø(.) ve 𝜓𝜓𝜓𝜓(.), (-∞,∞)  are real-valued functions defined on the real axis, and 
it is assumed that these functions meet the normalization conditions defined in equations 
(4) and (5): 

� Ø(𝑡𝑡𝑡𝑡)𝑑𝑑𝑑𝑑𝑡𝑡𝑡𝑡 = 1 
+∞

−∞

                                                                                                                           (4) 

� 𝜓𝜓𝜓𝜓(𝑡𝑡𝑡𝑡)𝑑𝑑𝑑𝑑𝑡𝑡𝑡𝑡 = 1 
+∞

−∞

                                                                                                                           (5) 

A time series such as x(t) defined at 𝐿𝐿𝐿𝐿2(𝑅𝑅𝑅𝑅)3 can be expressed in terms of wavelet functions 
as in equation (6): 

𝑥𝑥𝑥𝑥(𝑡𝑡𝑡𝑡) = � 𝑆𝑆𝑆𝑆𝐽𝐽𝐽𝐽,𝑘𝑘𝑘𝑘Ø𝐽𝐽𝐽𝐽,𝑘𝑘𝑘𝑘(𝑡𝑡𝑡𝑡)
2𝑗𝑗𝑗𝑗−1

𝑘𝑘𝑘𝑘𝑘𝑘

+ � � 𝑑𝑑𝑑𝑑𝑗𝑗𝑗𝑗,𝑘𝑘𝑘𝑘 
𝑘𝑘𝑘𝑘𝑗𝑗𝑗𝑗−1

𝑘𝑘𝑘𝑘𝑘𝑘

𝐽𝐽𝐽𝐽

𝑗𝑗𝑗𝑗𝑗𝑗

𝜓𝜓𝜓𝜓𝑗𝑗𝑗𝑗,𝑘𝑘𝑘𝑘(𝑡𝑡𝑡𝑡)                                                                      (6) 

Here it is defined as𝑆𝑆𝑆𝑆𝐽𝐽𝐽𝐽,𝑘𝑘𝑘𝑘 = ∫ 𝑡𝑡𝑡𝑡(𝑡𝑡𝑡𝑡)Ø𝐽𝐽𝐽𝐽,𝑘𝑘𝑘𝑘(𝑡𝑡𝑡𝑡)𝑑𝑑𝑑𝑑𝑡𝑡𝑡𝑡 = 1 +∞
−∞ ve 𝑑𝑑𝑑𝑑𝑗𝑗𝑗𝑗,𝑘𝑘𝑘𝑘 = ∫ 𝑥𝑥𝑥𝑥(𝑡𝑡𝑡𝑡)𝜓𝜓𝜓𝜓𝑗𝑗𝑗𝑗,𝑘𝑘𝑘𝑘(𝑡𝑡𝑡𝑡)𝑑𝑑𝑑𝑑𝑡𝑡𝑡𝑡 = 1 +∞

−∞ . 𝑆𝑆𝑆𝑆𝐽𝐽𝐽𝐽,𝑘𝑘𝑘𝑘, 
are called smooth coefficients, while 𝑑𝑑𝑑𝑑𝑗𝑗𝑗𝑗,𝑘𝑘𝑘𝑘 are called detail functions. The sizes of these 
coefficients show the share of wavelet functions in the total data. In the expression in 
Equation (7); 

𝑆𝑆𝑆𝑆𝑡𝑡𝑡𝑡(𝑡𝑡𝑡𝑡) = � 𝑆𝑆𝑆𝑆𝐽𝐽𝐽𝐽,𝑘𝑘𝑘𝑘Ø𝐽𝐽𝐽𝐽,𝑘𝑘𝑘𝑘(𝑡𝑡𝑡𝑡)  
2𝑗𝑗𝑗𝑗−1

𝑘𝑘𝑘𝑘𝑘𝑘

                                                                                                            (7) 

ve  

𝐷𝐷𝐷𝐷𝑗𝑗𝑗𝑗(𝑡𝑡𝑡𝑡) = � 𝑑𝑑𝑑𝑑𝑗𝑗𝑗𝑗,𝑘𝑘𝑘𝑘

2𝑗𝑗𝑗𝑗−1

𝑘𝑘𝑘𝑘𝑘𝑘

𝜓𝜓𝜓𝜓𝑗𝑗𝑗𝑗,𝑘𝑘𝑘𝑘(𝑡𝑡𝑡𝑡), 𝑗𝑗𝑗𝑗 = 1,2, … . . , 𝐽𝐽𝐽𝐽                                                                                 (8) 

When defined as x(t) time series can be re-expressed as in equation (9): 

 � (6)

Here it is defined 

In wavelet analysis, a time series can be decomposed into different time scales by 
applying wavelet transformation. Father wavelet in wavelet analysis Two basic functions 
are defined: mother wavelet and mother wavelet. The father wavelet contains the low-
frequency components of the original series and shows the trend of the series; The mother 
wavelet contains the high-frequency components of the series and shows deviations from 
the trend, in other words, it reflects the details in the data (Crowley, 2007). The father  
wavelet and mother wavelet can be defined as in equation (2) and equation (3), 
respectively (Ramsey and Lampart, 1998): 

Ø𝑗𝑗𝑗𝑗,𝑘𝑘𝑘𝑘(𝑡𝑡𝑡𝑡) = 2−
1
2 Ø�2−𝑗𝑗𝑗𝑗 ∗ 𝑡𝑡𝑡𝑡 𝑡 𝑡𝑡𝑡𝑡𝑡, 𝑗𝑗𝑗𝑗 = 1,2, … , 𝐽𝐽𝐽𝐽; 𝑘𝑘𝑘𝑘 = 0,1, … , 2𝑗𝑗𝑗𝑗 − 1                                       (2) 

𝜓𝜓𝜓𝜓𝑗𝑗𝑗𝑗,𝑘𝑘𝑘𝑘(𝑡𝑡𝑡𝑡) = 2−
𝑗𝑗𝑗𝑗
2𝜓𝜓𝜓𝜓𝜓2−𝑗𝑗𝑗𝑗 ∗ 𝑡𝑡𝑡𝑡 −𝑘𝑘𝑘𝑘𝑘 , 𝑗𝑗𝑗𝑗 = 1,2, … . , 𝐽𝐽𝐽𝐽; 𝑘𝑘𝑘𝑘 = 1, … . , 2𝑗𝑗𝑗𝑗 − 1                                       (3) 

Wavelet functions depend on the scale or frequency parameter j and the location 
parameter k. Although 2𝑗𝑗𝑗𝑗, is called the scale, it can be treated as a measure of the width 
of the Ø𝑗𝑗𝑗𝑗,𝑘𝑘𝑘𝑘(t) function. Accordingly, as the values of j increase, the function becomes 
shorter and spreads further. The scale parameter determines the size of the wavelet, while 
the position parameter sets the location of the wavelet. A scale parameter ranging from 1 
to J means that the time series is decomposed at J different levels according to the highest 
time scale J. Ø(.) ve 𝜓𝜓𝜓𝜓(.), (-∞,∞)  are real-valued functions defined on the real axis, and 
it is assumed that these functions meet the normalization conditions defined in equations 
(4) and (5): 

� Ø(𝑡𝑡𝑡𝑡)𝑑𝑑𝑑𝑑𝑡𝑡𝑡𝑡 = 1 
+∞

−∞

                                                                                                                           (4) 

� 𝜓𝜓𝜓𝜓(𝑡𝑡𝑡𝑡)𝑑𝑑𝑑𝑑𝑡𝑡𝑡𝑡 = 1 
+∞

−∞

                                                                                                                           (5) 

A time series such as x(t) defined at 𝐿𝐿𝐿𝐿2(𝑅𝑅𝑅𝑅)3 can be expressed in terms of wavelet functions 
as in equation (6): 

𝑥𝑥𝑥𝑥(𝑡𝑡𝑡𝑡) = � 𝑆𝑆𝑆𝑆𝐽𝐽𝐽𝐽,𝑘𝑘𝑘𝑘Ø𝐽𝐽𝐽𝐽,𝑘𝑘𝑘𝑘(𝑡𝑡𝑡𝑡)
2𝑗𝑗𝑗𝑗−1

𝑘𝑘𝑘𝑘𝑘𝑘

+ � � 𝑑𝑑𝑑𝑑𝑗𝑗𝑗𝑗,𝑘𝑘𝑘𝑘 
𝑘𝑘𝑘𝑘𝑗𝑗𝑗𝑗−1

𝑘𝑘𝑘𝑘𝑘𝑘

𝐽𝐽𝐽𝐽

𝑗𝑗𝑗𝑗𝑗𝑗

𝜓𝜓𝜓𝜓𝑗𝑗𝑗𝑗,𝑘𝑘𝑘𝑘(𝑡𝑡𝑡𝑡)                                                                      (6) 

Here it is defined as𝑆𝑆𝑆𝑆𝐽𝐽𝐽𝐽,𝑘𝑘𝑘𝑘 = ∫ 𝑡𝑡𝑡𝑡(𝑡𝑡𝑡𝑡)Ø𝐽𝐽𝐽𝐽,𝑘𝑘𝑘𝑘(𝑡𝑡𝑡𝑡)𝑑𝑑𝑑𝑑𝑡𝑡𝑡𝑡 = 1 +∞
−∞ ve 𝑑𝑑𝑑𝑑𝑗𝑗𝑗𝑗,𝑘𝑘𝑘𝑘 = ∫ 𝑥𝑥𝑥𝑥(𝑡𝑡𝑡𝑡)𝜓𝜓𝜓𝜓𝑗𝑗𝑗𝑗,𝑘𝑘𝑘𝑘(𝑡𝑡𝑡𝑡)𝑑𝑑𝑑𝑑𝑡𝑡𝑡𝑡 = 1 +∞

−∞ . 𝑆𝑆𝑆𝑆𝐽𝐽𝐽𝐽,𝑘𝑘𝑘𝑘, 
are called smooth coefficients, while 𝑑𝑑𝑑𝑑𝑗𝑗𝑗𝑗,𝑘𝑘𝑘𝑘 are called detail functions. The sizes of these 
coefficients show the share of wavelet functions in the total data. In the expression in 
Equation (7); 

𝑆𝑆𝑆𝑆𝑡𝑡𝑡𝑡(𝑡𝑡𝑡𝑡) = � 𝑆𝑆𝑆𝑆𝐽𝐽𝐽𝐽,𝑘𝑘𝑘𝑘Ø𝐽𝐽𝐽𝐽,𝑘𝑘𝑘𝑘(𝑡𝑡𝑡𝑡)  
2𝑗𝑗𝑗𝑗−1

𝑘𝑘𝑘𝑘𝑘𝑘

                                                                                                            (7) 

ve  

𝐷𝐷𝐷𝐷𝑗𝑗𝑗𝑗(𝑡𝑡𝑡𝑡) = � 𝑑𝑑𝑑𝑑𝑗𝑗𝑗𝑗,𝑘𝑘𝑘𝑘

2𝑗𝑗𝑗𝑗−1

𝑘𝑘𝑘𝑘𝑘𝑘

𝜓𝜓𝜓𝜓𝑗𝑗𝑗𝑗,𝑘𝑘𝑘𝑘(𝑡𝑡𝑡𝑡), 𝑗𝑗𝑗𝑗 = 1,2, … . . , 𝐽𝐽𝐽𝐽                                                                                 (8) 

When defined as x(t) time series can be re-expressed as in equation (9): 

 are called smooth 
coefficients, while 

In wavelet analysis, a time series can be decomposed into different time scales by 
applying wavelet transformation. Father wavelet in wavelet analysis Two basic functions 
are defined: mother wavelet and mother wavelet. The father wavelet contains the low-
frequency components of the original series and shows the trend of the series; The mother 
wavelet contains the high-frequency components of the series and shows deviations from 
the trend, in other words, it reflects the details in the data (Crowley, 2007). The father  
wavelet and mother wavelet can be defined as in equation (2) and equation (3), 
respectively (Ramsey and Lampart, 1998): 

Ø𝑗𝑗𝑗𝑗,𝑘𝑘𝑘𝑘(𝑡𝑡𝑡𝑡) = 2−
1
2 Ø�2−𝑗𝑗𝑗𝑗 ∗ 𝑡𝑡𝑡𝑡 𝑡 𝑡𝑡𝑡𝑡𝑡, 𝑗𝑗𝑗𝑗 = 1,2, … , 𝐽𝐽𝐽𝐽; 𝑘𝑘𝑘𝑘 = 0,1, … , 2𝑗𝑗𝑗𝑗 − 1                                       (2) 

𝜓𝜓𝜓𝜓𝑗𝑗𝑗𝑗,𝑘𝑘𝑘𝑘(𝑡𝑡𝑡𝑡) = 2−
𝑗𝑗𝑗𝑗
2𝜓𝜓𝜓𝜓𝜓2−𝑗𝑗𝑗𝑗 ∗ 𝑡𝑡𝑡𝑡 −𝑘𝑘𝑘𝑘𝑘 , 𝑗𝑗𝑗𝑗 = 1,2, … . , 𝐽𝐽𝐽𝐽; 𝑘𝑘𝑘𝑘 = 1, … . , 2𝑗𝑗𝑗𝑗 − 1                                       (3) 

Wavelet functions depend on the scale or frequency parameter j and the location 
parameter k. Although 2𝑗𝑗𝑗𝑗, is called the scale, it can be treated as a measure of the width 
of the Ø𝑗𝑗𝑗𝑗,𝑘𝑘𝑘𝑘(t) function. Accordingly, as the values of j increase, the function becomes 
shorter and spreads further. The scale parameter determines the size of the wavelet, while 
the position parameter sets the location of the wavelet. A scale parameter ranging from 1 
to J means that the time series is decomposed at J different levels according to the highest 
time scale J. Ø(.) ve 𝜓𝜓𝜓𝜓(.), (-∞,∞)  are real-valued functions defined on the real axis, and 
it is assumed that these functions meet the normalization conditions defined in equations 
(4) and (5): 

� Ø(𝑡𝑡𝑡𝑡)𝑑𝑑𝑑𝑑𝑡𝑡𝑡𝑡 = 1 
+∞

−∞

                                                                                                                           (4) 

� 𝜓𝜓𝜓𝜓(𝑡𝑡𝑡𝑡)𝑑𝑑𝑑𝑑𝑡𝑡𝑡𝑡 = 1 
+∞

−∞

                                                                                                                           (5) 

A time series such as x(t) defined at 𝐿𝐿𝐿𝐿2(𝑅𝑅𝑅𝑅)3 can be expressed in terms of wavelet functions 
as in equation (6): 

𝑥𝑥𝑥𝑥(𝑡𝑡𝑡𝑡) = � 𝑆𝑆𝑆𝑆𝐽𝐽𝐽𝐽,𝑘𝑘𝑘𝑘Ø𝐽𝐽𝐽𝐽,𝑘𝑘𝑘𝑘(𝑡𝑡𝑡𝑡)
2𝑗𝑗𝑗𝑗−1

𝑘𝑘𝑘𝑘𝑘𝑘

+ � � 𝑑𝑑𝑑𝑑𝑗𝑗𝑗𝑗,𝑘𝑘𝑘𝑘 
𝑘𝑘𝑘𝑘𝑗𝑗𝑗𝑗−1

𝑘𝑘𝑘𝑘𝑘𝑘

𝐽𝐽𝐽𝐽

𝑗𝑗𝑗𝑗𝑗𝑗

𝜓𝜓𝜓𝜓𝑗𝑗𝑗𝑗,𝑘𝑘𝑘𝑘(𝑡𝑡𝑡𝑡)                                                                      (6) 

Here it is defined as𝑆𝑆𝑆𝑆𝐽𝐽𝐽𝐽,𝑘𝑘𝑘𝑘 = ∫ 𝑡𝑡𝑡𝑡(𝑡𝑡𝑡𝑡)Ø𝐽𝐽𝐽𝐽,𝑘𝑘𝑘𝑘(𝑡𝑡𝑡𝑡)𝑑𝑑𝑑𝑑𝑡𝑡𝑡𝑡 = 1 +∞
−∞ ve 𝑑𝑑𝑑𝑑𝑗𝑗𝑗𝑗,𝑘𝑘𝑘𝑘 = ∫ 𝑥𝑥𝑥𝑥(𝑡𝑡𝑡𝑡)𝜓𝜓𝜓𝜓𝑗𝑗𝑗𝑗,𝑘𝑘𝑘𝑘(𝑡𝑡𝑡𝑡)𝑑𝑑𝑑𝑑𝑡𝑡𝑡𝑡 = 1 +∞

−∞ . 𝑆𝑆𝑆𝑆𝐽𝐽𝐽𝐽,𝑘𝑘𝑘𝑘, 
are called smooth coefficients, while 𝑑𝑑𝑑𝑑𝑗𝑗𝑗𝑗,𝑘𝑘𝑘𝑘 are called detail functions. The sizes of these 
coefficients show the share of wavelet functions in the total data. In the expression in 
Equation (7); 

𝑆𝑆𝑆𝑆𝑡𝑡𝑡𝑡(𝑡𝑡𝑡𝑡) = � 𝑆𝑆𝑆𝑆𝐽𝐽𝐽𝐽,𝑘𝑘𝑘𝑘Ø𝐽𝐽𝐽𝐽,𝑘𝑘𝑘𝑘(𝑡𝑡𝑡𝑡)  
2𝑗𝑗𝑗𝑗−1

𝑘𝑘𝑘𝑘𝑘𝑘

                                                                                                            (7) 

ve  

𝐷𝐷𝐷𝐷𝑗𝑗𝑗𝑗(𝑡𝑡𝑡𝑡) = � 𝑑𝑑𝑑𝑑𝑗𝑗𝑗𝑗,𝑘𝑘𝑘𝑘

2𝑗𝑗𝑗𝑗−1

𝑘𝑘𝑘𝑘𝑘𝑘

𝜓𝜓𝜓𝜓𝑗𝑗𝑗𝑗,𝑘𝑘𝑘𝑘(𝑡𝑡𝑡𝑡), 𝑗𝑗𝑗𝑗 = 1,2, … . . , 𝐽𝐽𝐽𝐽                                                                                 (8) 

When defined as x(t) time series can be re-expressed as in equation (9): 

 are called detail functions. The sizes of these coefficients show the share of wavelet 
functions in the total data. In the expression in Equation (7);

In wavelet analysis, a time series can be decomposed into different time scales by 
applying wavelet transformation. Father wavelet in wavelet analysis Two basic functions 
are defined: mother wavelet and mother wavelet. The father wavelet contains the low-
frequency components of the original series and shows the trend of the series; The mother 
wavelet contains the high-frequency components of the series and shows deviations from 
the trend, in other words, it reflects the details in the data (Crowley, 2007). The father  
wavelet and mother wavelet can be defined as in equation (2) and equation (3), 
respectively (Ramsey and Lampart, 1998): 

Ø𝑗𝑗𝑗𝑗,𝑘𝑘𝑘𝑘(𝑡𝑡𝑡𝑡) = 2−
1
2 Ø�2−𝑗𝑗𝑗𝑗 ∗ 𝑡𝑡𝑡𝑡 𝑡 𝑡𝑡𝑡𝑡𝑡, 𝑗𝑗𝑗𝑗 = 1,2, … , 𝐽𝐽𝐽𝐽; 𝑘𝑘𝑘𝑘 = 0,1, … , 2𝑗𝑗𝑗𝑗 − 1                                       (2) 

𝜓𝜓𝜓𝜓𝑗𝑗𝑗𝑗,𝑘𝑘𝑘𝑘(𝑡𝑡𝑡𝑡) = 2−
𝑗𝑗𝑗𝑗
2𝜓𝜓𝜓𝜓𝜓2−𝑗𝑗𝑗𝑗 ∗ 𝑡𝑡𝑡𝑡 −𝑘𝑘𝑘𝑘𝑘 , 𝑗𝑗𝑗𝑗 = 1,2, … . , 𝐽𝐽𝐽𝐽; 𝑘𝑘𝑘𝑘 = 1, … . , 2𝑗𝑗𝑗𝑗 − 1                                       (3) 

Wavelet functions depend on the scale or frequency parameter j and the location 
parameter k. Although 2𝑗𝑗𝑗𝑗, is called the scale, it can be treated as a measure of the width 
of the Ø𝑗𝑗𝑗𝑗,𝑘𝑘𝑘𝑘(t) function. Accordingly, as the values of j increase, the function becomes 
shorter and spreads further. The scale parameter determines the size of the wavelet, while 
the position parameter sets the location of the wavelet. A scale parameter ranging from 1 
to J means that the time series is decomposed at J different levels according to the highest 
time scale J. Ø(.) ve 𝜓𝜓𝜓𝜓(.), (-∞,∞)  are real-valued functions defined on the real axis, and 
it is assumed that these functions meet the normalization conditions defined in equations 
(4) and (5): 

� Ø(𝑡𝑡𝑡𝑡)𝑑𝑑𝑑𝑑𝑡𝑡𝑡𝑡 = 1 
+∞

−∞

                                                                                                                           (4) 

� 𝜓𝜓𝜓𝜓(𝑡𝑡𝑡𝑡)𝑑𝑑𝑑𝑑𝑡𝑡𝑡𝑡 = 1 
+∞

−∞

                                                                                                                           (5) 

A time series such as x(t) defined at 𝐿𝐿𝐿𝐿2(𝑅𝑅𝑅𝑅)3 can be expressed in terms of wavelet functions 
as in equation (6): 

𝑥𝑥𝑥𝑥(𝑡𝑡𝑡𝑡) = � 𝑆𝑆𝑆𝑆𝐽𝐽𝐽𝐽,𝑘𝑘𝑘𝑘Ø𝐽𝐽𝐽𝐽,𝑘𝑘𝑘𝑘(𝑡𝑡𝑡𝑡)
2𝑗𝑗𝑗𝑗−1
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𝑘𝑘𝑘𝑘𝑘𝑘
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Here it is defined as𝑆𝑆𝑆𝑆𝐽𝐽𝐽𝐽,𝑘𝑘𝑘𝑘 = ∫ 𝑡𝑡𝑡𝑡(𝑡𝑡𝑡𝑡)Ø𝐽𝐽𝐽𝐽,𝑘𝑘𝑘𝑘(𝑡𝑡𝑡𝑡)𝑑𝑑𝑑𝑑𝑡𝑡𝑡𝑡 = 1 +∞
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are called smooth coefficients, while 𝑑𝑑𝑑𝑑𝑗𝑗𝑗𝑗,𝑘𝑘𝑘𝑘 are called detail functions. The sizes of these 
coefficients show the share of wavelet functions in the total data. In the expression in 
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When defined as x(t) time series can be re-expressed as in equation (9): 
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of the Ø𝑗𝑗𝑗𝑗,𝑘𝑘𝑘𝑘(t) function. Accordingly, as the values of j increase, the function becomes 
shorter and spreads further. The scale parameter determines the size of the wavelet, while 
the position parameter sets the location of the wavelet. A scale parameter ranging from 1 
to J means that the time series is decomposed at J different levels according to the highest 
time scale J. Ø(.) ve 𝜓𝜓𝜓𝜓(.), (-∞,∞)  are real-valued functions defined on the real axis, and 
it is assumed that these functions meet the normalization conditions defined in equations 
(4) and (5): 
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−∞ . 𝑆𝑆𝑆𝑆𝐽𝐽𝐽𝐽,𝑘𝑘𝑘𝑘, 
are called smooth coefficients, while 𝑑𝑑𝑑𝑑𝑗𝑗𝑗𝑗,𝑘𝑘𝑘𝑘 are called detail functions. The sizes of these 
coefficients show the share of wavelet functions in the total data. In the expression in 
Equation (7); 

𝑆𝑆𝑆𝑆𝑡𝑡𝑡𝑡(𝑡𝑡𝑡𝑡) = � 𝑆𝑆𝑆𝑆𝐽𝐽𝐽𝐽,𝑘𝑘𝑘𝑘Ø𝐽𝐽𝐽𝐽,𝑘𝑘𝑘𝑘(𝑡𝑡𝑡𝑡)  
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𝑘𝑘𝑘𝑘𝑘𝑘

                                                                                                            (7) 

ve  

𝐷𝐷𝐷𝐷𝑗𝑗𝑗𝑗(𝑡𝑡𝑡𝑡) = � 𝑑𝑑𝑑𝑑𝑗𝑗𝑗𝑗,𝑘𝑘𝑘𝑘

2𝑗𝑗𝑗𝑗−1

𝑘𝑘𝑘𝑘𝑘𝑘

𝜓𝜓𝜓𝜓𝑗𝑗𝑗𝑗,𝑘𝑘𝑘𝑘(𝑡𝑡𝑡𝑡), 𝑗𝑗𝑗𝑗 = 1,2, … . . , 𝐽𝐽𝐽𝐽                                                                                 (8) 

When defined as x(t) time series can be re-expressed as in equation (9): 

� (8)

When defined as x(t) time series can be re-expressed as in equation (9):

𝑥𝑥𝑥𝑥(𝑡𝑡𝑡𝑡) = 𝑆𝑆𝑆𝑆𝐽𝐽𝐽𝐽(𝑡𝑡𝑡𝑡) + �𝐷𝐷𝐷𝐷𝑗𝑗𝑗𝑗(𝑡𝑡𝑡𝑡)
𝐽𝐽𝐽𝐽

𝑗𝑗𝑗𝑗=1

                                                                                                            (9) 

Here, 𝑆𝑆𝑆𝑆𝐽𝐽𝐽𝐽(𝑡𝑡𝑡𝑡),  reflects the trend of the data; because it is the component of the highest level 
time scale. 𝐷𝐷𝐷𝐷𝑗𝑗𝑗𝑗(𝑡𝑡𝑡𝑡) = (𝐷𝐷𝐷𝐷1(𝑡𝑡𝑡𝑡),𝐷𝐷𝐷𝐷2(𝑡𝑡𝑡𝑡), … … … … … … ,𝐷𝐷𝐷𝐷𝐽𝐽𝐽𝐽(𝑡𝑡𝑡𝑡)) are the details containing the 
fluctuations in the data on 2-4, 4-8,…..,2𝐽𝐽𝐽𝐽 − 2𝐽𝐽𝐽𝐽+1 time scales, respectively. 
Small values of j correspond to the low time scale, thus representing the high-frequency 
components of 𝑥𝑥𝑥𝑥(𝑡𝑡𝑡𝑡), while large values of j correspond to the high time scale, and thus 
represent the low-frequency components of 𝑥𝑥𝑥𝑥(𝑡𝑡𝑡𝑡). Since 𝐷𝐷𝐷𝐷𝑗𝑗𝑗𝑗, includes cyclical movements 
between coefficients 2𝐽𝐽𝐽𝐽 − 2𝐽𝐽𝐽𝐽+1, in period 𝐷𝐷𝐷𝐷1, 2-4; In period 𝐷𝐷𝐷𝐷2, 4-8, etc. Includes cyclic 
movements. 
Discrete wavelet transformation can be applied to obtain wavelet coefficients (smooth 
and detailed coefficients). In discrete wavelet transform (DWT), the researcher 
determines how many different time scales the time series will be decomposed according 
to the number of observations. Moreover, in DWT, it is stated that the number of 
observations must have a dyadic feature, in other words, it must be an integer that is a 
multiple of two. Since this feature of DWT is restrictive in determining time scales in 
applications, "maximum overlap discrete wavelet transform (MODWT)", a type of 
discrete wavelet transform, is generally applied instead of DWT. On the other hand, any 
sample size can be used for MODWT, it does not have to be dyadic. In this study, 
MODWT will be used to obtain wavelet coefficients due to the restrictive assumptions of 
DWT. 
Wavelet filters with different features (D(4), D(8), LA(8) and Haar wavelet) can be used 
to obtain wavelet coefficients with MODWT (Gençay et al., 2002: 113-116). Gençay et 
al. (2002, 2010) and Cornish et al. (2006) and others and frequently used in the literature 
is LA(8) (least asymmetric wavelet filter of length eight). This is because the LA(8) filter 
produces smoother and uncorrelated wavelet coefficients than other filters. 
In the study, after the wavelet coefficients based on MODWT were calculated for the 
returns of each variable, the return series were calculated according to four different time 
scales (𝐷𝐷𝐷𝐷1-2-4 months, 𝐷𝐷𝐷𝐷2-4-8 months, 𝐷𝐷𝐷𝐷3-8-16 months, Dg=16-32 months, Sg) was 
isolated. Cycle times for different time scales are defined in Table 2: 
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Here, 
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Discrete wavelet transformation can be applied to obtain wavelet coefficients (smooth 
and detailed coefficients). In discrete wavelet transform (DWT), the researcher 
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to the number of observations. Moreover, in DWT, it is stated that the number of 
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multiple of two. Since this feature of DWT is restrictive in determining time scales in 
applications, "maximum overlap discrete wavelet transform (MODWT)", a type of 
discrete wavelet transform, is generally applied instead of DWT. On the other hand, any 
sample size can be used for MODWT, it does not have to be dyadic. In this study, 
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Wavelet filters with different features (D(4), D(8), LA(8) and Haar wavelet) can be used 
to obtain wavelet coefficients with MODWT (Gençay et al., 2002: 113-116). Gençay et 
al. (2002, 2010) and Cornish et al. (2006) and others and frequently used in the literature 
is LA(8) (least asymmetric wavelet filter of length eight). This is because the LA(8) filter 
produces smoother and uncorrelated wavelet coefficients than other filters. 
In the study, after the wavelet coefficients based on MODWT were calculated for the 
returns of each variable, the return series were calculated according to four different time 
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  reflects the trend of the data; because it is the component of the highest level time scale.  
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Discrete wavelet transformation can be applied to obtain wavelet coefficients (smooth 
and detailed coefficients). In discrete wavelet transform (DWT), the researcher 
determines how many different time scales the time series will be decomposed according 
to the number of observations. Moreover, in DWT, it is stated that the number of 
observations must have a dyadic feature, in other words, it must be an integer that is a 
multiple of two. Since this feature of DWT is restrictive in determining time scales in 
applications, "maximum overlap discrete wavelet transform (MODWT)", a type of 
discrete wavelet transform, is generally applied instead of DWT. On the other hand, any 
sample size can be used for MODWT, it does not have to be dyadic. In this study, 
MODWT will be used to obtain wavelet coefficients due to the restrictive assumptions of 
DWT. 
Wavelet filters with different features (D(4), D(8), LA(8) and Haar wavelet) can be used 
to obtain wavelet coefficients with MODWT (Gençay et al., 2002: 113-116). Gençay et 
al. (2002, 2010) and Cornish et al. (2006) and others and frequently used in the literature 
is LA(8) (least asymmetric wavelet filter of length eight). This is because the LA(8) filter 
produces smoother and uncorrelated wavelet coefficients than other filters. 
In the study, after the wavelet coefficients based on MODWT were calculated for the 
returns of each variable, the return series were calculated according to four different time 
scales (𝐷𝐷𝐷𝐷1-2-4 months, 𝐷𝐷𝐷𝐷2-4-8 months, 𝐷𝐷𝐷𝐷3-8-16 months, Dg=16-32 months, Sg) was 
isolated. Cycle times for different time scales are defined in Table 2: 
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sample size can be used for MODWT, it does not have to be dyadic. In this study, 
MODWT will be used to obtain wavelet coefficients due to the restrictive assumptions of 
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al. (2002, 2010) and Cornish et al. (2006) and others and frequently used in the literature 
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discrete wavelet transform, is generally applied instead of DWT. On the other hand, any 
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is LA(8) (least asymmetric wavelet filter of length eight). This is because the LA(8) filter 
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applications, "maximum overlap discrete wavelet transform (MODWT)", a type of 
discrete wavelet transform, is generally applied instead of DWT. On the other hand, any 
sample size can be used for MODWT, it does not have to be dyadic. In this study, 
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DWT. 
Wavelet filters with different features (D(4), D(8), LA(8) and Haar wavelet) can be used 
to obtain wavelet coefficients with MODWT (Gençay et al., 2002: 113-116). Gençay et 
al. (2002, 2010) and Cornish et al. (2006) and others and frequently used in the literature 
is LA(8) (least asymmetric wavelet filter of length eight). This is because the LA(8) filter 
produces smoother and uncorrelated wavelet coefficients than other filters. 
In the study, after the wavelet coefficients based on MODWT were calculated for the 
returns of each variable, the return series were calculated according to four different time 
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movements. 
Discrete wavelet transformation can be applied to obtain wavelet coefficients (smooth 
and detailed coefficients). In discrete wavelet transform (DWT), the researcher 
determines how many different time scales the time series will be decomposed according 
to the number of observations. Moreover, in DWT, it is stated that the number of 
observations must have a dyadic feature, in other words, it must be an integer that is a 
multiple of two. Since this feature of DWT is restrictive in determining time scales in 
applications, "maximum overlap discrete wavelet transform (MODWT)", a type of 
discrete wavelet transform, is generally applied instead of DWT. On the other hand, any 
sample size can be used for MODWT, it does not have to be dyadic. In this study, 
MODWT will be used to obtain wavelet coefficients due to the restrictive assumptions of 
DWT. 
Wavelet filters with different features (D(4), D(8), LA(8) and Haar wavelet) can be used 
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is LA(8) (least asymmetric wavelet filter of length eight). This is because the LA(8) filter 
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Table 2. Wavelet Analysis Time Horizons According to the Multiple Scale MethodTable 2. Wavelet Analysis Time Horizons According to the Multiple Scale Method 
 

Scales 
(𝟐𝟐𝟐𝟐𝒋𝒋𝒋𝒋) Annual Frequency Monthly Frequency Daily Frequency 

1 21 2-4 2-4 2-4 
2 22 4-8 4-8 4-8 

3 23 8-16 8-16 
(8 months-1 year 4 months) 8-16 

4 24 16-32 
16-32 

(1 years 4 months-2 years 8 
months) 

16-32 
(3 weeks 1 day-6 weeks 2 day) 

5 25 32-64 
32-64 

(2 years 8 months-5 years 4 
months) 

32-64 
(6 weeks 2 day-12 weeks 4 day) 

6 26 64-128 
64-128 

(5 years 4 months-10 years 8 
months) 

64-128 
(12 weeks 4 day-25 weeks 3 day) 

7 27 128-256 
128-256 

(10 years 8 months-21 years 
4 months) 

128-256 
(25 weeks 3 day- 51 weeks 1 day) 

8 28 256-512 ….. …. 
 
Source: Crowly (2007:214). Theoretically, the maximum number of scales is expressed as 9. In the case 
where the scale number is indicated by j (j = 9), the frequencies are calculated using 2j notation.  

Considering the scale frequencies given in Table 2; After a wavelet analysis is performed, 
predictions will be made for the specified number of scales and coefficients will be 
estimated for various investment horizons. The time scales in Table 2 are grouped as 
follows: (𝐷𝐷𝐷𝐷1 − 𝐷𝐷𝐷𝐷2 − 𝐷𝐷𝐷𝐷3): short term; (𝐷𝐷𝐷𝐷4 − 𝐷𝐷𝐷𝐷5 − 𝐷𝐷𝐷𝐷6): medium term; (𝐷𝐷𝐷𝐷7 − 𝐷𝐷𝐷𝐷8 − 𝑆𝑆𝑆𝑆8): 
long term. This type of grouping was made to examine how the movements of investors 
with short, medium and long-term investment horizons develop according to different 
time scales. Short-term investment horizons (𝐷𝐷𝐷𝐷1 − 𝐷𝐷𝐷𝐷2 − 𝐷𝐷𝐷𝐷3); It refers to short-term 
changes due to shocks occurring on time scales of 2-16 months and includes daily-weekly 
spreads. Medium-term investment horizons (𝐷𝐷𝐷𝐷4 − 𝐷𝐷𝐷𝐷5 − 𝐷𝐷𝐷𝐷6); It shows medium-term 
changes on time scales of 32-128 months and covers monthly to quarterly spreads. Long-
term investment horizons are (𝐷𝐷𝐷𝐷7 − 𝐷𝐷𝐷𝐷8 − 𝑆𝑆𝑆𝑆8); It indicates long-term changes on time 
scales of 256 months and longer and is a period covering annual spreads (Uyar and 
Kangalı Uyar, 2021: p. 319; Aydoğdu, 2024: p. 217-218). 
3.3. DCC-GARCH Approach 

The dynamic conditional correlation (DCC) approach was developed by Engle (2002) to 
examine time-varying correlations between asset returns. To examine in more detail how 
this approach was developed and what assumptions it is based on, let the vector containing 
the logarithmic returns of k financial assets be denoted by 𝑟𝑟𝑟𝑟𝑡𝑡𝑡𝑡. Financial asset returns have 
the following distribution under the assumptions that there is no autocorrelation between 
average returns and that quadratic moments vary over time: 

𝑟𝑟𝑟𝑟𝑡𝑡𝑡𝑡 ∣ 𝐼𝐼𝐼𝐼𝑡𝑡𝑡𝑡−1 ∼ 𝐷𝐷𝐷𝐷(𝜇𝜇𝜇𝜇,𝐻𝐻𝐻𝐻𝑡𝑡𝑡𝑡)                                                                                                                   (10) 

Here, 𝑟𝑟𝑟𝑟𝑡𝑡𝑡𝑡,  is the payoff vector of size 𝐼𝐼𝐼𝐼𝑡𝑡𝑡𝑡−1,; 𝑡𝑡𝑡𝑡 − 1 represents the information set at time t-
1; μ is the unconditional mean, which is usually very close to or equal to zero; 𝐻𝐻𝐻𝐻𝑡𝑡𝑡𝑡,  denotes 
the dynamic conditional covariance matrix of the k-return series of size kxk, and 
𝐷𝐷𝐷𝐷(𝑢𝑢𝑢𝑢,𝐻𝐻𝐻𝐻𝑡𝑡𝑡𝑡),  denotes the multivariate density function that depends on the mean vector and 
the dynamic conditional covariance matrix. 
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where the scale number is indicated by j (j = 9), the frequencies are calculated using 2j notation.  

Considering the scale frequencies given in Table 2; After a wavelet analysis is performed, 
predictions will be made for the specified number of scales and coefficients will be 
estimated for various investment horizons. The time scales in Table 2 are grouped as 
follows: (𝐷𝐷𝐷𝐷1 − 𝐷𝐷𝐷𝐷2 − 𝐷𝐷𝐷𝐷3): short term; (𝐷𝐷𝐷𝐷4 − 𝐷𝐷𝐷𝐷5 − 𝐷𝐷𝐷𝐷6): medium term; (𝐷𝐷𝐷𝐷7 − 𝐷𝐷𝐷𝐷8 − 𝑆𝑆𝑆𝑆8): 
long term. This type of grouping was made to examine how the movements of investors 
with short, medium and long-term investment horizons develop according to different 
time scales. Short-term investment horizons (𝐷𝐷𝐷𝐷1 − 𝐷𝐷𝐷𝐷2 − 𝐷𝐷𝐷𝐷3); It refers to short-term 
changes due to shocks occurring on time scales of 2-16 months and includes daily-weekly 
spreads. Medium-term investment horizons (𝐷𝐷𝐷𝐷4 − 𝐷𝐷𝐷𝐷5 − 𝐷𝐷𝐷𝐷6); It shows medium-term 
changes on time scales of 32-128 months and covers monthly to quarterly spreads. Long-
term investment horizons are (𝐷𝐷𝐷𝐷7 − 𝐷𝐷𝐷𝐷8 − 𝑆𝑆𝑆𝑆8); It indicates long-term changes on time 
scales of 256 months and longer and is a period covering annual spreads (Uyar and 
Kangalı Uyar, 2021: p. 319; Aydoğdu, 2024: p. 217-218). 
3.3. DCC-GARCH Approach 

The dynamic conditional correlation (DCC) approach was developed by Engle (2002) to 
examine time-varying correlations between asset returns. To examine in more detail how 
this approach was developed and what assumptions it is based on, let the vector containing 
the logarithmic returns of k financial assets be denoted by 𝑟𝑟𝑟𝑟𝑡𝑡𝑡𝑡. Financial asset returns have 
the following distribution under the assumptions that there is no autocorrelation between 
average returns and that quadratic moments vary over time: 

𝑟𝑟𝑟𝑟𝑡𝑡𝑡𝑡 ∣ 𝐼𝐼𝐼𝐼𝑡𝑡𝑡𝑡−1 ∼ 𝐷𝐷𝐷𝐷(𝜇𝜇𝜇𝜇,𝐻𝐻𝐻𝐻𝑡𝑡𝑡𝑡)                                                                                                                   (10) 

Here, 𝑟𝑟𝑟𝑟𝑡𝑡𝑡𝑡,  is the payoff vector of size 𝐼𝐼𝐼𝐼𝑡𝑡𝑡𝑡−1,; 𝑡𝑡𝑡𝑡 − 1 represents the information set at time t-
1; μ is the unconditional mean, which is usually very close to or equal to zero; 𝐻𝐻𝐻𝐻𝑡𝑡𝑡𝑡,  denotes 
the dynamic conditional covariance matrix of the k-return series of size kxk, and 
𝐷𝐷𝐷𝐷(𝑢𝑢𝑢𝑢,𝐻𝐻𝐻𝐻𝑡𝑡𝑡𝑡),  denotes the multivariate density function that depends on the mean vector and 
the dynamic conditional covariance matrix. 

 short term;

Table 2. Wavelet Analysis Time Horizons According to the Multiple Scale Method 
 

Scales 
(𝟐𝟐𝟐𝟐𝒋𝒋𝒋𝒋) Annual Frequency Monthly Frequency Daily Frequency 

1 21 2-4 2-4 2-4 
2 22 4-8 4-8 4-8 

3 23 8-16 8-16 
(8 months-1 year 4 months) 8-16 

4 24 16-32 
16-32 

(1 years 4 months-2 years 8 
months) 

16-32 
(3 weeks 1 day-6 weeks 2 day) 

5 25 32-64 
32-64 

(2 years 8 months-5 years 4 
months) 

32-64 
(6 weeks 2 day-12 weeks 4 day) 

6 26 64-128 
64-128 

(5 years 4 months-10 years 8 
months) 

64-128 
(12 weeks 4 day-25 weeks 3 day) 

7 27 128-256 
128-256 

(10 years 8 months-21 years 
4 months) 

128-256 
(25 weeks 3 day- 51 weeks 1 day) 

8 28 256-512 ….. …. 
 
Source: Crowly (2007:214). Theoretically, the maximum number of scales is expressed as 9. In the case 
where the scale number is indicated by j (j = 9), the frequencies are calculated using 2j notation.  

Considering the scale frequencies given in Table 2; After a wavelet analysis is performed, 
predictions will be made for the specified number of scales and coefficients will be 
estimated for various investment horizons. The time scales in Table 2 are grouped as 
follows: (𝐷𝐷𝐷𝐷1 − 𝐷𝐷𝐷𝐷2 − 𝐷𝐷𝐷𝐷3): short term; (𝐷𝐷𝐷𝐷4 − 𝐷𝐷𝐷𝐷5 − 𝐷𝐷𝐷𝐷6): medium term; (𝐷𝐷𝐷𝐷7 − 𝐷𝐷𝐷𝐷8 − 𝑆𝑆𝑆𝑆8): 
long term. This type of grouping was made to examine how the movements of investors 
with short, medium and long-term investment horizons develop according to different 
time scales. Short-term investment horizons (𝐷𝐷𝐷𝐷1 − 𝐷𝐷𝐷𝐷2 − 𝐷𝐷𝐷𝐷3); It refers to short-term 
changes due to shocks occurring on time scales of 2-16 months and includes daily-weekly 
spreads. Medium-term investment horizons (𝐷𝐷𝐷𝐷4 − 𝐷𝐷𝐷𝐷5 − 𝐷𝐷𝐷𝐷6); It shows medium-term 
changes on time scales of 32-128 months and covers monthly to quarterly spreads. Long-
term investment horizons are (𝐷𝐷𝐷𝐷7 − 𝐷𝐷𝐷𝐷8 − 𝑆𝑆𝑆𝑆8); It indicates long-term changes on time 
scales of 256 months and longer and is a period covering annual spreads (Uyar and 
Kangalı Uyar, 2021: p. 319; Aydoğdu, 2024: p. 217-218). 
3.3. DCC-GARCH Approach 

The dynamic conditional correlation (DCC) approach was developed by Engle (2002) to 
examine time-varying correlations between asset returns. To examine in more detail how 
this approach was developed and what assumptions it is based on, let the vector containing 
the logarithmic returns of k financial assets be denoted by 𝑟𝑟𝑟𝑟𝑡𝑡𝑡𝑡. Financial asset returns have 
the following distribution under the assumptions that there is no autocorrelation between 
average returns and that quadratic moments vary over time: 

𝑟𝑟𝑟𝑟𝑡𝑡𝑡𝑡 ∣ 𝐼𝐼𝐼𝐼𝑡𝑡𝑡𝑡−1 ∼ 𝐷𝐷𝐷𝐷(𝜇𝜇𝜇𝜇,𝐻𝐻𝐻𝐻𝑡𝑡𝑡𝑡)                                                                                                                   (10) 

Here, 𝑟𝑟𝑟𝑟𝑡𝑡𝑡𝑡,  is the payoff vector of size 𝐼𝐼𝐼𝐼𝑡𝑡𝑡𝑡−1,; 𝑡𝑡𝑡𝑡 − 1 represents the information set at time t-
1; μ is the unconditional mean, which is usually very close to or equal to zero; 𝐻𝐻𝐻𝐻𝑡𝑡𝑡𝑡,  denotes 
the dynamic conditional covariance matrix of the k-return series of size kxk, and 
𝐷𝐷𝐷𝐷(𝑢𝑢𝑢𝑢,𝐻𝐻𝐻𝐻𝑡𝑡𝑡𝑡),  denotes the multivariate density function that depends on the mean vector and 
the dynamic conditional covariance matrix. 

 medium term; 

Table 2. Wavelet Analysis Time Horizons According to the Multiple Scale Method 
 

Scales 
(𝟐𝟐𝟐𝟐𝒋𝒋𝒋𝒋) Annual Frequency Monthly Frequency Daily Frequency 

1 21 2-4 2-4 2-4 
2 22 4-8 4-8 4-8 

3 23 8-16 8-16 
(8 months-1 year 4 months) 8-16 

4 24 16-32 
16-32 

(1 years 4 months-2 years 8 
months) 

16-32 
(3 weeks 1 day-6 weeks 2 day) 

5 25 32-64 
32-64 

(2 years 8 months-5 years 4 
months) 

32-64 
(6 weeks 2 day-12 weeks 4 day) 

6 26 64-128 
64-128 

(5 years 4 months-10 years 8 
months) 

64-128 
(12 weeks 4 day-25 weeks 3 day) 

7 27 128-256 
128-256 

(10 years 8 months-21 years 
4 months) 

128-256 
(25 weeks 3 day- 51 weeks 1 day) 

8 28 256-512 ….. …. 
 
Source: Crowly (2007:214). Theoretically, the maximum number of scales is expressed as 9. In the case 
where the scale number is indicated by j (j = 9), the frequencies are calculated using 2j notation.  

Considering the scale frequencies given in Table 2; After a wavelet analysis is performed, 
predictions will be made for the specified number of scales and coefficients will be 
estimated for various investment horizons. The time scales in Table 2 are grouped as 
follows: (𝐷𝐷𝐷𝐷1 − 𝐷𝐷𝐷𝐷2 − 𝐷𝐷𝐷𝐷3): short term; (𝐷𝐷𝐷𝐷4 − 𝐷𝐷𝐷𝐷5 − 𝐷𝐷𝐷𝐷6): medium term; (𝐷𝐷𝐷𝐷7 − 𝐷𝐷𝐷𝐷8 − 𝑆𝑆𝑆𝑆8): 
long term. This type of grouping was made to examine how the movements of investors 
with short, medium and long-term investment horizons develop according to different 
time scales. Short-term investment horizons (𝐷𝐷𝐷𝐷1 − 𝐷𝐷𝐷𝐷2 − 𝐷𝐷𝐷𝐷3); It refers to short-term 
changes due to shocks occurring on time scales of 2-16 months and includes daily-weekly 
spreads. Medium-term investment horizons (𝐷𝐷𝐷𝐷4 − 𝐷𝐷𝐷𝐷5 − 𝐷𝐷𝐷𝐷6); It shows medium-term 
changes on time scales of 32-128 months and covers monthly to quarterly spreads. Long-
term investment horizons are (𝐷𝐷𝐷𝐷7 − 𝐷𝐷𝐷𝐷8 − 𝑆𝑆𝑆𝑆8); It indicates long-term changes on time 
scales of 256 months and longer and is a period covering annual spreads (Uyar and 
Kangalı Uyar, 2021: p. 319; Aydoğdu, 2024: p. 217-218). 
3.3. DCC-GARCH Approach 

The dynamic conditional correlation (DCC) approach was developed by Engle (2002) to 
examine time-varying correlations between asset returns. To examine in more detail how 
this approach was developed and what assumptions it is based on, let the vector containing 
the logarithmic returns of k financial assets be denoted by 𝑟𝑟𝑟𝑟𝑡𝑡𝑡𝑡. Financial asset returns have 
the following distribution under the assumptions that there is no autocorrelation between 
average returns and that quadratic moments vary over time: 

𝑟𝑟𝑟𝑟𝑡𝑡𝑡𝑡 ∣ 𝐼𝐼𝐼𝐼𝑡𝑡𝑡𝑡−1 ∼ 𝐷𝐷𝐷𝐷(𝜇𝜇𝜇𝜇,𝐻𝐻𝐻𝐻𝑡𝑡𝑡𝑡)                                                                                                                   (10) 

Here, 𝑟𝑟𝑟𝑟𝑡𝑡𝑡𝑡,  is the payoff vector of size 𝐼𝐼𝐼𝐼𝑡𝑡𝑡𝑡−1,; 𝑡𝑡𝑡𝑡 − 1 represents the information set at time t-
1; μ is the unconditional mean, which is usually very close to or equal to zero; 𝐻𝐻𝐻𝐻𝑡𝑡𝑡𝑡,  denotes 
the dynamic conditional covariance matrix of the k-return series of size kxk, and 
𝐷𝐷𝐷𝐷(𝑢𝑢𝑢𝑢,𝐻𝐻𝐻𝐻𝑡𝑡𝑡𝑡),  denotes the multivariate density function that depends on the mean vector and 
the dynamic conditional covariance matrix. 

 long term. This type of grouping was made to examine how the movements of investors with 
short, medium and long-term investment horizons develop according to different time scales. Short-term investment 
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horizons 

Table 2. Wavelet Analysis Time Horizons According to the Multiple Scale Method 
 

Scales 
(𝟐𝟐𝟐𝟐𝒋𝒋𝒋𝒋) Annual Frequency Monthly Frequency Daily Frequency 

1 21 2-4 2-4 2-4 
2 22 4-8 4-8 4-8 

3 23 8-16 8-16 
(8 months-1 year 4 months) 8-16 

4 24 16-32 
16-32 

(1 years 4 months-2 years 8 
months) 

16-32 
(3 weeks 1 day-6 weeks 2 day) 

5 25 32-64 
32-64 

(2 years 8 months-5 years 4 
months) 

32-64 
(6 weeks 2 day-12 weeks 4 day) 

6 26 64-128 
64-128 

(5 years 4 months-10 years 8 
months) 

64-128 
(12 weeks 4 day-25 weeks 3 day) 

7 27 128-256 
128-256 

(10 years 8 months-21 years 
4 months) 

128-256 
(25 weeks 3 day- 51 weeks 1 day) 

8 28 256-512 ….. …. 
 
Source: Crowly (2007:214). Theoretically, the maximum number of scales is expressed as 9. In the case 
where the scale number is indicated by j (j = 9), the frequencies are calculated using 2j notation.  

Considering the scale frequencies given in Table 2; After a wavelet analysis is performed, 
predictions will be made for the specified number of scales and coefficients will be 
estimated for various investment horizons. The time scales in Table 2 are grouped as 
follows: (𝐷𝐷𝐷𝐷1 − 𝐷𝐷𝐷𝐷2 − 𝐷𝐷𝐷𝐷3): short term; (𝐷𝐷𝐷𝐷4 − 𝐷𝐷𝐷𝐷5 − 𝐷𝐷𝐷𝐷6): medium term; (𝐷𝐷𝐷𝐷7 − 𝐷𝐷𝐷𝐷8 − 𝑆𝑆𝑆𝑆8): 
long term. This type of grouping was made to examine how the movements of investors 
with short, medium and long-term investment horizons develop according to different 
time scales. Short-term investment horizons (𝐷𝐷𝐷𝐷1 − 𝐷𝐷𝐷𝐷2 − 𝐷𝐷𝐷𝐷3); It refers to short-term 
changes due to shocks occurring on time scales of 2-16 months and includes daily-weekly 
spreads. Medium-term investment horizons (𝐷𝐷𝐷𝐷4 − 𝐷𝐷𝐷𝐷5 − 𝐷𝐷𝐷𝐷6); It shows medium-term 
changes on time scales of 32-128 months and covers monthly to quarterly spreads. Long-
term investment horizons are (𝐷𝐷𝐷𝐷7 − 𝐷𝐷𝐷𝐷8 − 𝑆𝑆𝑆𝑆8); It indicates long-term changes on time 
scales of 256 months and longer and is a period covering annual spreads (Uyar and 
Kangalı Uyar, 2021: p. 319; Aydoğdu, 2024: p. 217-218). 
3.3. DCC-GARCH Approach 

The dynamic conditional correlation (DCC) approach was developed by Engle (2002) to 
examine time-varying correlations between asset returns. To examine in more detail how 
this approach was developed and what assumptions it is based on, let the vector containing 
the logarithmic returns of k financial assets be denoted by 𝑟𝑟𝑟𝑟𝑡𝑡𝑡𝑡. Financial asset returns have 
the following distribution under the assumptions that there is no autocorrelation between 
average returns and that quadratic moments vary over time: 

𝑟𝑟𝑟𝑟𝑡𝑡𝑡𝑡 ∣ 𝐼𝐼𝐼𝐼𝑡𝑡𝑡𝑡−1 ∼ 𝐷𝐷𝐷𝐷(𝜇𝜇𝜇𝜇,𝐻𝐻𝐻𝐻𝑡𝑡𝑡𝑡)                                                                                                                   (10) 

Here, 𝑟𝑟𝑟𝑟𝑡𝑡𝑡𝑡,  is the payoff vector of size 𝐼𝐼𝐼𝐼𝑡𝑡𝑡𝑡−1,; 𝑡𝑡𝑡𝑡 − 1 represents the information set at time t-
1; μ is the unconditional mean, which is usually very close to or equal to zero; 𝐻𝐻𝐻𝐻𝑡𝑡𝑡𝑡,  denotes 
the dynamic conditional covariance matrix of the k-return series of size kxk, and 
𝐷𝐷𝐷𝐷(𝑢𝑢𝑢𝑢,𝐻𝐻𝐻𝐻𝑡𝑡𝑡𝑡),  denotes the multivariate density function that depends on the mean vector and 
the dynamic conditional covariance matrix. 

 It refers to short-term changes due to shocks occurring on time scales of 2-16 months 
and includes daily-weekly spreads. Medium-term investment horizons 

Table 2. Wavelet Analysis Time Horizons According to the Multiple Scale Method 
 

Scales 
(𝟐𝟐𝟐𝟐𝒋𝒋𝒋𝒋) Annual Frequency Monthly Frequency Daily Frequency 

1 21 2-4 2-4 2-4 
2 22 4-8 4-8 4-8 

3 23 8-16 8-16 
(8 months-1 year 4 months) 8-16 

4 24 16-32 
16-32 

(1 years 4 months-2 years 8 
months) 

16-32 
(3 weeks 1 day-6 weeks 2 day) 

5 25 32-64 
32-64 

(2 years 8 months-5 years 4 
months) 

32-64 
(6 weeks 2 day-12 weeks 4 day) 

6 26 64-128 
64-128 

(5 years 4 months-10 years 8 
months) 

64-128 
(12 weeks 4 day-25 weeks 3 day) 

7 27 128-256 
128-256 

(10 years 8 months-21 years 
4 months) 

128-256 
(25 weeks 3 day- 51 weeks 1 day) 

8 28 256-512 ….. …. 
 
Source: Crowly (2007:214). Theoretically, the maximum number of scales is expressed as 9. In the case 
where the scale number is indicated by j (j = 9), the frequencies are calculated using 2j notation.  

Considering the scale frequencies given in Table 2; After a wavelet analysis is performed, 
predictions will be made for the specified number of scales and coefficients will be 
estimated for various investment horizons. The time scales in Table 2 are grouped as 
follows: (𝐷𝐷𝐷𝐷1 − 𝐷𝐷𝐷𝐷2 − 𝐷𝐷𝐷𝐷3): short term; (𝐷𝐷𝐷𝐷4 − 𝐷𝐷𝐷𝐷5 − 𝐷𝐷𝐷𝐷6): medium term; (𝐷𝐷𝐷𝐷7 − 𝐷𝐷𝐷𝐷8 − 𝑆𝑆𝑆𝑆8): 
long term. This type of grouping was made to examine how the movements of investors 
with short, medium and long-term investment horizons develop according to different 
time scales. Short-term investment horizons (𝐷𝐷𝐷𝐷1 − 𝐷𝐷𝐷𝐷2 − 𝐷𝐷𝐷𝐷3); It refers to short-term 
changes due to shocks occurring on time scales of 2-16 months and includes daily-weekly 
spreads. Medium-term investment horizons (𝐷𝐷𝐷𝐷4 − 𝐷𝐷𝐷𝐷5 − 𝐷𝐷𝐷𝐷6); It shows medium-term 
changes on time scales of 32-128 months and covers monthly to quarterly spreads. Long-
term investment horizons are (𝐷𝐷𝐷𝐷7 − 𝐷𝐷𝐷𝐷8 − 𝑆𝑆𝑆𝑆8); It indicates long-term changes on time 
scales of 256 months and longer and is a period covering annual spreads (Uyar and 
Kangalı Uyar, 2021: p. 319; Aydoğdu, 2024: p. 217-218). 
3.3. DCC-GARCH Approach 

The dynamic conditional correlation (DCC) approach was developed by Engle (2002) to 
examine time-varying correlations between asset returns. To examine in more detail how 
this approach was developed and what assumptions it is based on, let the vector containing 
the logarithmic returns of k financial assets be denoted by 𝑟𝑟𝑟𝑟𝑡𝑡𝑡𝑡. Financial asset returns have 
the following distribution under the assumptions that there is no autocorrelation between 
average returns and that quadratic moments vary over time: 

𝑟𝑟𝑟𝑟𝑡𝑡𝑡𝑡 ∣ 𝐼𝐼𝐼𝐼𝑡𝑡𝑡𝑡−1 ∼ 𝐷𝐷𝐷𝐷(𝜇𝜇𝜇𝜇,𝐻𝐻𝐻𝐻𝑡𝑡𝑡𝑡)                                                                                                                   (10) 

Here, 𝑟𝑟𝑟𝑟𝑡𝑡𝑡𝑡,  is the payoff vector of size 𝐼𝐼𝐼𝐼𝑡𝑡𝑡𝑡−1,; 𝑡𝑡𝑡𝑡 − 1 represents the information set at time t-
1; μ is the unconditional mean, which is usually very close to or equal to zero; 𝐻𝐻𝐻𝐻𝑡𝑡𝑡𝑡,  denotes 
the dynamic conditional covariance matrix of the k-return series of size kxk, and 
𝐷𝐷𝐷𝐷(𝑢𝑢𝑢𝑢,𝐻𝐻𝐻𝐻𝑡𝑡𝑡𝑡),  denotes the multivariate density function that depends on the mean vector and 
the dynamic conditional covariance matrix. 

 It shows medium-term 
changes on time scales of 32-128 months and covers monthly to quarterly spreads. Long-term investment horizons 
are 

Table 2. Wavelet Analysis Time Horizons According to the Multiple Scale Method 
 

Scales 
(𝟐𝟐𝟐𝟐𝒋𝒋𝒋𝒋) Annual Frequency Monthly Frequency Daily Frequency 

1 21 2-4 2-4 2-4 
2 22 4-8 4-8 4-8 

3 23 8-16 8-16 
(8 months-1 year 4 months) 8-16 

4 24 16-32 
16-32 

(1 years 4 months-2 years 8 
months) 

16-32 
(3 weeks 1 day-6 weeks 2 day) 

5 25 32-64 
32-64 

(2 years 8 months-5 years 4 
months) 

32-64 
(6 weeks 2 day-12 weeks 4 day) 

6 26 64-128 
64-128 

(5 years 4 months-10 years 8 
months) 

64-128 
(12 weeks 4 day-25 weeks 3 day) 

7 27 128-256 
128-256 

(10 years 8 months-21 years 
4 months) 

128-256 
(25 weeks 3 day- 51 weeks 1 day) 

8 28 256-512 ….. …. 
 
Source: Crowly (2007:214). Theoretically, the maximum number of scales is expressed as 9. In the case 
where the scale number is indicated by j (j = 9), the frequencies are calculated using 2j notation.  

Considering the scale frequencies given in Table 2; After a wavelet analysis is performed, 
predictions will be made for the specified number of scales and coefficients will be 
estimated for various investment horizons. The time scales in Table 2 are grouped as 
follows: (𝐷𝐷𝐷𝐷1 − 𝐷𝐷𝐷𝐷2 − 𝐷𝐷𝐷𝐷3): short term; (𝐷𝐷𝐷𝐷4 − 𝐷𝐷𝐷𝐷5 − 𝐷𝐷𝐷𝐷6): medium term; (𝐷𝐷𝐷𝐷7 − 𝐷𝐷𝐷𝐷8 − 𝑆𝑆𝑆𝑆8): 
long term. This type of grouping was made to examine how the movements of investors 
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spreads. Medium-term investment horizons (𝐷𝐷𝐷𝐷4 − 𝐷𝐷𝐷𝐷5 − 𝐷𝐷𝐷𝐷6); It shows medium-term 
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term investment horizons are (𝐷𝐷𝐷𝐷7 − 𝐷𝐷𝐷𝐷8 − 𝑆𝑆𝑆𝑆8); It indicates long-term changes on time 
scales of 256 months and longer and is a period covering annual spreads (Uyar and 
Kangalı Uyar, 2021: p. 319; Aydoğdu, 2024: p. 217-218). 
3.3. DCC-GARCH Approach 

The dynamic conditional correlation (DCC) approach was developed by Engle (2002) to 
examine time-varying correlations between asset returns. To examine in more detail how 
this approach was developed and what assumptions it is based on, let the vector containing 
the logarithmic returns of k financial assets be denoted by 𝑟𝑟𝑟𝑟𝑡𝑡𝑡𝑡. Financial asset returns have 
the following distribution under the assumptions that there is no autocorrelation between 
average returns and that quadratic moments vary over time: 
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Here, 𝑟𝑟𝑟𝑟𝑡𝑡𝑡𝑡,  is the payoff vector of size 𝐼𝐼𝐼𝐼𝑡𝑡𝑡𝑡−1,; 𝑡𝑡𝑡𝑡 − 1 represents the information set at time t-
1; μ is the unconditional mean, which is usually very close to or equal to zero; 𝐻𝐻𝐻𝐻𝑡𝑡𝑡𝑡,  denotes 
the dynamic conditional covariance matrix of the k-return series of size kxk, and 
𝐷𝐷𝐷𝐷(𝑢𝑢𝑢𝑢,𝐻𝐻𝐻𝐻𝑡𝑡𝑡𝑡),  denotes the multivariate density function that depends on the mean vector and 
the dynamic conditional covariance matrix. 
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Source: Crowly (2007:214). Theoretically, the maximum number of scales is expressed as 9. In the case 
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follows: (𝐷𝐷𝐷𝐷1 − 𝐷𝐷𝐷𝐷2 − 𝐷𝐷𝐷𝐷3): short term; (𝐷𝐷𝐷𝐷4 − 𝐷𝐷𝐷𝐷5 − 𝐷𝐷𝐷𝐷6): medium term; (𝐷𝐷𝐷𝐷7 − 𝐷𝐷𝐷𝐷8 − 𝑆𝑆𝑆𝑆8): 
long term. This type of grouping was made to examine how the movements of investors 
with short, medium and long-term investment horizons develop according to different 
time scales. Short-term investment horizons (𝐷𝐷𝐷𝐷1 − 𝐷𝐷𝐷𝐷2 − 𝐷𝐷𝐷𝐷3); It refers to short-term 
changes due to shocks occurring on time scales of 2-16 months and includes daily-weekly 
spreads. Medium-term investment horizons (𝐷𝐷𝐷𝐷4 − 𝐷𝐷𝐷𝐷5 − 𝐷𝐷𝐷𝐷6); It shows medium-term 
changes on time scales of 32-128 months and covers monthly to quarterly spreads. Long-
term investment horizons are (𝐷𝐷𝐷𝐷7 − 𝐷𝐷𝐷𝐷8 − 𝑆𝑆𝑆𝑆8); It indicates long-term changes on time 
scales of 256 months and longer and is a period covering annual spreads (Uyar and 
Kangalı Uyar, 2021: p. 319; Aydoğdu, 2024: p. 217-218). 
3.3. DCC-GARCH Approach 

The dynamic conditional correlation (DCC) approach was developed by Engle (2002) to 
examine time-varying correlations between asset returns. To examine in more detail how 
this approach was developed and what assumptions it is based on, let the vector containing 
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3.3. DCC-GARCH Approach 

The dynamic conditional correlation (DCC) approach was developed by Engle (2002) to 
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the following distribution under the assumptions that there is no autocorrelation between 
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Here, 𝑟𝑟𝑟𝑟𝑡𝑡𝑡𝑡,  is the payoff vector of size 𝐼𝐼𝐼𝐼𝑡𝑡𝑡𝑡−1,; 𝑡𝑡𝑡𝑡 − 1 represents the information set at time t-
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the dynamic conditional covariance matrix of the k-return series of size kxk, and 
𝐷𝐷𝐷𝐷(𝑢𝑢𝑢𝑢,𝐻𝐻𝐻𝐻𝑡𝑡𝑡𝑡),  denotes the multivariate density function that depends on the mean vector and 
the dynamic conditional covariance matrix. 
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3.3. DCC-GARCH Approach 
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this approach was developed and what assumptions it is based on, let the vector containing 
the logarithmic returns of k financial assets be denoted by 𝑟𝑟𝑟𝑟𝑡𝑡𝑡𝑡. Financial asset returns have 
the following distribution under the assumptions that there is no autocorrelation between 
average returns and that quadratic moments vary over time: 
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Here, 𝑟𝑟𝑟𝑟𝑡𝑡𝑡𝑡,  is the payoff vector of size 𝐼𝐼𝐼𝐼𝑡𝑡𝑡𝑡−1,; 𝑡𝑡𝑡𝑡 − 1 represents the information set at time t-
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the dynamic conditional covariance matrix of the k-return series of size kxk, and 
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Considering the scale frequencies given in Table 2; After a wavelet analysis is performed, 
predictions will be made for the specified number of scales and coefficients will be 
estimated for various investment horizons. The time scales in Table 2 are grouped as 
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3.3. DCC-GARCH Approach 

The dynamic conditional correlation (DCC) approach was developed by Engle (2002) to 
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this approach was developed and what assumptions it is based on, let the vector containing 
the logarithmic returns of k financial assets be denoted by 𝑟𝑟𝑟𝑟𝑡𝑡𝑡𝑡. Financial asset returns have 
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1; μ is the unconditional mean, which is usually very close to or equal to zero; 𝐻𝐻𝐻𝐻𝑡𝑡𝑡𝑡,  denotes 
the dynamic conditional covariance matrix of the k-return series of size kxk, and 
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Engle (2002; p. 341) decomposed the covariance matrix as the product of dynamic conditional standard deviations 
and dynamic conditional correlations:Engle (2002; p. 341) decomposed the covariance matrix as the product of dynamic 
conditional standard deviations and dynamic conditional correlations: 
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Here, 𝐷𝐷𝐷𝐷𝑡𝑡𝑡𝑡, is a diagonal matrix of size kxk and its elements consist of time-varying standard 
deviations obtained from univariate GARCH models. In the 𝐷𝐷𝐷𝐷𝑡𝑡𝑡𝑡 matrix, the i’th element 
of the diagonal can be represented as �ℎ𝑖𝑖𝑖𝑖𝑡𝑡𝑡𝑡  hit: 
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𝑅𝑅𝑅𝑅𝑡𝑡𝑡𝑡,  is the time-varying correlation matrix of Ƞ𝑡𝑡𝑡𝑡 = 𝐷𝐷𝐷𝐷𝑡𝑡𝑡𝑡−1 ∗ 𝑟𝑟𝑟𝑟𝑡𝑡𝑡𝑡, 𝑅𝑅𝑅𝑅𝑡𝑡𝑡𝑡 ∼ 𝑁𝑁𝑁𝑁(0,𝑅𝑅𝑅𝑅𝑡𝑡𝑡𝑡), standardized 
residues of size kxk: 

𝑅𝑅𝑅𝑅𝑡𝑡𝑡𝑡 = �
1 𝜌𝜌𝜌𝜌12,𝑡𝑡𝑡𝑡
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Since 𝐻𝐻𝐻𝐻𝑡𝑡𝑡𝑡, is a covariance matrix, it must be a positive definite matrix. Since Dt, is a 
positive definite matrix due to its positive diagonal elements, 𝑅𝑅𝑅𝑅𝑡𝑡𝑡𝑡 must also be a positive 
definite matrix. Finally, the elements in the 𝑅𝑅𝑅𝑅𝑡𝑡𝑡𝑡 must be less than or equal to 1 because 
they include conditional correlation coefficients. 
Using the representations in Equations (10)-(11), it can be deduced that the marginal 
density function of each element of the 𝑟𝑟𝑟𝑟𝑡𝑡𝑡𝑡 vector, in other words, the return of each 
financial asset, "depends on the time-varying conditional variance" and the time-varying 
conditional variance, which is the representative of volatility. can be modeled as a 
univariate GARCH process. Accordingly, the 𝐷𝐷𝐷𝐷𝑡𝑡𝑡𝑡 matrix can be created using the 
univariate GARCH(p, q) model defined in equation (11): 
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Here, 𝜃𝜃𝜃𝜃𝑖𝑖𝑖𝑖  is the constant term. non-negativity of parameters and stationarity in variance in 
the GARCH(p, q) model: 
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It is assumed that the constraints in equality (15) are satisfied. Satisfying these constraints 
ensures that the 𝐻𝐻𝐻𝐻𝑡𝑡𝑡𝑡 matrix is a positive definite matrix for all time points. 
The standardized return vector is obtained by dividing the return of each financial asset 
by its conditional standard deviation, �ℎ𝑖𝑖𝑖𝑖𝑡𝑡𝑡𝑡,: 
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This vector can be used to define the dynamic conditional correlation structure defined 
by Engle (2002) for the return series: 
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Engle (2002; p. 341) decomposed the covariance matrix as the product of dynamic 
conditional standard deviations and dynamic conditional correlations: 

𝐻𝐻𝐻𝐻𝑡𝑡𝑡𝑡 = 𝐷𝐷𝐷𝐷𝑡𝑡𝑡𝑡𝑅𝑅𝑅𝑅𝑡𝑡𝑡𝑡𝐷𝐷𝐷𝐷𝑡𝑡𝑡𝑡                                                                                                                               (11) 

Here, 𝐷𝐷𝐷𝐷𝑡𝑡𝑡𝑡, is a diagonal matrix of size kxk and its elements consist of time-varying standard 
deviations obtained from univariate GARCH models. In the 𝐷𝐷𝐷𝐷𝑡𝑡𝑡𝑡 matrix, the i’th element 
of the diagonal can be represented as �ℎ𝑖𝑖𝑖𝑖𝑡𝑡𝑡𝑡  hit: 
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residues of size kxk: 
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Since 𝐻𝐻𝐻𝐻𝑡𝑡𝑡𝑡, is a covariance matrix, it must be a positive definite matrix. Since Dt, is a 
positive definite matrix due to its positive diagonal elements, 𝑅𝑅𝑅𝑅𝑡𝑡𝑡𝑡 must also be a positive 
definite matrix. Finally, the elements in the 𝑅𝑅𝑅𝑅𝑡𝑡𝑡𝑡 must be less than or equal to 1 because 
they include conditional correlation coefficients. 
Using the representations in Equations (10)-(11), it can be deduced that the marginal 
density function of each element of the 𝑟𝑟𝑟𝑟𝑡𝑡𝑡𝑡 vector, in other words, the return of each 
financial asset, "depends on the time-varying conditional variance" and the time-varying 
conditional variance, which is the representative of volatility. can be modeled as a 
univariate GARCH process. Accordingly, the 𝐷𝐷𝐷𝐷𝑡𝑡𝑡𝑡 matrix can be created using the 
univariate GARCH(p, q) model defined in equation (11): 
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ensures that the 𝐻𝐻𝐻𝐻𝑡𝑡𝑡𝑡 matrix is a positive definite matrix for all time points. 
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matrix can be created using the univariate 
GARCH(p, q) model defined in equation (11):



JAME, Volume : 4 -  Issue : 1 -  Year: 2024

21

Engle (2002; p. 341) decomposed the covariance matrix as the product of dynamic 
conditional standard deviations and dynamic conditional correlations: 

𝐻𝐻𝐻𝐻𝑡𝑡𝑡𝑡 = 𝐷𝐷𝐷𝐷𝑡𝑡𝑡𝑡𝑅𝑅𝑅𝑅𝑡𝑡𝑡𝑡𝐷𝐷𝐷𝐷𝑡𝑡𝑡𝑡                                                                                                                               (11) 

Here, 𝐷𝐷𝐷𝐷𝑡𝑡𝑡𝑡, is a diagonal matrix of size kxk and its elements consist of time-varying standard 
deviations obtained from univariate GARCH models. In the 𝐷𝐷𝐷𝐷𝑡𝑡𝑡𝑡 matrix, the i’th element 
of the diagonal can be represented as �ℎ𝑖𝑖𝑖𝑖𝑡𝑡𝑡𝑡  hit: 

𝐷𝐷𝐷𝐷𝑡𝑡𝑡𝑡 = �
�ℎ1𝑡𝑡𝑡𝑡

0
0

     
0 ⋯ 0

�ℎ2𝑡𝑡𝑡𝑡 ⋱ ⋮
… ⋯ �ℎ𝑘𝑘𝑘𝑘𝑡𝑡𝑡𝑡

�                                                                                           (12) 

𝑅𝑅𝑅𝑅𝑡𝑡𝑡𝑡,  is the time-varying correlation matrix of Ƞ𝑡𝑡𝑡𝑡 = 𝐷𝐷𝐷𝐷𝑡𝑡𝑡𝑡−1 ∗ 𝑟𝑟𝑟𝑟𝑡𝑡𝑡𝑡, 𝑅𝑅𝑅𝑅𝑡𝑡𝑡𝑡 ∼ 𝑁𝑁𝑁𝑁(0,𝑅𝑅𝑅𝑅𝑡𝑡𝑡𝑡), standardized 
residues of size kxk: 

𝑅𝑅𝑅𝑅𝑡𝑡𝑡𝑡 = �
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Since 𝐻𝐻𝐻𝐻𝑡𝑡𝑡𝑡, is a covariance matrix, it must be a positive definite matrix. Since Dt, is a 
positive definite matrix due to its positive diagonal elements, 𝑅𝑅𝑅𝑅𝑡𝑡𝑡𝑡 must also be a positive 
definite matrix. Finally, the elements in the 𝑅𝑅𝑅𝑅𝑡𝑡𝑡𝑡 must be less than or equal to 1 because 
they include conditional correlation coefficients. 
Using the representations in Equations (10)-(11), it can be deduced that the marginal 
density function of each element of the 𝑟𝑟𝑟𝑟𝑡𝑡𝑡𝑡 vector, in other words, the return of each 
financial asset, "depends on the time-varying conditional variance" and the time-varying 
conditional variance, which is the representative of volatility. can be modeled as a 
univariate GARCH process. Accordingly, the 𝐷𝐷𝐷𝐷𝑡𝑡𝑡𝑡 matrix can be created using the 
univariate GARCH(p, q) model defined in equation (11): 

ℎ𝑖𝑖𝑖𝑖𝑡𝑡𝑡𝑡 = 𝜃𝜃𝜃𝜃𝑖𝑖𝑖𝑖 + �𝛼𝛼𝛼𝛼𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖
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Here, 𝜃𝜃𝜃𝜃𝑖𝑖𝑖𝑖  is the constant term. non-negativity of parameters and stationarity in variance in 
the GARCH(p, q) model: 
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It is assumed that the constraints in equality (15) are satisfied. Satisfying these constraints 
ensures that the 𝐻𝐻𝐻𝐻𝑡𝑡𝑡𝑡 matrix is a positive definite matrix for all time points. 
The standardized return vector is obtained by dividing the return of each financial asset 
by its conditional standard deviation, �ℎ𝑖𝑖𝑖𝑖𝑡𝑡𝑡𝑡,: 

ŋ𝑡𝑡𝑡𝑡 = 𝐷𝐷𝐷𝐷𝑡𝑡𝑡𝑡−1 ∗ 𝑟𝑟𝑟𝑟𝑡𝑡𝑡𝑡 , ŋ𝑡𝑡𝑡𝑡 ∼ 𝑁𝑁𝑁𝑁(0,𝑅𝑅𝑅𝑅𝑡𝑡𝑡𝑡)                                                                                         (16) 
This vector can be used to define the dynamic conditional correlation structure defined 
by Engle (2002) for the return series: 
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they include conditional correlation coefficients. 
Using the representations in Equations (10)-(11), it can be deduced that the marginal 
density function of each element of the 𝑟𝑟𝑟𝑟𝑡𝑡𝑡𝑡 vector, in other words, the return of each 
financial asset, "depends on the time-varying conditional variance" and the time-varying 
conditional variance, which is the representative of volatility. can be modeled as a 
univariate GARCH process. Accordingly, the 𝐷𝐷𝐷𝐷𝑡𝑡𝑡𝑡 matrix can be created using the 
univariate GARCH(p, q) model defined in equation (11): 
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It is assumed that the constraints in equality (15) are satisfied. Satisfying these constraints 
ensures that the 𝐻𝐻𝐻𝐻𝑡𝑡𝑡𝑡 matrix is a positive definite matrix for all time points. 
The standardized return vector is obtained by dividing the return of each financial asset 
by its conditional standard deviation, �ℎ𝑖𝑖𝑖𝑖𝑡𝑡𝑡𝑡,: 
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This vector can be used to define the dynamic conditional correlation structure defined 
by Engle (2002) for the return series: 
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It is assumed that the constraints in equality (15) are satisfied. Satisfying these constraints ensures that the  matrix 
is a positive definite

Engle (2002; p. 341) decomposed the covariance matrix as the product of dynamic 
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by Engle (2002) for the return series: 

𝑄𝑄𝑄𝑄𝑡𝑡𝑡𝑡 = �1 − � 𝛼𝛼𝛼𝛼𝑚𝑚𝑚𝑚 −�𝛽𝛽𝛽𝛽𝑛𝑛𝑛𝑛

𝑁𝑁𝑁𝑁

𝑛𝑛𝑛𝑛=1

𝑀𝑀𝑀𝑀

𝑚𝑚𝑚𝑚=1

� ∗ 𝑄𝑄𝑄𝑄� + � 𝛼𝛼𝛼𝛼𝑚𝑚𝑚𝑚(ŋ𝑡𝑡𝑡𝑡−𝑚𝑚𝑚𝑚ή𝑡𝑡𝑡𝑡−𝑚𝑚𝑚𝑚) + �𝛽𝛽𝛽𝛽𝑛𝑛𝑛𝑛𝑄𝑄𝑄𝑄𝑡𝑡𝑡𝑡−𝑛𝑛𝑛𝑛

𝑁𝑁𝑁𝑁

𝑛𝑛𝑛𝑛=1

𝑀𝑀𝑀𝑀

𝑚𝑚𝑚𝑚=1

                   (17) 

 � (16)

This vector can be used to define the dynamic conditional correlation structure defined by Engle (2002) for the 
return series:

Engle (2002; p. 341) decomposed the covariance matrix as the product of dynamic 
conditional standard deviations and dynamic conditional correlations: 

𝐻𝐻𝐻𝐻𝑡𝑡𝑡𝑡 = 𝐷𝐷𝐷𝐷𝑡𝑡𝑡𝑡𝑅𝑅𝑅𝑅𝑡𝑡𝑡𝑡𝐷𝐷𝐷𝐷𝑡𝑡𝑡𝑡                                                                                                                               (11) 

Here, 𝐷𝐷𝐷𝐷𝑡𝑡𝑡𝑡, is a diagonal matrix of size kxk and its elements consist of time-varying standard 
deviations obtained from univariate GARCH models. In the 𝐷𝐷𝐷𝐷𝑡𝑡𝑡𝑡 matrix, the i’th element 
of the diagonal can be represented as �ℎ𝑖𝑖𝑖𝑖𝑡𝑡𝑡𝑡  hit: 

𝐷𝐷𝐷𝐷𝑡𝑡𝑡𝑡 = �
�ℎ1𝑡𝑡𝑡𝑡

0
0

     
0 ⋯ 0

�ℎ2𝑡𝑡𝑡𝑡 ⋱ ⋮
… ⋯ �ℎ𝑘𝑘𝑘𝑘𝑡𝑡𝑡𝑡

�                                                                                           (12) 

𝑅𝑅𝑅𝑅𝑡𝑡𝑡𝑡,  is the time-varying correlation matrix of Ƞ𝑡𝑡𝑡𝑡 = 𝐷𝐷𝐷𝐷𝑡𝑡𝑡𝑡−1 ∗ 𝑟𝑟𝑟𝑟𝑡𝑡𝑡𝑡, 𝑅𝑅𝑅𝑅𝑡𝑡𝑡𝑡 ∼ 𝑁𝑁𝑁𝑁(0,𝑅𝑅𝑅𝑅𝑡𝑡𝑡𝑡), standardized 
residues of size kxk: 

𝑅𝑅𝑅𝑅𝑡𝑡𝑡𝑡 = �
1 𝜌𝜌𝜌𝜌12,𝑡𝑡𝑡𝑡

𝜌𝜌𝜌𝜌12,𝑡𝑡𝑡𝑡 1
𝜌𝜌𝜌𝜌1𝑘𝑘𝑘𝑘,𝑡𝑡𝑡𝑡 …

     
… ⋯ 𝜌𝜌𝜌𝜌1𝑘𝑘𝑘𝑘,𝑡𝑡𝑡𝑡
⋮ ⋱ ⋮

𝜌𝜌𝜌𝜌𝑘𝑘𝑘𝑘−1,𝑘𝑘𝑘𝑘,𝑡𝑡𝑡𝑡 ⋯ 1
�                                                                            (13) 

Since 𝐻𝐻𝐻𝐻𝑡𝑡𝑡𝑡, is a covariance matrix, it must be a positive definite matrix. Since Dt, is a 
positive definite matrix due to its positive diagonal elements, 𝑅𝑅𝑅𝑅𝑡𝑡𝑡𝑡 must also be a positive 
definite matrix. Finally, the elements in the 𝑅𝑅𝑅𝑅𝑡𝑡𝑡𝑡 must be less than or equal to 1 because 
they include conditional correlation coefficients. 
Using the representations in Equations (10)-(11), it can be deduced that the marginal 
density function of each element of the 𝑟𝑟𝑟𝑟𝑡𝑡𝑡𝑡 vector, in other words, the return of each 
financial asset, "depends on the time-varying conditional variance" and the time-varying 
conditional variance, which is the representative of volatility. can be modeled as a 
univariate GARCH process. Accordingly, the 𝐷𝐷𝐷𝐷𝑡𝑡𝑡𝑡 matrix can be created using the 
univariate GARCH(p, q) model defined in equation (11): 

ℎ𝑖𝑖𝑖𝑖𝑡𝑡𝑡𝑡 = 𝜃𝜃𝜃𝜃𝑖𝑖𝑖𝑖 + �𝛼𝛼𝛼𝛼𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖

pi

p=1

ɛ𝑖𝑖𝑖𝑖𝑡𝑡𝑡𝑡−𝑖𝑖𝑖𝑖2 + �𝛽𝛽𝛽𝛽𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖ℎ𝑖𝑖𝑖𝑖𝑡𝑡𝑡𝑡−𝑖𝑖𝑖𝑖

Qi

q=1

    i = 1,2, … . . , k                                               (14) 

Here, 𝜃𝜃𝜃𝜃𝑖𝑖𝑖𝑖  is the constant term. non-negativity of parameters and stationarity in variance in 
the GARCH(p, q) model: 

�𝛼𝛼𝛼𝛼𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖

pi

p=1

ɛ𝑖𝑖𝑖𝑖𝑡𝑡𝑡𝑡−𝑖𝑖𝑖𝑖2 + �𝛽𝛽𝛽𝛽𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖ℎ𝑖𝑖𝑖𝑖𝑡𝑡𝑡𝑡−𝑖𝑖𝑖𝑖

Qi

q=1

< 1                                                                                         (15)  

It is assumed that the constraints in equality (15) are satisfied. Satisfying these constraints 
ensures that the 𝐻𝐻𝐻𝐻𝑡𝑡𝑡𝑡 matrix is a positive definite matrix for all time points. 
The standardized return vector is obtained by dividing the return of each financial asset 
by its conditional standard deviation, �ℎ𝑖𝑖𝑖𝑖𝑡𝑡𝑡𝑡,: 

ŋ𝑡𝑡𝑡𝑡 = 𝐷𝐷𝐷𝐷𝑡𝑡𝑡𝑡−1 ∗ 𝑟𝑟𝑟𝑟𝑡𝑡𝑡𝑡 , ŋ𝑡𝑡𝑡𝑡 ∼ 𝑁𝑁𝑁𝑁(0,𝑅𝑅𝑅𝑅𝑡𝑡𝑡𝑡)                                                                                         (16) 
This vector can be used to define the dynamic conditional correlation structure defined 
by Engle (2002) for the return series: 

𝑄𝑄𝑄𝑄𝑡𝑡𝑡𝑡 = �1 − � 𝛼𝛼𝛼𝛼𝑚𝑚𝑚𝑚 −�𝛽𝛽𝛽𝛽𝑛𝑛𝑛𝑛

𝑁𝑁𝑁𝑁

𝑛𝑛𝑛𝑛=1

𝑀𝑀𝑀𝑀

𝑚𝑚𝑚𝑚=1

� ∗ 𝑄𝑄𝑄𝑄� + � 𝛼𝛼𝛼𝛼𝑚𝑚𝑚𝑚(ŋ𝑡𝑡𝑡𝑡−𝑚𝑚𝑚𝑚ή𝑡𝑡𝑡𝑡−𝑚𝑚𝑚𝑚) + �𝛽𝛽𝛽𝛽𝑛𝑛𝑛𝑛𝑄𝑄𝑄𝑄𝑡𝑡𝑡𝑡−𝑛𝑛𝑛𝑛

𝑁𝑁𝑁𝑁

𝑛𝑛𝑛𝑛=1

𝑀𝑀𝑀𝑀

𝑚𝑚𝑚𝑚=1

                   (17)   � (17)

Here Here 𝛼𝛼𝛼𝛼𝑚𝑚𝑚𝑚  and 𝛽𝛽𝛽𝛽𝑛𝑛𝑛𝑛 are non-negative scalars. Due to the stability condition, it is assumed 
that 𝛼𝛼𝛼𝛼𝑚𝑚𝑚𝑚 + 𝛽𝛽𝛽𝛽𝑛𝑛𝑛𝑛 <1. Providing these assumptions is important for the 𝐻𝐻𝐻𝐻𝑡𝑡𝑡𝑡 matrix to be a 
positive definite matrix. Since Q𝑡𝑡𝑡𝑡 = Q� if the constraint 𝛼𝛼𝛼𝛼𝑚𝑚𝑚𝑚 = 𝛽𝛽𝛽𝛽𝑛𝑛𝑛𝑛 = 0 is met, it can be said 
that the use of a time-invariant conditional correlation model will be sufficient to examine 
the relationships (Lebo and Box Steffensmeier, 2008: 694). Q�, is the unconditional 
covariance matrix of the standardized residuals from the first-stage estimation: 

Q� = 𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶[ŋ𝑡𝑡𝑡𝑡ή𝑡𝑡𝑡𝑡] = 𝐸𝐸𝐸𝐸[ŋ𝑡𝑡𝑡𝑡ή𝑡𝑡𝑡𝑡] ve Q� = 1
𝑇𝑇𝑇𝑇
∑ ŋ𝑡𝑡𝑡𝑡ή𝑡𝑡𝑡𝑡                                                                  (18) 𝑇𝑇𝑇𝑇
𝑡𝑡𝑡𝑡𝑡𝑡     

It can be predicted by. Finally, the model defined in equation (17) can be represented as 
DCC(m, n). 

However, since 𝑄𝑄𝑄𝑄𝑡𝑡𝑡𝑡, does not meet the definition of a dynamic conditional correlation 
matrix, Engle (2002) suggested the following standardization: 

𝑅𝑅𝑅𝑅𝑡𝑡𝑡𝑡 = 𝑄𝑄𝑄𝑄𝑡𝑡𝑡𝑡∗−1 ∗ 𝑄𝑄𝑄𝑄𝑡𝑡𝑡𝑡 ∗ 𝑄𝑄𝑄𝑄𝑡𝑡𝑡𝑡∗−1                                                                                                           (19) 

Here 𝑄𝑄𝑄𝑄𝑡𝑡𝑡𝑡∗, is a diagonal matrix containing the square roots of the diagonal elements of the 
matrix  𝑄𝑄𝑄𝑄𝑡𝑡𝑡𝑡: 

𝑄𝑄𝑄𝑄𝑡𝑡𝑡𝑡∗ = �
�𝑞𝑞𝑞𝑞11,𝑡𝑡𝑡𝑡

0
0

         
0 ⋯ 0

�𝑞𝑞𝑞𝑞22,𝑡𝑡𝑡𝑡 ⋱ ⋮
… ⋯ �𝑞𝑞𝑞𝑞𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛,𝑡𝑡𝑡𝑡

�                                                                              (20) 

𝑄𝑄𝑄𝑄𝑡𝑡𝑡𝑡∗, rescales the elements of the 𝑄𝑄𝑄𝑄𝑡𝑡𝑡𝑡 matrix to be �𝜌𝜌𝜌𝜌𝑖𝑖𝑖𝑖𝑗𝑗𝑗𝑗𝑗𝑗𝑗𝑗� = � 𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑗𝑗𝑗𝑗𝑖𝑖𝑖𝑖
�𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑗𝑗𝑗𝑗𝑗𝑗𝑗𝑗𝑖𝑖𝑖𝑖

� ≤ 1. 𝑄𝑄𝑄𝑄𝑡𝑡𝑡𝑡 must be a 

positive definite matrix. 

The elements of the 𝑅𝑅𝑅𝑅𝑡𝑡𝑡𝑡 matrix are in the form 𝜌𝜌𝜌𝜌𝑖𝑖𝑖𝑖𝑗𝑗𝑗𝑗𝑗𝑗𝑗𝑗 = 𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑗𝑗𝑗𝑗𝑖𝑖𝑖𝑖
�𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑗𝑗𝑗𝑗𝑗𝑗𝑗𝑗𝑖𝑖𝑖𝑖

. The fact that the 𝑅𝑅𝑅𝑅𝑡𝑡𝑡𝑡 matrix 

is a positive definite matrix depends on the 𝑄𝑄𝑄𝑄𝑡𝑡𝑡𝑡 matrix being a positive definite matrix. 
Engle (2002) defined the logarithmic likelihood function for the maximum likelihood 
estimation of the DCC model defined in equation (12) as follows: 
 

𝐿𝐿𝐿𝐿 =  
1
2
�𝑘𝑘𝑘𝑘 𝑘 log (2π)
𝑇𝑇𝑇𝑇

𝑡𝑡𝑡𝑡𝑡𝑡

+ log(|𝐻𝐻𝐻𝐻𝑡𝑡𝑡𝑡|) + 𝑟𝑟𝑟𝑟𝑡𝑡𝑡𝑡′𝐻𝐻𝐻𝐻𝑡𝑡𝑡𝑡−1𝑟𝑟𝑟𝑟𝑡𝑡𝑡𝑡                                                                (21) 

If the expression where 𝐻𝐻𝐻𝐻𝑡𝑡𝑡𝑡 is equal in equation (10) is substituted in equation (15), the 
logarithmic likelihood function in equation (16) is obtained by using Ƞ𝑡𝑡𝑡𝑡 = 𝐷𝐷𝐷𝐷𝑡𝑡𝑡𝑡−1 ∗ 𝑟𝑟𝑟𝑟𝑡𝑡𝑡𝑡 
equation: 

𝐿𝐿𝐿𝐿 =  
1
2
�𝑘𝑘𝑘𝑘 𝑘 log (2π)
𝑇𝑇𝑇𝑇

𝑡𝑡𝑡𝑡𝑡𝑡

+ 2 ∗ log(|𝐷𝐷𝐷𝐷𝑡𝑡𝑡𝑡|) + 𝑛𝑛𝑛𝑛𝑡𝑡𝑡𝑡′𝑅𝑅𝑅𝑅𝑡𝑡𝑡𝑡−1𝑛𝑛𝑛𝑛𝑡𝑡𝑡𝑡                                                        (22) 

The definition of the logarithmic likelihood function in equation (22) facilitates the 
estimation of the DCC model, because the function has two components, namely the 
volatility component and the correlation component, and the estimation can be carried out 
by splitting the estimation process into two. The first component is the volatility 
component and contains only terms in 𝐷𝐷𝐷𝐷𝑡𝑡𝑡𝑡, and the second component is the correlation 
component and contains only terms in 𝑅𝑅𝑅𝑅𝑡𝑡𝑡𝑡, The reason why the DCC model is estimated 
in two stages can be explained by this structure. In the first stage, only the part containing 
the volatility component is maximized, and in the second stage, the correlation component 

  and  Here 𝛼𝛼𝛼𝛼𝑚𝑚𝑚𝑚  and 𝛽𝛽𝛽𝛽𝑛𝑛𝑛𝑛 are non-negative scalars. Due to the stability condition, it is assumed 
that 𝛼𝛼𝛼𝛼𝑚𝑚𝑚𝑚 + 𝛽𝛽𝛽𝛽𝑛𝑛𝑛𝑛 <1. Providing these assumptions is important for the 𝐻𝐻𝐻𝐻𝑡𝑡𝑡𝑡 matrix to be a 
positive definite matrix. Since Q𝑡𝑡𝑡𝑡 = Q� if the constraint 𝛼𝛼𝛼𝛼𝑚𝑚𝑚𝑚 = 𝛽𝛽𝛽𝛽𝑛𝑛𝑛𝑛 = 0 is met, it can be said 
that the use of a time-invariant conditional correlation model will be sufficient to examine 
the relationships (Lebo and Box Steffensmeier, 2008: 694). Q�, is the unconditional 
covariance matrix of the standardized residuals from the first-stage estimation: 

Q� = 𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶[ŋ𝑡𝑡𝑡𝑡ή𝑡𝑡𝑡𝑡] = 𝐸𝐸𝐸𝐸[ŋ𝑡𝑡𝑡𝑡ή𝑡𝑡𝑡𝑡] ve Q� = 1
𝑇𝑇𝑇𝑇
∑ ŋ𝑡𝑡𝑡𝑡ή𝑡𝑡𝑡𝑡                                                                  (18) 𝑇𝑇𝑇𝑇
𝑡𝑡𝑡𝑡𝑡𝑡     

It can be predicted by. Finally, the model defined in equation (17) can be represented as 
DCC(m, n). 

However, since 𝑄𝑄𝑄𝑄𝑡𝑡𝑡𝑡, does not meet the definition of a dynamic conditional correlation 
matrix, Engle (2002) suggested the following standardization: 

𝑅𝑅𝑅𝑅𝑡𝑡𝑡𝑡 = 𝑄𝑄𝑄𝑄𝑡𝑡𝑡𝑡∗−1 ∗ 𝑄𝑄𝑄𝑄𝑡𝑡𝑡𝑡 ∗ 𝑄𝑄𝑄𝑄𝑡𝑡𝑡𝑡∗−1                                                                                                           (19) 

Here 𝑄𝑄𝑄𝑄𝑡𝑡𝑡𝑡∗, is a diagonal matrix containing the square roots of the diagonal elements of the 
matrix  𝑄𝑄𝑄𝑄𝑡𝑡𝑡𝑡: 

𝑄𝑄𝑄𝑄𝑡𝑡𝑡𝑡∗ = �
�𝑞𝑞𝑞𝑞11,𝑡𝑡𝑡𝑡

0
0

         
0 ⋯ 0

�𝑞𝑞𝑞𝑞22,𝑡𝑡𝑡𝑡 ⋱ ⋮
… ⋯ �𝑞𝑞𝑞𝑞𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛,𝑡𝑡𝑡𝑡

�                                                                              (20) 

𝑄𝑄𝑄𝑄𝑡𝑡𝑡𝑡∗, rescales the elements of the 𝑄𝑄𝑄𝑄𝑡𝑡𝑡𝑡 matrix to be �𝜌𝜌𝜌𝜌𝑖𝑖𝑖𝑖𝑗𝑗𝑗𝑗𝑗𝑗𝑗𝑗� = � 𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑗𝑗𝑗𝑗𝑖𝑖𝑖𝑖
�𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑗𝑗𝑗𝑗𝑗𝑗𝑗𝑗𝑖𝑖𝑖𝑖

� ≤ 1. 𝑄𝑄𝑄𝑄𝑡𝑡𝑡𝑡 must be a 

positive definite matrix. 

The elements of the 𝑅𝑅𝑅𝑅𝑡𝑡𝑡𝑡 matrix are in the form 𝜌𝜌𝜌𝜌𝑖𝑖𝑖𝑖𝑗𝑗𝑗𝑗𝑗𝑗𝑗𝑗 = 𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑗𝑗𝑗𝑗𝑖𝑖𝑖𝑖
�𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑗𝑗𝑗𝑗𝑗𝑗𝑗𝑗𝑖𝑖𝑖𝑖

. The fact that the 𝑅𝑅𝑅𝑅𝑡𝑡𝑡𝑡 matrix 

is a positive definite matrix depends on the 𝑄𝑄𝑄𝑄𝑡𝑡𝑡𝑡 matrix being a positive definite matrix. 
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. The fact that the 𝑅𝑅𝑅𝑅𝑡𝑡𝑡𝑡 matrix 

is a positive definite matrix depends on the 𝑄𝑄𝑄𝑄𝑡𝑡𝑡𝑡 matrix being a positive definite matrix. 
Engle (2002) defined the logarithmic likelihood function for the maximum likelihood 
estimation of the DCC model defined in equation (12) as follows: 
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+ log(|𝐻𝐻𝐻𝐻𝑡𝑡𝑡𝑡|) + 𝑟𝑟𝑟𝑟𝑡𝑡𝑡𝑡′𝐻𝐻𝐻𝐻𝑡𝑡𝑡𝑡−1𝑟𝑟𝑟𝑟𝑡𝑡𝑡𝑡                                                                (21) 

If the expression where 𝐻𝐻𝐻𝐻𝑡𝑡𝑡𝑡 is equal in equation (10) is substituted in equation (15), the 
logarithmic likelihood function in equation (16) is obtained by using Ƞ𝑡𝑡𝑡𝑡 = 𝐷𝐷𝐷𝐷𝑡𝑡𝑡𝑡−1 ∗ 𝑟𝑟𝑟𝑟𝑡𝑡𝑡𝑡 
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The definition of the logarithmic likelihood function in equation (22) facilitates the 
estimation of the DCC model, because the function has two components, namely the 
volatility component and the correlation component, and the estimation can be carried out 
by splitting the estimation process into two. The first component is the volatility 
component and contains only terms in 𝐷𝐷𝐷𝐷𝑡𝑡𝑡𝑡, and the second component is the correlation 
component and contains only terms in 𝑅𝑅𝑅𝑅𝑡𝑡𝑡𝑡, The reason why the DCC model is estimated 
in two stages can be explained by this structure. In the first stage, only the part containing 
the volatility component is maximized, and in the second stage, the correlation component 

 if 
the constraint  

Here 𝛼𝛼𝛼𝛼𝑚𝑚𝑚𝑚  and 𝛽𝛽𝛽𝛽𝑛𝑛𝑛𝑛 are non-negative scalars. Due to the stability condition, it is assumed 
that 𝛼𝛼𝛼𝛼𝑚𝑚𝑚𝑚 + 𝛽𝛽𝛽𝛽𝑛𝑛𝑛𝑛 <1. Providing these assumptions is important for the 𝐻𝐻𝐻𝐻𝑡𝑡𝑡𝑡 matrix to be a 
positive definite matrix. Since Q𝑡𝑡𝑡𝑡 = Q� if the constraint 𝛼𝛼𝛼𝛼𝑚𝑚𝑚𝑚 = 𝛽𝛽𝛽𝛽𝑛𝑛𝑛𝑛 = 0 is met, it can be said 
that the use of a time-invariant conditional correlation model will be sufficient to examine 
the relationships (Lebo and Box Steffensmeier, 2008: 694). Q�, is the unconditional 
covariance matrix of the standardized residuals from the first-stage estimation: 

Q� = 𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶[ŋ𝑡𝑡𝑡𝑡ή𝑡𝑡𝑡𝑡] = 𝐸𝐸𝐸𝐸[ŋ𝑡𝑡𝑡𝑡ή𝑡𝑡𝑡𝑡] ve Q� = 1
𝑇𝑇𝑇𝑇
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𝑡𝑡𝑡𝑡𝑡𝑡     

It can be predicted by. Finally, the model defined in equation (17) can be represented as 
DCC(m, n). 

However, since 𝑄𝑄𝑄𝑄𝑡𝑡𝑡𝑡, does not meet the definition of a dynamic conditional correlation 
matrix, Engle (2002) suggested the following standardization: 

𝑅𝑅𝑅𝑅𝑡𝑡𝑡𝑡 = 𝑄𝑄𝑄𝑄𝑡𝑡𝑡𝑡∗−1 ∗ 𝑄𝑄𝑄𝑄𝑡𝑡𝑡𝑡 ∗ 𝑄𝑄𝑄𝑄𝑡𝑡𝑡𝑡∗−1                                                                                                           (19) 

Here 𝑄𝑄𝑄𝑄𝑡𝑡𝑡𝑡∗, is a diagonal matrix containing the square roots of the diagonal elements of the 
matrix  𝑄𝑄𝑄𝑄𝑡𝑡𝑡𝑡: 
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component and contains only terms in 𝑅𝑅𝑅𝑅𝑡𝑡𝑡𝑡, The reason why the DCC model is estimated 
in two stages can be explained by this structure. In the first stage, only the part containing 
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that the use of a time-invariant conditional correlation model will be sufficient to examine 
the relationships (Lebo and Box Steffensmeier, 2008: 694). Q�, is the unconditional 
covariance matrix of the standardized residuals from the first-stage estimation: 
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DCC(m, n). 
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component and contains only terms in 𝑅𝑅𝑅𝑅𝑡𝑡𝑡𝑡, The reason why the DCC model is estimated 
in two stages can be explained by this structure. In the first stage, only the part containing 
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However, since 𝑄𝑄𝑄𝑄𝑡𝑡𝑡𝑡, does not meet the definition of a dynamic conditional correlation 
matrix, Engle (2002) suggested the following standardization: 

𝑅𝑅𝑅𝑅𝑡𝑡𝑡𝑡 = 𝑄𝑄𝑄𝑄𝑡𝑡𝑡𝑡∗−1 ∗ 𝑄𝑄𝑄𝑄𝑡𝑡𝑡𝑡 ∗ 𝑄𝑄𝑄𝑄𝑡𝑡𝑡𝑡∗−1                                                                                                           (19) 

Here 𝑄𝑄𝑄𝑄𝑡𝑡𝑡𝑡∗, is a diagonal matrix containing the square roots of the diagonal elements of the 
matrix  𝑄𝑄𝑄𝑄𝑡𝑡𝑡𝑡: 

𝑄𝑄𝑄𝑄𝑡𝑡𝑡𝑡∗ = �
�𝑞𝑞𝑞𝑞11,𝑡𝑡𝑡𝑡

0
0

         
0 ⋯ 0

�𝑞𝑞𝑞𝑞22,𝑡𝑡𝑡𝑡 ⋱ ⋮
… ⋯ �𝑞𝑞𝑞𝑞𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛,𝑡𝑡𝑡𝑡

�                                                                              (20) 

𝑄𝑄𝑄𝑄𝑡𝑡𝑡𝑡∗, rescales the elements of the 𝑄𝑄𝑄𝑄𝑡𝑡𝑡𝑡 matrix to be �𝜌𝜌𝜌𝜌𝑖𝑖𝑖𝑖𝑗𝑗𝑗𝑗𝑗𝑗𝑗𝑗� = � 𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑗𝑗𝑗𝑗𝑖𝑖𝑖𝑖
�𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑗𝑗𝑗𝑗𝑗𝑗𝑗𝑗𝑖𝑖𝑖𝑖
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The definition of the logarithmic likelihood function in equation (22) facilitates the 
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Here 𝛼𝛼𝛼𝛼𝑚𝑚𝑚𝑚  and 𝛽𝛽𝛽𝛽𝑛𝑛𝑛𝑛 are non-negative scalars. Due to the stability condition, it is assumed 
that 𝛼𝛼𝛼𝛼𝑚𝑚𝑚𝑚 + 𝛽𝛽𝛽𝛽𝑛𝑛𝑛𝑛 <1. Providing these assumptions is important for the 𝐻𝐻𝐻𝐻𝑡𝑡𝑡𝑡 matrix to be a 
positive definite matrix. Since Q𝑡𝑡𝑡𝑡 = Q� if the constraint 𝛼𝛼𝛼𝛼𝑚𝑚𝑚𝑚 = 𝛽𝛽𝛽𝛽𝑛𝑛𝑛𝑛 = 0 is met, it can be said 
that the use of a time-invariant conditional correlation model will be sufficient to examine 
the relationships (Lebo and Box Steffensmeier, 2008: 694). Q�, is the unconditional 
covariance matrix of the standardized residuals from the first-stage estimation: 
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It can be predicted by. Finally, the model defined in equation (17) can be represented as 
DCC(m, n). 

However, since 𝑄𝑄𝑄𝑄𝑡𝑡𝑡𝑡, does not meet the definition of a dynamic conditional correlation 
matrix, Engle (2002) suggested the following standardization: 
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Here 𝑄𝑄𝑄𝑄𝑡𝑡𝑡𝑡∗, is a diagonal matrix containing the square roots of the diagonal elements of the 
matrix  𝑄𝑄𝑄𝑄𝑡𝑡𝑡𝑡: 
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𝑄𝑄𝑄𝑄𝑡𝑡𝑡𝑡∗, rescales the elements of the 𝑄𝑄𝑄𝑄𝑡𝑡𝑡𝑡 matrix to be �𝜌𝜌𝜌𝜌𝑖𝑖𝑖𝑖𝑗𝑗𝑗𝑗𝑗𝑗𝑗𝑗� = � 𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑗𝑗𝑗𝑗𝑖𝑖𝑖𝑖
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� ≤ 1. 𝑄𝑄𝑄𝑄𝑡𝑡𝑡𝑡 must be a 

positive definite matrix. 

The elements of the 𝑅𝑅𝑅𝑅𝑡𝑡𝑡𝑡 matrix are in the form 𝜌𝜌𝜌𝜌𝑖𝑖𝑖𝑖𝑗𝑗𝑗𝑗𝑗𝑗𝑗𝑗 = 𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑗𝑗𝑗𝑗𝑖𝑖𝑖𝑖
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 The reason why the DCC model is estimated in two stages can be explained by this structure. 
In the first stage, only the part containing the volatility component is maximized, and in the second stage, the 
correlation component conditional on conditional on 𝐷𝐷𝐷𝐷𝑡𝑡𝑡𝑡 is maximized, and thus estimates of the parameters of the DCC model, 

𝛼𝛼𝛼𝛼𝑚𝑚𝑚𝑚 and 𝛽𝛽𝛽𝛽𝑛𝑛𝑛𝑛 are obtained. The parameters 𝛼𝛼𝛼𝛼𝑚𝑚𝑚𝑚 and 𝛽𝛽𝛽𝛽𝑛𝑛𝑛𝑛 are the determinants of the correlation 
between two series. The 𝛼𝛼𝛼𝛼𝑚𝑚𝑚𝑚 parameter shows the short-term effects of volatility, and the  
𝛽𝛽𝛽𝛽𝑛𝑛𝑛𝑛 parameter shows the long-term permanent effects (Uyar and Kangalı Uyar, 2021: p. 
322) .  

4. ANALYSIS FINDINGS 
In this study using monthly data, descriptive statistics and unit root analysis of the raw 
returns of the variables were performed. Then, the study analyzes were carried out in two 
stages. In the first stage, variable returns were decomposed into different time scales using 
wavelet decomposition analysis. In the second stage, the dynamic correlation relationship 
between the return series of variables separated according to different time scales was 
examined according to the DCC-GARCH approach. The DCC-GARCH (1,1) model to 
be estimated was created as follows: 

𝑟𝑟𝑟𝑟𝑡𝑡𝑡𝑡 = 𝜇𝜇𝜇𝜇 + 𝜀𝜀𝜀𝜀𝑡𝑡𝑡𝑡 , 𝑡𝑡𝑡𝑡 = 1,2, … ,𝑇𝑇𝑇𝑇, 𝜀𝜀𝜀𝜀𝑡𝑡𝑡𝑡 ∣ 𝐼𝐼𝐼𝐼𝑡𝑡𝑡𝑡−1 ∼ 𝑁𝑁𝑁𝑁(0,𝐻𝐻𝐻𝐻𝑡𝑡𝑡𝑡)                                                                  (23) 

𝐻𝐻𝐻𝐻𝑡𝑡𝑡𝑡 = 𝐷𝐷𝐷𝐷𝑡𝑡𝑡𝑡𝑅𝑅𝑅𝑅𝑡𝑡𝑡𝑡𝐷𝐷𝐷𝐷𝑡𝑡𝑡𝑡 ,𝐷𝐷𝐷𝐷𝑡𝑡𝑡𝑡
= 𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑��ℎ1𝑡𝑡𝑡𝑡 ,�ℎ2𝑡𝑡𝑡𝑡�                                                                                     (24) 
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Here, the DCC-GARCH (1,1) model is defined to study the dynamic correlation between 
VIX and Bitcoin. Similarly, the DCC-GARCH (1,1) model is created for other variable 
returns. DCC-GARCH (1,1) model is defined within the return series of the variables 
separated into different time scales. These models are defined as wavelet-based DCC-
GARCH(1,1) models. In the models, VIX return on time scale D1 and Bitcoin on time 
scale D1, VIX return on time scale D4, and Bitcoin on time scale D4, etc. The dynamic 
correlations between them were examined. Similar matchings were made for return series 
of variables on other time scales. As a result, 4 DCC-GARCH (1,1) models based on raw 
data; 16 DCC-GARCH (1,1) models based on four different time scales (4x4) were 
estimated. 
Table 3. Descriptive Statistics of Return Series of Variables 
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Mean 0.0651 0.0604 0.0026 0.0004 
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Note: ***, ** and * indicate statistical significance at 1%, 5% and 10% confidence intervals, respectively. 

Table 3. includes descriptive statistics of the return series of Bitcoin, Ethereum, Global 
Economic Political Uncertainty Index (GEPU) and Fear Index (VIX). It can be seen that 
the mean values of all variables are close to zero and positive. While the highest average 
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returns. DCC-GARCH (1,1) model is defined within the return series of the variables 
separated into different time scales. These models are defined as wavelet-based DCC-
GARCH(1,1) models. In the models, VIX return on time scale D1 and Bitcoin on time 
scale D1, VIX return on time scale D4, and Bitcoin on time scale D4, etc. The dynamic 
correlations between them were examined. Similar matchings were made for return series 
of variables on other time scales. As a result, 4 DCC-GARCH (1,1) models based on raw 
data; 16 DCC-GARCH (1,1) models based on four different time scales (4x4) were 
estimated. 
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separated into different time scales. These models are defined as wavelet-based DCC-
GARCH(1,1) models. In the models, VIX return on time scale D1 and Bitcoin on time 
scale D1, VIX return on time scale D4, and Bitcoin on time scale D4, etc. The dynamic 
correlations between them were examined. Similar matchings were made for return series 
of variables on other time scales. As a result, 4 DCC-GARCH (1,1) models based on raw 
data; 16 DCC-GARCH (1,1) models based on four different time scales (4x4) were 
estimated. 
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Economic Political Uncertainty Index (GEPU) and Fear Index (VIX). It can be seen that 
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4. ANALYSIS FINDINGS 
In this study using monthly data, descriptive statistics and unit root analysis of the raw 
returns of the variables were performed. Then, the study analyzes were carried out in two 
stages. In the first stage, variable returns were decomposed into different time scales using 
wavelet decomposition analysis. In the second stage, the dynamic correlation relationship 
between the return series of variables separated according to different time scales was 
examined according to the DCC-GARCH approach. The DCC-GARCH (1,1) model to 
be estimated was created as follows: 
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= 𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑��ℎ1𝑡𝑡𝑡𝑡 ,�ℎ2𝑡𝑡𝑡𝑡�                                                                                     (24) 
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𝑄𝑄𝑄𝑄𝑡𝑡𝑡𝑡 = (1 − 𝛼𝛼𝛼𝛼 − 𝛽𝛽𝛽𝛽) ∗ 𝑄𝑄𝑄𝑄� + 𝛼𝛼𝛼𝛼(𝜂𝜂𝜂𝜂𝑡𝑡𝑡𝑡−1ή𝑡𝑡𝑡𝑡−1) + 𝛽𝛽𝛽𝛽𝑄𝑄𝑄𝑄𝑡𝑡𝑡𝑡−1                                                                 (27) 
Here, the DCC-GARCH (1,1) model is defined to study the dynamic correlation between 
VIX and Bitcoin. Similarly, the DCC-GARCH (1,1) model is created for other variable 
returns. DCC-GARCH (1,1) model is defined within the return series of the variables 
separated into different time scales. These models are defined as wavelet-based DCC-
GARCH(1,1) models. In the models, VIX return on time scale D1 and Bitcoin on time 
scale D1, VIX return on time scale D4, and Bitcoin on time scale D4, etc. The dynamic 
correlations between them were examined. Similar matchings were made for return series 
of variables on other time scales. As a result, 4 DCC-GARCH (1,1) models based on raw 
data; 16 DCC-GARCH (1,1) models based on four different time scales (4x4) were 
estimated. 
Table 3. Descriptive Statistics of Return Series of Variables 
 

 Bitcoin Ethereum GEPU VIX 
Mean 0.0651 0.0604 0.0026 0.0004 
Median 0.0277 0.0316 -0.0020 -0.0040 
Maksimum 1.7249 1.1426 0.6279 0.8525 
Minimum -0.4665 -0.7719 -0.4987 -0.6142 
Standard Deviation 0.2656 0.3135 0.1791 0.2421 
Skewness 1.8256 0.4579 0.4104 0.3971 
Kurtosis 12.9327 4.0861 4.5647 3.8066 
Jarque-Bera 681.2857*** 8.1582** 4.6547*** 7.7959** 

P. Value [0.0000] [0.0169] [0.0000] [0.0202] 
Observations 146 97 146 146 

 
Note: ***, ** and * indicate statistical significance at 1%, 5% and 10% confidence intervals, respectively. 
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Here, the DCC-GARCH (1,1) model is defined to study the dynamic correlation between 
VIX and Bitcoin. Similarly, the DCC-GARCH (1,1) model is created for other variable 
returns. DCC-GARCH (1,1) model is defined within the return series of the variables 
separated into different time scales. These models are defined as wavelet-based DCC-
GARCH(1,1) models. In the models, VIX return on time scale D1 and Bitcoin on time 
scale D1, VIX return on time scale D4, and Bitcoin on time scale D4, etc. The dynamic 
correlations between them were examined. Similar matchings were made for return series 
of variables on other time scales. As a result, 4 DCC-GARCH (1,1) models based on raw 
data; 16 DCC-GARCH (1,1) models based on four different time scales (4x4) were 
estimated. 
Table 3. Descriptive Statistics of Return Series of Variables 
 

 Bitcoin Ethereum GEPU VIX 
Mean 0.0651 0.0604 0.0026 0.0004 
Median 0.0277 0.0316 -0.0020 -0.0040 
Maksimum 1.7249 1.1426 0.6279 0.8525 
Minimum -0.4665 -0.7719 -0.4987 -0.6142 
Standard Deviation 0.2656 0.3135 0.1791 0.2421 
Skewness 1.8256 0.4579 0.4104 0.3971 
Kurtosis 12.9327 4.0861 4.5647 3.8066 
Jarque-Bera 681.2857*** 8.1582** 4.6547*** 7.7959** 

P. Value [0.0000] [0.0169] [0.0000] [0.0202] 
Observations 146 97 146 146 

 
Note: ***, ** and * indicate statistical significance at 1%, 5% and 10% confidence intervals, respectively. 

Table 3. includes descriptive statistics of the return series of Bitcoin, Ethereum, Global 
Economic Political Uncertainty Index (GEPU) and Fear Index (VIX). It can be seen that 
the mean values of all variables are close to zero and positive. While the highest average 
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GARCH(1,1) models. In the models, VIX return on time scale D1 and Bitcoin on time 
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of variables on other time scales. As a result, 4 DCC-GARCH (1,1) models based on raw 
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Table 3. includes descriptive statistics of the return series of Bitcoin, Ethereum, Global Economic Political 
Uncertainty Index (GEPU) and Fear Index (VIX). It can be seen that the mean values of all variables are close to 
zero and positive. While the highest average return belongs to Bitcoin and Ethereum; When evaluated in terms 
of volatility, it can be seen that Bitcoin has the highest standard deviation in the examined data range and is the 
GEPU with the lowest standard deviation. It can be seen that the coefficients of all return series are positive and 
right-skewed. It is seen that the kurtosis values are positive and greater than three and the series have an extremely 
flat (leptokortic) structure. Positive skewness coefficients indicate that positive returns occur more frequently than 
negative extreme returns. When the Jarque-Bera test statistics, which test the normality assumption of all variables, 
were evaluated, it was confirmed that the return series did not comply with the normal distribution. This result 
provides an important reason for using the wavelet-based DCC-GARCH approach, which does not make any 
distributional assumptions, to examine the relationships between markets. Before performing the wavelet-based 
DCC-GARCH analysis, unit root tests were carried out to determine whether the return series were stationary.
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Table 4. Unit Root Tests of Price and Return Series of Variables 
 

 
Note: In the ADF test, the maximum number of delays was taken as 13 and the optimum number of delays 
was determined according to the Schwarz Information Criterion. Long-term variance in PP and KPSS tests 
was obtained with the Bartlett kernel estimator and bandwidth was determined with the Newey-West 
method. In ADF and PP tests, critical values are -3.433122 (1%), -2.862651 (5%) and -2.567407 (10%) for 
the constant model; for the constant and trend model it is -3.962212 (1%), -3.411849 (5%) and - 3.127817 
(10%). In the KPSS test, the critical values for the constant model are 0.739000 (1%), 0.463000 (5%) and 
0.347000 (10%); For the constant and trending model, it is 0.216000 (1%), 0.146000 (5%) and 0.119000 
(10%). The symbols ***, **, and * indicate statistical significance at 1%, 5% and 10% significance levels. 

The long-term characteristics of a time series are revealed by determining how the 
variable value in the previous period affects the current period. In order to understand the 
evolution of the time series, it is necessary to perform regression analysis of the values in 
each period compared to previous periods. The unit root analysis method used to 
determine the stationarity of the series is an effective tool for evaluating this process (Tarı, 
2014: 387; Aydoğdu, 2024: 243). In this context, Table 4 includes Augmented Dickey 
Fuller (ADF), Phillips-Perron (PP) and Kwiatkowski, Phillips, Schmidt and Shin (KPSS) 
unit root test results to determine the stationarity of the series examined within the scope 
of the research. While ADF and PP tests indicate the case of unit root, non-stationarity or 
I[1] with "𝐻𝐻𝐻𝐻0(null hypothesis)"; KPSS test indicates the I[0] process, in other words, 
stasis (Şahin Dağlı and Çelik, 2022; 2198). According to the ADF and PP tests applied to 
Bitcoin, Ethereum, GEPU and VIX returns, it is seen that the unit root 𝐻𝐻𝐻𝐻0  hypothesis is 
rejected, and for the KPSS test statistic result, the I[0] process is reached and 𝐻𝐻𝐻𝐻0 cannot 

 
Price Return 

Model          ADF                 PP              KPSS             ADF                PP                   KPSS           

 
Bitcoin 

Constant -0.7065 -0.1610 1.1851 -9.5077*** -9.4382*** 0.1863 
Constant 
and Trend -2.5251 -1.9965 0.1686 -8.9934*** -9.6142*** 0.0469 

Ethereum 
Constant 0.7220 -1.1838 0.8735 -8.2236*** -8.5232*** 0.0766 

Constant 
and Trend -2.1279 -2.2658 0.0869 -8.2061*** -8.4822*** 0.0568 

GEPU 
Constant -2.9564 -2.6875 0.9488 -15.1740*** -15.9600*** 0.2318 
Constant 
and Trend -3.1453 -2.8006 0.1558 -15.2393*** -16.0917*** 0.1117 

VIX 
Constant -5.3098 -5.1646 0.4754 -11.59680*** -27.2617*** 0.1622 
Constant 
and Trend -5.5897 -5.5029 0.1156 -11.5509*** -27.2626*** 0.1593 

Note: In the ADF test, the maximum number of delays was taken as 13 and the optimum number of delays was determined according to the 
Schwarz Information Criterion. Long-term variance in PP and KPSS tests was obtained with the Bartlett kernel estimator and bandwidth was 
determined with the Newey-West method. In ADF and PP tests, critical values are -3.433122 (1%), -2.862651 (5%) and -2.567407 (10%) for 
the constant model; for the constant and trend model it is -3.962212 (1%), -3.411849 (5%) and - 3.127817 (10%). In the KPSS test, the critical 
values for the constant model are 0.739000 (1%), 0.463000 (5%) and 0.347000 (10%); For the constant and trending model, it is 0.216000 
(1%), 0.146000 (5%) and 0.119000 (10%). The symbols ***, **, and * indicate statistical significance at 1%, 5% and 10% significance levels.

The long-term characteristics of a time series are revealed by determining how the variable value in the previous 
period affects the current period. In order to understand the evolution of the time series, it is necessary to perform 
regression analysis of the values in each period compared to previous periods. The unit root analysis method 
used to determine the stationarity of the series is an effective tool for evaluating this process (Tarı, 2014: 387; 
Aydoğdu, 2024: 243). In this context, Table 4 includes Augmented Dickey Fuller (ADF), Phillips-Perron (PP) and 
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Kwiatkowski, Phillips, Schmidt and Shin (KPSS) unit root test results to determine the stationarity of the series 
examined within the scope of the research. While ADF and PP tests indicate the case of unit root, non-stationarity 
or I[1] with 

return belongs to Bitcoin and Ethereum; When evaluated in terms of volatility, it can be 
seen that Bitcoin has the highest standard deviation in the examined data range and is the 
GEPU with the lowest standard deviation. It can be seen that the coefficients of all return 
series are positive and right-skewed. It is seen that the kurtosis values are positive and 
greater than three and the series have an extremely flat (leptokortic) structure. Positive 
skewness coefficients indicate that positive returns occur more frequently than negative 
extreme returns. When the Jarque-Bera test statistics, which test the normality assumption 
of all variables, were evaluated, it was confirmed that the return series did not comply 
with the normal distribution. This result provides an important reason for using the 
wavelet-based DCC-GARCH approach, which does not make any distributional 
assumptions, to examine the relationships between markets. Before performing the 
wavelet-based DCC-GARCH analysis, unit root tests were carried out to determine 
whether the return series were stationary. 
Table 4. Unit Root Tests of Price and Return Series of Variables 
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2014: 387; Aydoğdu, 2024: 243). In this context, Table 4 includes Augmented Dickey 
Fuller (ADF), Phillips-Perron (PP) and Kwiatkowski, Phillips, Schmidt and Shin (KPSS) 
unit root test results to determine the stationarity of the series examined within the scope 
of the research. While ADF and PP tests indicate the case of unit root, non-stationarity or 
I[1] with "𝐻𝐻𝐻𝐻0(null hypothesis)"; KPSS test indicates the I[0] process, in other words, 
stasis (Şahin Dağlı and Çelik, 2022; 2198). According to the ADF and PP tests applied to 
Bitcoin, Ethereum, GEPU and VIX returns, it is seen that the unit root 𝐻𝐻𝐻𝐻0  hypothesis is 
rejected, and for the KPSS test statistic result, the I[0] process is reached and 𝐻𝐻𝐻𝐻0 cannot 
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Constant 
and Trend -2.5251 -1.9965 0.1686 -8.9934*** -9.6142*** 0.0469 
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Constant 0.7220 -1.1838 0.8735 -8.2236*** -8.5232*** 0.0766 

Constant 
and Trend -2.1279 -2.2658 0.0869 -8.2061*** -8.4822*** 0.0568 

GEPU 
Constant -2.9564 -2.6875 0.9488 -15.1740*** -15.9600*** 0.2318 
Constant 
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Constant -5.3098 -5.1646 0.4754 -11.59680*** -27.2617*** 0.1622 
Constant 
and Trend -5.5897 -5.5029 0.1156 -11.5509*** -27.2626*** 0.1593 

(null hypothesis)”; KPSS test indicates the I[0] process, in other words, stasis (Şahin Dağlı and 
Çelik, 2022; 2198). According to the ADF and PP tests applied to Bitcoin, Ethereum, GEPU and VIX returns, 
it is seen that the unit root 

return belongs to Bitcoin and Ethereum; When evaluated in terms of volatility, it can be 
seen that Bitcoin has the highest standard deviation in the examined data range and is the 
GEPU with the lowest standard deviation. It can be seen that the coefficients of all return 
series are positive and right-skewed. It is seen that the kurtosis values are positive and 
greater than three and the series have an extremely flat (leptokortic) structure. Positive 
skewness coefficients indicate that positive returns occur more frequently than negative 
extreme returns. When the Jarque-Bera test statistics, which test the normality assumption 
of all variables, were evaluated, it was confirmed that the return series did not comply 
with the normal distribution. This result provides an important reason for using the 
wavelet-based DCC-GARCH approach, which does not make any distributional 
assumptions, to examine the relationships between markets. Before performing the 
wavelet-based DCC-GARCH analysis, unit root tests were carried out to determine 
whether the return series were stationary. 
Table 4. Unit Root Tests of Price and Return Series of Variables 
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Fuller (ADF), Phillips-Perron (PP) and Kwiatkowski, Phillips, Schmidt and Shin (KPSS) 
unit root test results to determine the stationarity of the series examined within the scope 
of the research. While ADF and PP tests indicate the case of unit root, non-stationarity or 
I[1] with "𝐻𝐻𝐻𝐻0(null hypothesis)"; KPSS test indicates the I[0] process, in other words, 
stasis (Şahin Dağlı and Çelik, 2022; 2198). According to the ADF and PP tests applied to 
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rejected, and for the KPSS test statistic result, the I[0] process is reached and 𝐻𝐻𝐻𝐻0 cannot 

 
Price Return 

Model          ADF                 PP              KPSS             ADF                PP                   KPSS           

 
Bitcoin 

Constant -0.7065 -0.1610 1.1851 -9.5077*** -9.4382*** 0.1863 
Constant 
and Trend -2.5251 -1.9965 0.1686 -8.9934*** -9.6142*** 0.0469 

Ethereum 
Constant 0.7220 -1.1838 0.8735 -8.2236*** -8.5232*** 0.0766 

Constant 
and Trend -2.1279 -2.2658 0.0869 -8.2061*** -8.4822*** 0.0568 

GEPU 
Constant -2.9564 -2.6875 0.9488 -15.1740*** -15.9600*** 0.2318 
Constant 
and Trend -3.1453 -2.8006 0.1558 -15.2393*** -16.0917*** 0.1117 

VIX 
Constant -5.3098 -5.1646 0.4754 -11.59680*** -27.2617*** 0.1622 
Constant 
and Trend -5.5897 -5.5029 0.1156 -11.5509*** -27.2626*** 0.1593 

 hypothesis is rejected, and for the KPSS test statistic result, the I[0] process is 
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return belongs to Bitcoin and Ethereum; When evaluated in terms of volatility, it can be 
seen that Bitcoin has the highest standard deviation in the examined data range and is the 
GEPU with the lowest standard deviation. It can be seen that the coefficients of all return 
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greater than three and the series have an extremely flat (leptokortic) structure. Positive 
skewness coefficients indicate that positive returns occur more frequently than negative 
extreme returns. When the Jarque-Bera test statistics, which test the normality assumption 
of all variables, were evaluated, it was confirmed that the return series did not comply 
with the normal distribution. This result provides an important reason for using the 
wavelet-based DCC-GARCH approach, which does not make any distributional 
assumptions, to examine the relationships between markets. Before performing the 
wavelet-based DCC-GARCH analysis, unit root tests were carried out to determine 
whether the return series were stationary. 
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Fuller (ADF), Phillips-Perron (PP) and Kwiatkowski, Phillips, Schmidt and Shin (KPSS) 
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 cannot be rejected. As a result, it was concluded that the series do not contain unit roots and have 
a stationary structure.

Tables 5, 6, 7 and 8 show the predictions of DCC-GARCH (1,1) models for return series disaggregated according 
to raw data and four different time scales. The coefficient 𝛼 shows the effect of standardized shocks 

be rejected. As a result, it was concluded that the series do not contain unit roots and have 
a stationary structure. 
Tables 5, 6, 7 and 8 show the predictions of DCC-GARCH (1,1) models for return series 
disaggregated according to raw data and four different time scales. The coefficient 𝛼𝛼𝛼𝛼  
shows the effect of standardized shocks (𝜂𝜂𝜂𝜂𝑡𝑡𝑡𝑡−1ή𝑡𝑡𝑡𝑡−1) and the coefficient 𝛽𝛽𝛽𝛽  shows the effect 
of lagged dynamic conditional correlations 𝑄𝑄𝑄𝑄𝑡𝑡𝑡𝑡−1 on the dynamic conditional correlations 
in the current period. Statistically significant values of the 𝛼𝛼𝛼𝛼  coefficient indicate short-
term permanence, while large and statistically significant values of the 𝛽𝛽𝛽𝛽  coefficient 
indicate long-term permanence. 
Table 5. Analysis Results for VIX-Bitcoin Raw Data and Return Scales 
 

Panel A: 
Raw Data 𝛼𝛼𝛼𝛼  p 𝛽𝛽𝛽𝛽  p 𝛼𝛼𝛼𝛼 + 𝛽𝛽𝛽𝛽  
Bitcoin -0.0000 0.9999 0.5972 0.2570 0.5972 
Panel B: 
Return Scales      
D1 0.5375 0.0000 0.2277 0.1682 0.7652 
D2 0.2453 0.0023 0.6544 0.0000 0.8997 
D3 0.4548 0.0000 -0.0000 0.9999 0.4548 
D4 0.9855 0.0000 0.0143 0.0000 0.9998 

Table 5. includes the analysis findings of Fear index (VIX) and Bitcoin raw data and 
different time scales. According to the findings, it can be concluded that the 𝛼𝛼𝛼𝛼  and 𝛽𝛽𝛽𝛽  
coefficients of Bitcoin raw data returns are not significant, and that the shocks and 
dynamic conditional correlations in the past period have no effect on the dynamic 
conditional correlations of VIX and Bitcoin returns in the current period. This result is 
also an indication that there is no dynamic relationship or volatility interaction between 
the Fear index and Bitcoin returns. When the predictions of wavelet-based DCC-
GARCH(1,1) models (from D1 to D4) are examined; It took values of 𝛼𝛼𝛼𝛼 + 𝛽𝛽𝛽𝛽  <1 at all time 
scales. However, it was concluded that 𝛼𝛼𝛼𝛼 +𝛽𝛽𝛽𝛽  <1 was statistically significant in the D2 and 
D4 time scales. This finding shows that dynamic correlations fluctuate around a fixed 
level in 4-8 month and 16-32 month investment cycles and have a process that tends to 
return to the mean. 

The 𝛼𝛼𝛼𝛼  coefficient estimates of the DCC-GARCH(1,1) models at all time scales are 
statistically significant at the 1% significance level, but the statistical significance of the 
𝛽𝛽𝛽𝛽  coefficients is significant at the 1% significance level in D2 and D4, but the 𝛽𝛽𝛽𝛽  
coefficients are not significant at the D1 and D3 time scales. has been observed. When 
these findings are evaluated, it can be said that past period conditional correlations on D1 
and D3 time scales do not have an effect on current period correlations, in other words, 
volatility shocks do not show permanence in 2-4 month and 8-16 month investment 
cycles. It can even be stated that there is no volatility interaction in these investment 
cycles. On the other hand, it can be stated that there are time-varying correlations between 
VIX and Bitcoin returns on the D2 and D4 time scales, and that past volatility shocks and 
conditional correlations are effective on these correlations. In other words, volatility 
shocks are permanent in both 4-8 month and 16-32 month investment cycles. In addition, 
in the 4-8 and 16-32 month investment cycles, although 𝛼𝛼𝛼𝛼 + 𝛽𝛽𝛽𝛽 <1, it is very close to l 
(one); with VIX, it can be stated that conditional volatility for Bitcoin is more likely to be 
permanent. 
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in the 4-8 and 16-32 month investment cycles, although 𝛼𝛼𝛼𝛼 + 𝛽𝛽𝛽𝛽 <1, it is very close to l 
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𝛽𝛽𝛽𝛽  coefficients is significant at the 1% significance level in D2 and D4, but the 𝛽𝛽𝛽𝛽  
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cycles. It can even be stated that there is no volatility interaction in these investment 
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indicate long-term permanence. 
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Table 5. includes the analysis findings of Fear index (VIX) and Bitcoin raw data and 
different time scales. According to the findings, it can be concluded that the 𝛼𝛼𝛼𝛼  and 𝛽𝛽𝛽𝛽  
coefficients of Bitcoin raw data returns are not significant, and that the shocks and 
dynamic conditional correlations in the past period have no effect on the dynamic 
conditional correlations of VIX and Bitcoin returns in the current period. This result is 
also an indication that there is no dynamic relationship or volatility interaction between 
the Fear index and Bitcoin returns. When the predictions of wavelet-based DCC-
GARCH(1,1) models (from D1 to D4) are examined; It took values of 𝛼𝛼𝛼𝛼 + 𝛽𝛽𝛽𝛽  <1 at all time 
scales. However, it was concluded that 𝛼𝛼𝛼𝛼 +𝛽𝛽𝛽𝛽  <1 was statistically significant in the D2 and 
D4 time scales. This finding shows that dynamic correlations fluctuate around a fixed 
level in 4-8 month and 16-32 month investment cycles and have a process that tends to 
return to the mean. 

The 𝛼𝛼𝛼𝛼  coefficient estimates of the DCC-GARCH(1,1) models at all time scales are 
statistically significant at the 1% significance level, but the statistical significance of the 
𝛽𝛽𝛽𝛽  coefficients is significant at the 1% significance level in D2 and D4, but the 𝛽𝛽𝛽𝛽  
coefficients are not significant at the D1 and D3 time scales. has been observed. When 
these findings are evaluated, it can be said that past period conditional correlations on D1 
and D3 time scales do not have an effect on current period correlations, in other words, 
volatility shocks do not show permanence in 2-4 month and 8-16 month investment 
cycles. It can even be stated that there is no volatility interaction in these investment 
cycles. On the other hand, it can be stated that there are time-varying correlations between 
VIX and Bitcoin returns on the D2 and D4 time scales, and that past volatility shocks and 
conditional correlations are effective on these correlations. In other words, volatility 
shocks are permanent in both 4-8 month and 16-32 month investment cycles. In addition, 
in the 4-8 and 16-32 month investment cycles, although 𝛼𝛼𝛼𝛼 + 𝛽𝛽𝛽𝛽 <1, it is very close to l 
(one); with VIX, it can be stated that conditional volatility for Bitcoin is more likely to be 
permanent. 
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be rejected. As a result, it was concluded that the series do not contain unit roots and have 
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Tables 5, 6, 7 and 8 show the predictions of DCC-GARCH (1,1) models for return series 
disaggregated according to raw data and four different time scales. The coefficient 𝛼𝛼𝛼𝛼  
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of lagged dynamic conditional correlations 𝑄𝑄𝑄𝑄𝑡𝑡𝑡𝑡−1 on the dynamic conditional correlations 
in the current period. Statistically significant values of the 𝛼𝛼𝛼𝛼  coefficient indicate short-
term permanence, while large and statistically significant values of the 𝛽𝛽𝛽𝛽  coefficient 
indicate long-term permanence. 
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Panel A: 
Raw Data 𝛼𝛼𝛼𝛼  p 𝛽𝛽𝛽𝛽  p 𝛼𝛼𝛼𝛼 + 𝛽𝛽𝛽𝛽  
Bitcoin -0.0000 0.9999 0.5972 0.2570 0.5972 
Panel B: 
Return Scales      
D1 0.5375 0.0000 0.2277 0.1682 0.7652 
D2 0.2453 0.0023 0.6544 0.0000 0.8997 
D3 0.4548 0.0000 -0.0000 0.9999 0.4548 
D4 0.9855 0.0000 0.0143 0.0000 0.9998 
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coefficients of Bitcoin raw data returns are not significant, and that the shocks and 
dynamic conditional correlations in the past period have no effect on the dynamic 
conditional correlations of VIX and Bitcoin returns in the current period. This result is 
also an indication that there is no dynamic relationship or volatility interaction between 
the Fear index and Bitcoin returns. When the predictions of wavelet-based DCC-
GARCH(1,1) models (from D1 to D4) are examined; It took values of 𝛼𝛼𝛼𝛼 + 𝛽𝛽𝛽𝛽  <1 at all time 
scales. However, it was concluded that 𝛼𝛼𝛼𝛼 +𝛽𝛽𝛽𝛽  <1 was statistically significant in the D2 and 
D4 time scales. This finding shows that dynamic correlations fluctuate around a fixed 
level in 4-8 month and 16-32 month investment cycles and have a process that tends to 
return to the mean. 

The 𝛼𝛼𝛼𝛼  coefficient estimates of the DCC-GARCH(1,1) models at all time scales are 
statistically significant at the 1% significance level, but the statistical significance of the 
𝛽𝛽𝛽𝛽  coefficients is significant at the 1% significance level in D2 and D4, but the 𝛽𝛽𝛽𝛽  
coefficients are not significant at the D1 and D3 time scales. has been observed. When 
these findings are evaluated, it can be said that past period conditional correlations on D1 
and D3 time scales do not have an effect on current period correlations, in other words, 
volatility shocks do not show permanence in 2-4 month and 8-16 month investment 
cycles. It can even be stated that there is no volatility interaction in these investment 
cycles. On the other hand, it can be stated that there are time-varying correlations between 
VIX and Bitcoin returns on the D2 and D4 time scales, and that past volatility shocks and 
conditional correlations are effective on these correlations. In other words, volatility 
shocks are permanent in both 4-8 month and 16-32 month investment cycles. In addition, 
in the 4-8 and 16-32 month investment cycles, although 𝛼𝛼𝛼𝛼 + 𝛽𝛽𝛽𝛽 <1, it is very close to l 
(one); with VIX, it can be stated that conditional volatility for Bitcoin is more likely to be 
permanent. 
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Table 6. Analysis Results for GEPU-Bitcoin Raw Data and Return ScalesTable 6. Analysis Results for GEPU-Bitcoin Raw Data and Return Scales 
 

Panel A: 
Raw Data 𝛼𝛼𝛼𝛼  p 𝛽𝛽𝛽𝛽  p 𝛼𝛼𝛼𝛼 + 𝛽𝛽𝛽𝛽  
Bitcoin -0.0000 0.9999 0.0891 0.7611 0.0891 
Panel B: 
Return Scales      
D1 0.5647 0.0000 0.1465 0.1721 0.7103 
D2 0.4292 0.0000 0.4567 0.0000 0.8859 
D3 0.2816 0.0000 -0.0000 0.9999 0.2816 
D4 0.2295 0.0000 -0.0000 0.9999 0.2295 

Table 6. shows the findings regarding GEPU and Bitcoin raw data and different time 
scales. According to the findings, the 𝛼𝛼𝛼𝛼  and 𝛽𝛽𝛽𝛽  parameter coefficients regarding Bitcoin 
raw data returns are not statistically significant. Therefore, shocks and dynamic 
conditional correlations in the past period are an indication that GEPU and Bitcoin returns 
in the current period have no effect on dynamic conditional correlations. In other words, 
it can be stated that there is neither a dynamic relationship nor a volatility interaction 
between the global economic political index and Bitcoin returns. When the predictions of 
wavelet-based DCC-GARCH(1,1) models (from D1 to D4) are examined; The 𝛼𝛼𝛼𝛼  
coefficient estimates of the DCC-GARCH(1,1) models at all time scales are positive and 
statistically significant at the 1% significance level, but the statistical significance of the 
𝛽𝛽𝛽𝛽  coefficients is only significant at the D2 1% significance level; However, it was 
concluded that the 𝛽𝛽𝛽𝛽  coefficients were not significant at the time scales D1, D3  and D4. 
When these findings are evaluated; In the investment cycle periods of 2-4 months, 8-16 
months and 16-32 months, past period conditional correlations do not have an effect on 
current period correlations, in other words, volatility shocks are affected according to the 
investment cycle periods of 2-4 months, 8-16 and 16-32 months. It can be stated that it is 
not permanent. It can even be stated that there is no volatility interaction during these 
investment cycle periods. On the other hand, it can be stated that there are time-varying 
correlations between GEPU and Bitcoin returns during D2, that is, the 4-8 month 
investment cycle period, and that past volatility shocks and conditional correlations are 
effective on these correlations. In other words, volatility shocks are permanent in the 4-8 
month investment cycle. In addition, in the investment cycle period of 4-8 months, 
although 𝛼𝛼𝛼𝛼 + 𝛽𝛽𝛽𝛽 <1, it is very close to l (one); with GEPU, it can be stated that conditional 
volatility for Bitcoin is more likely to be permanent. 
Table 7. Analysis Results for VIX-Ethereum Raw Data and Return Scales 
 

Panel A: 
Raw Data 𝛼𝛼𝛼𝛼  p 𝛽𝛽𝛽𝛽  p 𝛼𝛼𝛼𝛼 + 𝛽𝛽𝛽𝛽  
Ethereum -0.0000 0.9999 0.3350 0.1654 0.3350 
Panel B: 
Return Scales      
D1 0.3251 0.0469 0.3188 0.4781 0.6439 
D2 0.1792 0.2102 0.6596 0.0169 0.8388 
D3 -0.0013 0.9589 0.1807 0.0000 0.1794 
D4 0.8100 0.0000 -0.0000 0.9999 0.8100 

 
Table 7. includes the Fear index (VIX) and Ethereum raw data and analysis findings for 
different time scales. According to these findings, the 𝛼𝛼𝛼𝛼  and 𝛽𝛽𝛽𝛽  parameter estimation 
coefficients of Ethereum raw data returns are not statistically significant. According to 
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Table 6. shows the findings regarding GEPU and Bitcoin raw data and different time 
scales. According to the findings, the 𝛼𝛼𝛼𝛼  and 𝛽𝛽𝛽𝛽  parameter coefficients regarding Bitcoin 
raw data returns are not statistically significant. Therefore, shocks and dynamic 
conditional correlations in the past period are an indication that GEPU and Bitcoin returns 
in the current period have no effect on dynamic conditional correlations. In other words, 
it can be stated that there is neither a dynamic relationship nor a volatility interaction 
between the global economic political index and Bitcoin returns. When the predictions of 
wavelet-based DCC-GARCH(1,1) models (from D1 to D4) are examined; The 𝛼𝛼𝛼𝛼  
coefficient estimates of the DCC-GARCH(1,1) models at all time scales are positive and 
statistically significant at the 1% significance level, but the statistical significance of the 
𝛽𝛽𝛽𝛽  coefficients is only significant at the D2 1% significance level; However, it was 
concluded that the 𝛽𝛽𝛽𝛽  coefficients were not significant at the time scales D1, D3  and D4. 
When these findings are evaluated; In the investment cycle periods of 2-4 months, 8-16 
months and 16-32 months, past period conditional correlations do not have an effect on 
current period correlations, in other words, volatility shocks are affected according to the 
investment cycle periods of 2-4 months, 8-16 and 16-32 months. It can be stated that it is 
not permanent. It can even be stated that there is no volatility interaction during these 
investment cycle periods. On the other hand, it can be stated that there are time-varying 
correlations between GEPU and Bitcoin returns during D2, that is, the 4-8 month 
investment cycle period, and that past volatility shocks and conditional correlations are 
effective on these correlations. In other words, volatility shocks are permanent in the 4-8 
month investment cycle. In addition, in the investment cycle period of 4-8 months, 
although 𝛼𝛼𝛼𝛼 + 𝛽𝛽𝛽𝛽 <1, it is very close to l (one); with GEPU, it can be stated that conditional 
volatility for Bitcoin is more likely to be permanent. 
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Table 6. shows the findings regarding GEPU and Bitcoin raw data and different time 
scales. According to the findings, the 𝛼𝛼𝛼𝛼  and 𝛽𝛽𝛽𝛽  parameter coefficients regarding Bitcoin 
raw data returns are not statistically significant. Therefore, shocks and dynamic 
conditional correlations in the past period are an indication that GEPU and Bitcoin returns 
in the current period have no effect on dynamic conditional correlations. In other words, 
it can be stated that there is neither a dynamic relationship nor a volatility interaction 
between the global economic political index and Bitcoin returns. When the predictions of 
wavelet-based DCC-GARCH(1,1) models (from D1 to D4) are examined; The 𝛼𝛼𝛼𝛼  
coefficient estimates of the DCC-GARCH(1,1) models at all time scales are positive and 
statistically significant at the 1% significance level, but the statistical significance of the 
𝛽𝛽𝛽𝛽  coefficients is only significant at the D2 1% significance level; However, it was 
concluded that the 𝛽𝛽𝛽𝛽  coefficients were not significant at the time scales D1, D3  and D4. 
When these findings are evaluated; In the investment cycle periods of 2-4 months, 8-16 
months and 16-32 months, past period conditional correlations do not have an effect on 
current period correlations, in other words, volatility shocks are affected according to the 
investment cycle periods of 2-4 months, 8-16 and 16-32 months. It can be stated that it is 
not permanent. It can even be stated that there is no volatility interaction during these 
investment cycle periods. On the other hand, it can be stated that there are time-varying 
correlations between GEPU and Bitcoin returns during D2, that is, the 4-8 month 
investment cycle period, and that past volatility shocks and conditional correlations are 
effective on these correlations. In other words, volatility shocks are permanent in the 4-8 
month investment cycle. In addition, in the investment cycle period of 4-8 months, 
although 𝛼𝛼𝛼𝛼 + 𝛽𝛽𝛽𝛽 <1, it is very close to l (one); with GEPU, it can be stated that conditional 
volatility for Bitcoin is more likely to be permanent. 
Table 7. Analysis Results for VIX-Ethereum Raw Data and Return Scales 
 

Panel A: 
Raw Data 𝛼𝛼𝛼𝛼  p 𝛽𝛽𝛽𝛽  p 𝛼𝛼𝛼𝛼 + 𝛽𝛽𝛽𝛽  
Ethereum -0.0000 0.9999 0.3350 0.1654 0.3350 
Panel B: 
Return Scales      
D1 0.3251 0.0469 0.3188 0.4781 0.6439 
D2 0.1792 0.2102 0.6596 0.0169 0.8388 
D3 -0.0013 0.9589 0.1807 0.0000 0.1794 
D4 0.8100 0.0000 -0.0000 0.9999 0.8100 
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Table 6. shows the findings regarding GEPU and Bitcoin raw data and different time 
scales. According to the findings, the 𝛼𝛼𝛼𝛼  and 𝛽𝛽𝛽𝛽  parameter coefficients regarding Bitcoin 
raw data returns are not statistically significant. Therefore, shocks and dynamic 
conditional correlations in the past period are an indication that GEPU and Bitcoin returns 
in the current period have no effect on dynamic conditional correlations. In other words, 
it can be stated that there is neither a dynamic relationship nor a volatility interaction 
between the global economic political index and Bitcoin returns. When the predictions of 
wavelet-based DCC-GARCH(1,1) models (from D1 to D4) are examined; The 𝛼𝛼𝛼𝛼  
coefficient estimates of the DCC-GARCH(1,1) models at all time scales are positive and 
statistically significant at the 1% significance level, but the statistical significance of the 
𝛽𝛽𝛽𝛽  coefficients is only significant at the D2 1% significance level; However, it was 
concluded that the 𝛽𝛽𝛽𝛽  coefficients were not significant at the time scales D1, D3  and D4. 
When these findings are evaluated; In the investment cycle periods of 2-4 months, 8-16 
months and 16-32 months, past period conditional correlations do not have an effect on 
current period correlations, in other words, volatility shocks are affected according to the 
investment cycle periods of 2-4 months, 8-16 and 16-32 months. It can be stated that it is 
not permanent. It can even be stated that there is no volatility interaction during these 
investment cycle periods. On the other hand, it can be stated that there are time-varying 
correlations between GEPU and Bitcoin returns during D2, that is, the 4-8 month 
investment cycle period, and that past volatility shocks and conditional correlations are 
effective on these correlations. In other words, volatility shocks are permanent in the 4-8 
month investment cycle. In addition, in the investment cycle period of 4-8 months, 
although 𝛼𝛼𝛼𝛼 + 𝛽𝛽𝛽𝛽 <1, it is very close to l (one); with GEPU, it can be stated that conditional 
volatility for Bitcoin is more likely to be permanent. 
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Table 7. includes the Fear index (VIX) and Ethereum raw data and analysis findings for 
different time scales. According to these findings, the 𝛼𝛼𝛼𝛼  and 𝛽𝛽𝛽𝛽  parameter estimation 
coefficients of Ethereum raw data returns are not statistically significant. According to 
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According to these findings, the 𝛼 and 𝛽 parameter estimation coefficients of Ethereum raw data returns are not 
statistically significant. According to this result, volatility shocks and dynamic conditional correlations in the past 
period show that there is no effect on the fear index and Ethereum returns dynamic conditional correlations in 
the current period. In other words, it is an indication that there is no volatility interaction between the fear index 
and Ethereum returns. When the estimates of the wavelet-based DCC-GARCH(1,1) models

this result, volatility shocks and dynamic conditional correlations in the past period show 
that there is no effect on the fear index and Ethereum returns dynamic conditional 
correlations in the current period. In other words, it is an indication that there is no 
volatility interaction between the fear index and Ethereum returns. When the estimates of 
the wavelet-based DCC-GARCH(1,1) models (from D1 to D4) were examined, it was 
determined that the 𝛼𝛼𝛼𝛼  coefficient estimates of the DCC-GARCH (1,1) models were not 
statistically significant at all time scales. When the 𝛽𝛽𝛽𝛽  coefficient estimates are examined, 
it is not statistically significant in the 2-4 month and 16-32 month investment cycles, but 
it is statistically significant in the 4-8 month and 8-16 month investment cycles. 
According to these findings, it has been determined that there is no relationship between 
the fear index and volatility shocks and dynamic correlations in the past period, volatility 
shocks and dynamic conditional correlations in the current period in Ethereum returns 
according to different time scales. 
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Table 8. includes the Global Economic Political Uncertainty Index (GEPU) and Ethereum 
raw data and analysis findings for different time scales. According to the findings, it can 
be concluded that the 𝛼𝛼𝛼𝛼  and 𝛽𝛽𝛽𝛽  coefficients of Ethereum raw data returns are not 
significant, and that the shocks and dynamic conditional correlations in the past period 
have no effect on the global economic political uncertainty index and Ethereum returns 
dynamic conditional correlations in the current period. This result is also an indication 
that there is no dynamic relationship or volatility interaction between the global economic 
political uncertainty index and Ethereum returns. When the predictions of wavelet-based 
DCC-GARCH(1,1) models (from D1 to D4) are examined; It took values of 𝛼𝛼𝛼𝛼 + 𝛽𝛽𝛽𝛽 <1 at 
all time scales. However, it was concluded that 𝛼𝛼𝛼𝛼 + 𝛽𝛽𝛽𝛽 <1 was statistically significant in 
the D2 and D4 time scales. This finding shows that dynamic correlations fluctuate around 
a fixed level in the 4-8 month and 16-32 month investment cycles and have a process that 
tends to return to the mean. The 𝛼𝛼𝛼𝛼  coefficient estimates of the DCC-GARCH(1,1) models 
at all time scales are positive and statistically significant at the 1% significance level, but 
the statistical significance of the 𝛽𝛽𝛽𝛽  coefficients is significant at the 1% significance level 
in D2 and D4, but the 𝛽𝛽𝛽𝛽  coefficients are significant at D1 and D3 time scales. It was 
observed that it was not significant. 
When these findings are evaluated, it can be said that past period conditional correlations 
have no effect on current period correlations in D1 and D3 time scales, in other words, 
volatility shocks do not show permanence in 2-4 month and 8-16 month investment 
cycles. It can even be stated that there is no volatility interaction in these investment 
cycles. On the other hand, it can be stated that there are time-varying correlations between 
GEPU and Ethereum returns on the D2 and D4, time scales, and past volatility shocks and 
conditional correlations are effective on these correlations. In other words, volatility 

 
were examined, it was determined that the 𝛼 coefficient estimates of the DCC-GARCH (1,1) models were not 
statistically significant at all time scales. When the 𝛽 coefficient estimates are examined, it is not statistically 
significant in the 2-4 month and 16-32 month investment cycles, but it is statistically significant in the 4-8 month 
and 8-16 month investment cycles. According to these findings, it has been determined that there is no relationship 
between the fear index and volatility shocks and dynamic correlations in the past period, volatility shocks and 
dynamic conditional correlations in the current period in Ethereum returns according to different time scales.
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this result, volatility shocks and dynamic conditional correlations in the past period show 
that there is no effect on the fear index and Ethereum returns dynamic conditional 
correlations in the current period. In other words, it is an indication that there is no 
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determined that the 𝛼𝛼𝛼𝛼  coefficient estimates of the DCC-GARCH (1,1) models were not 
statistically significant at all time scales. When the 𝛽𝛽𝛽𝛽  coefficient estimates are examined, 
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Table 8. includes the Global Economic Political Uncertainty Index (GEPU) and Ethereum 
raw data and analysis findings for different time scales. According to the findings, it can 
be concluded that the 𝛼𝛼𝛼𝛼  and 𝛽𝛽𝛽𝛽  coefficients of Ethereum raw data returns are not 
significant, and that the shocks and dynamic conditional correlations in the past period 
have no effect on the global economic political uncertainty index and Ethereum returns 
dynamic conditional correlations in the current period. This result is also an indication 
that there is no dynamic relationship or volatility interaction between the global economic 
political uncertainty index and Ethereum returns. When the predictions of wavelet-based 
DCC-GARCH(1,1) models (from D1 to D4) are examined; It took values of 𝛼𝛼𝛼𝛼 + 𝛽𝛽𝛽𝛽 <1 at 
all time scales. However, it was concluded that 𝛼𝛼𝛼𝛼 + 𝛽𝛽𝛽𝛽 <1 was statistically significant in 
the D2 and D4 time scales. This finding shows that dynamic correlations fluctuate around 
a fixed level in the 4-8 month and 16-32 month investment cycles and have a process that 
tends to return to the mean. The 𝛼𝛼𝛼𝛼  coefficient estimates of the DCC-GARCH(1,1) models 
at all time scales are positive and statistically significant at the 1% significance level, but 
the statistical significance of the 𝛽𝛽𝛽𝛽  coefficients is significant at the 1% significance level 
in D2 and D4, but the 𝛽𝛽𝛽𝛽  coefficients are significant at D1 and D3 time scales. It was 
observed that it was not significant. 
When these findings are evaluated, it can be said that past period conditional correlations 
have no effect on current period correlations in D1 and D3 time scales, in other words, 
volatility shocks do not show permanence in 2-4 month and 8-16 month investment 
cycles. It can even be stated that there is no volatility interaction in these investment 
cycles. On the other hand, it can be stated that there are time-varying correlations between 
GEPU and Ethereum returns on the D2 and D4, time scales, and past volatility shocks and 
conditional correlations are effective on these correlations. In other words, volatility 
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this result, volatility shocks and dynamic conditional correlations in the past period show 
that there is no effect on the fear index and Ethereum returns dynamic conditional 
correlations in the current period. In other words, it is an indication that there is no 
volatility interaction between the fear index and Ethereum returns. When the estimates of 
the wavelet-based DCC-GARCH(1,1) models (from D1 to D4) were examined, it was 
determined that the 𝛼𝛼𝛼𝛼  coefficient estimates of the DCC-GARCH (1,1) models were not 
statistically significant at all time scales. When the 𝛽𝛽𝛽𝛽  coefficient estimates are examined, 
it is not statistically significant in the 2-4 month and 16-32 month investment cycles, but 
it is statistically significant in the 4-8 month and 8-16 month investment cycles. 
According to these findings, it has been determined that there is no relationship between 
the fear index and volatility shocks and dynamic correlations in the past period, volatility 
shocks and dynamic conditional correlations in the current period in Ethereum returns 
according to different time scales. 
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Table 8. includes the Global Economic Political Uncertainty Index (GEPU) and Ethereum 
raw data and analysis findings for different time scales. According to the findings, it can 
be concluded that the 𝛼𝛼𝛼𝛼  and 𝛽𝛽𝛽𝛽  coefficients of Ethereum raw data returns are not 
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GEPU and Ethereum returns on the D2 and D4, time scales, and past volatility shocks and 
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determined that the 𝛼𝛼𝛼𝛼  coefficient estimates of the DCC-GARCH (1,1) models were not 
statistically significant at all time scales. When the 𝛽𝛽𝛽𝛽  coefficient estimates are examined, 
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be concluded that the 𝛼𝛼𝛼𝛼  and 𝛽𝛽𝛽𝛽  coefficients of Ethereum raw data returns are not 
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be concluded that the 𝛼𝛼𝛼𝛼  and 𝛽𝛽𝛽𝛽  coefficients of Ethereum raw data returns are not 
significant, and that the shocks and dynamic conditional correlations in the past period 
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cycles. It can even be stated that there is no volatility interaction in these investment 
cycles. On the other hand, it can be stated that there are time-varying correlations between 
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determined that the 𝛼𝛼𝛼𝛼  coefficient estimates of the DCC-GARCH (1,1) models were not 
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observed that it was not significant. 
When these findings are evaluated, it can be said that past period conditional correlations 
have no effect on current period correlations in D1 and D3 time scales, in other words, 
volatility shocks do not show permanence in 2-4 month and 8-16 month investment 
cycles. It can even be stated that there is no volatility interaction in these investment 
cycles. On the other hand, it can be stated that there are time-varying correlations between 
GEPU and Ethereum returns on the D2 and D4, time scales, and past volatility shocks and 
conditional correlations are effective on these correlations. In other words, volatility 
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that there is no effect on the fear index and Ethereum returns dynamic conditional 
correlations in the current period. In other words, it is an indication that there is no 
volatility interaction between the fear index and Ethereum returns. When the estimates of 
the wavelet-based DCC-GARCH(1,1) models (from D1 to D4) were examined, it was 
determined that the 𝛼𝛼𝛼𝛼  coefficient estimates of the DCC-GARCH (1,1) models were not 
statistically significant at all time scales. When the 𝛽𝛽𝛽𝛽  coefficient estimates are examined, 
it is not statistically significant in the 2-4 month and 16-32 month investment cycles, but 
it is statistically significant in the 4-8 month and 8-16 month investment cycles. 
According to these findings, it has been determined that there is no relationship between 
the fear index and volatility shocks and dynamic correlations in the past period, volatility 
shocks and dynamic conditional correlations in the current period in Ethereum returns 
according to different time scales. 
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Table 8. includes the Global Economic Political Uncertainty Index (GEPU) and Ethereum 
raw data and analysis findings for different time scales. According to the findings, it can 
be concluded that the 𝛼𝛼𝛼𝛼  and 𝛽𝛽𝛽𝛽  coefficients of Ethereum raw data returns are not 
significant, and that the shocks and dynamic conditional correlations in the past period 
have no effect on the global economic political uncertainty index and Ethereum returns 
dynamic conditional correlations in the current period. This result is also an indication 
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political uncertainty index and Ethereum returns. When the predictions of wavelet-based 
DCC-GARCH(1,1) models (from D1 to D4) are examined; It took values of 𝛼𝛼𝛼𝛼 + 𝛽𝛽𝛽𝛽 <1 at 
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in D2 and D4, but the 𝛽𝛽𝛽𝛽  coefficients are significant at D1 and D3 time scales. It was 
observed that it was not significant. 
When these findings are evaluated, it can be said that past period conditional correlations 
have no effect on current period correlations in D1 and D3 time scales, in other words, 
volatility shocks do not show permanence in 2-4 month and 8-16 month investment 
cycles. It can even be stated that there is no volatility interaction in these investment 
cycles. On the other hand, it can be stated that there are time-varying correlations between 
GEPU and Ethereum returns on the D2 and D4, time scales, and past volatility shocks and 
conditional correlations are effective on these correlations. In other words, volatility 
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this result, volatility shocks and dynamic conditional correlations in the past period show 
that there is no effect on the fear index and Ethereum returns dynamic conditional 
correlations in the current period. In other words, it is an indication that there is no 
volatility interaction between the fear index and Ethereum returns. When the estimates of 
the wavelet-based DCC-GARCH(1,1) models (from D1 to D4) were examined, it was 
determined that the 𝛼𝛼𝛼𝛼  coefficient estimates of the DCC-GARCH (1,1) models were not 
statistically significant at all time scales. When the 𝛽𝛽𝛽𝛽  coefficient estimates are examined, 
it is not statistically significant in the 2-4 month and 16-32 month investment cycles, but 
it is statistically significant in the 4-8 month and 8-16 month investment cycles. 
According to these findings, it has been determined that there is no relationship between 
the fear index and volatility shocks and dynamic correlations in the past period, volatility 
shocks and dynamic conditional correlations in the current period in Ethereum returns 
according to different time scales. 
Table 8. Analysis Results for GEPU-Ethereum Raw Data and Return Scales 
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Ethereum -0.0000 0.9999 0.4132 0.3956 0.4132 
Panel B: 
Return Scales      
D1 0.3023 0.0139 0.2152 0.2535 0.5175 
D2 0.3271 0.0112 0.4845 0.0020 0.8116 
D3 0.3239 0.0000 -0.0000 0.9999 0.3239 
D4 0.8268 0.0000 0.0883 0.0000 0.9151 

 
Table 8. includes the Global Economic Political Uncertainty Index (GEPU) and Ethereum 
raw data and analysis findings for different time scales. According to the findings, it can 
be concluded that the 𝛼𝛼𝛼𝛼  and 𝛽𝛽𝛽𝛽  coefficients of Ethereum raw data returns are not 
significant, and that the shocks and dynamic conditional correlations in the past period 
have no effect on the global economic political uncertainty index and Ethereum returns 
dynamic conditional correlations in the current period. This result is also an indication 
that there is no dynamic relationship or volatility interaction between the global economic 
political uncertainty index and Ethereum returns. When the predictions of wavelet-based 
DCC-GARCH(1,1) models (from D1 to D4) are examined; It took values of 𝛼𝛼𝛼𝛼 + 𝛽𝛽𝛽𝛽 <1 at 
all time scales. However, it was concluded that 𝛼𝛼𝛼𝛼 + 𝛽𝛽𝛽𝛽 <1 was statistically significant in 
the D2 and D4 time scales. This finding shows that dynamic correlations fluctuate around 
a fixed level in the 4-8 month and 16-32 month investment cycles and have a process that 
tends to return to the mean. The 𝛼𝛼𝛼𝛼  coefficient estimates of the DCC-GARCH(1,1) models 
at all time scales are positive and statistically significant at the 1% significance level, but 
the statistical significance of the 𝛽𝛽𝛽𝛽  coefficients is significant at the 1% significance level 
in D2 and D4, but the 𝛽𝛽𝛽𝛽  coefficients are significant at D1 and D3 time scales. It was 
observed that it was not significant. 
When these findings are evaluated, it can be said that past period conditional correlations 
have no effect on current period correlations in D1 and D3 time scales, in other words, 
volatility shocks do not show permanence in 2-4 month and 8-16 month investment 
cycles. It can even be stated that there is no volatility interaction in these investment 
cycles. On the other hand, it can be stated that there are time-varying correlations between 
GEPU and Ethereum returns on the D2 and D4, time scales, and past volatility shocks and 
conditional correlations are effective on these correlations. In other words, volatility 

, time scales, and past volatility shocks and conditional correlations are effective on 
these correlations. In other words, volatility shocks are permanent in both 4-8 month and 16-32 month investment 
cycles. In addition, in the 4-8 and 16-32 month investment cycles, although 𝛼+ 𝛽<1, it is very close to l (one); with 
GEPU, it can be said that conditional volatility for Ethereum is more likely to be permanent.

5. CONCLUSION

Cryptocurrencies have recently become an alternative investment tool and an area of regulation that attracts the 
attention of both individual investors and corporate authorities. However, the high volatility in cryptocurrencies 
and the impact of some international developments on cryptocurrencies worry investors. In this context, the 
relationship between crypto currencies and developments involving global economic and political uncertainty has 
become a matter of curiosity. Whether there is a dynamic interaction between crypto currencies and the global 
economic political uncertainty index and fear index, and the direction of the relationship, is a phenomenon that 
should be carefully evaluated by both investors and policy makers. Therefore, the purpose of this study is to 
examine the impact of price movements in the Global Economic Political Uncertainty Index (GEPU) and the Fear 
Index (VIX) on crypto currencies. Thus, it is aimed to contribute new empirical findings to the literature examining 
the volatility interaction between crypto currencies, global economic political uncertainty and the fear index, and 
to reveal important findings for investors and policy makers. For this purpose, firstly, index and crypto currencies 
(Bitcoin, Ethereum) return series were separated into different time scales by wavelet decomposition analysis and 
then examined with the DCC-GARCH method between these series. In the study, the period between GEPU, VIX 
and Bitcoin was April 2012-April 2024; monthly data for Ethereum between April 2016 and April 2024 used. 
While creating the data set of the study, these dates were determined due to data constraints for the variables.

As a result of the analysis; Findings were obtained in terms of the volatility interaction between cryptocurrencies 
and GEPU and VIX and four different time scales representing the short, medium and long term. The findings 
obtained based on raw data and disaggregated return series were evaluated separately. As a result of the analyzes 
carried out based on raw data; Analyzes based on raw data have obtained evidence that there is no volatility 
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interaction between cryptocurrencies (Bitcoin, Ethereum) and GEPU and VIX returns. According to this finding, 
it is an indication that the shocks and dynamic conditional correlations between Bitcoin and Ethereum returns and 
GEPU and VIX returns in the past period have no effect on the dynamic conditional correlations between Bitcoin 
and Ethereum returns and GEPU and VIX returns in the current period. This result can also be expressed as there 
is no dynamic relationship or volatility interaction between Bitcoin and Ethereum returns and GEPU and VIX 
returns. When the predictions of the wavelet-based DCC-GARCH(1,1) models were evaluated, it was concluded 
that 𝛼+ 𝛽<1 in the 

this result, volatility shocks and dynamic conditional correlations in the past period show 
that there is no effect on the fear index and Ethereum returns dynamic conditional 
correlations in the current period. In other words, it is an indication that there is no 
volatility interaction between the fear index and Ethereum returns. When the estimates of 
the wavelet-based DCC-GARCH(1,1) models (from D1 to D4) were examined, it was 
determined that the 𝛼𝛼𝛼𝛼  coefficient estimates of the DCC-GARCH (1,1) models were not 
statistically significant at all time scales. When the 𝛽𝛽𝛽𝛽  coefficient estimates are examined, 
it is not statistically significant in the 2-4 month and 16-32 month investment cycles, but 
it is statistically significant in the 4-8 month and 8-16 month investment cycles. 
According to these findings, it has been determined that there is no relationship between 
the fear index and volatility shocks and dynamic correlations in the past period, volatility 
shocks and dynamic conditional correlations in the current period in Ethereum returns 
according to different time scales. 
Table 8. Analysis Results for GEPU-Ethereum Raw Data and Return Scales 
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D3 0.3239 0.0000 -0.0000 0.9999 0.3239 
D4 0.8268 0.0000 0.0883 0.0000 0.9151 

 
Table 8. includes the Global Economic Political Uncertainty Index (GEPU) and Ethereum 
raw data and analysis findings for different time scales. According to the findings, it can 
be concluded that the 𝛼𝛼𝛼𝛼  and 𝛽𝛽𝛽𝛽  coefficients of Ethereum raw data returns are not 
significant, and that the shocks and dynamic conditional correlations in the past period 
have no effect on the global economic political uncertainty index and Ethereum returns 
dynamic conditional correlations in the current period. This result is also an indication 
that there is no dynamic relationship or volatility interaction between the global economic 
political uncertainty index and Ethereum returns. When the predictions of wavelet-based 
DCC-GARCH(1,1) models (from D1 to D4) are examined; It took values of 𝛼𝛼𝛼𝛼 + 𝛽𝛽𝛽𝛽 <1 at 
all time scales. However, it was concluded that 𝛼𝛼𝛼𝛼 + 𝛽𝛽𝛽𝛽 <1 was statistically significant in 
the D2 and D4 time scales. This finding shows that dynamic correlations fluctuate around 
a fixed level in the 4-8 month and 16-32 month investment cycles and have a process that 
tends to return to the mean. The 𝛼𝛼𝛼𝛼  coefficient estimates of the DCC-GARCH(1,1) models 
at all time scales are positive and statistically significant at the 1% significance level, but 
the statistical significance of the 𝛽𝛽𝛽𝛽  coefficients is significant at the 1% significance level 
in D2 and D4, but the 𝛽𝛽𝛽𝛽  coefficients are significant at D1 and D3 time scales. It was 
observed that it was not significant. 
When these findings are evaluated, it can be said that past period conditional correlations 
have no effect on current period correlations in D1 and D3 time scales, in other words, 
volatility shocks do not show permanence in 2-4 month and 8-16 month investment 
cycles. It can even be stated that there is no volatility interaction in these investment 
cycles. On the other hand, it can be stated that there are time-varying correlations between 
GEPU and Ethereum returns on the D2 and D4, time scales, and past volatility shocks and 
conditional correlations are effective on these correlations. In other words, volatility 
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this result, volatility shocks and dynamic conditional correlations in the past period show 
that there is no effect on the fear index and Ethereum returns dynamic conditional 
correlations in the current period. In other words, it is an indication that there is no 
volatility interaction between the fear index and Ethereum returns. When the estimates of 
the wavelet-based DCC-GARCH(1,1) models (from D1 to D4) were examined, it was 
determined that the 𝛼𝛼𝛼𝛼  coefficient estimates of the DCC-GARCH (1,1) models were not 
statistically significant at all time scales. When the 𝛽𝛽𝛽𝛽  coefficient estimates are examined, 
it is not statistically significant in the 2-4 month and 16-32 month investment cycles, but 
it is statistically significant in the 4-8 month and 8-16 month investment cycles. 
According to these findings, it has been determined that there is no relationship between 
the fear index and volatility shocks and dynamic correlations in the past period, volatility 
shocks and dynamic conditional correlations in the current period in Ethereum returns 
according to different time scales. 
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Table 8. includes the Global Economic Political Uncertainty Index (GEPU) and Ethereum 
raw data and analysis findings for different time scales. According to the findings, it can 
be concluded that the 𝛼𝛼𝛼𝛼  and 𝛽𝛽𝛽𝛽  coefficients of Ethereum raw data returns are not 
significant, and that the shocks and dynamic conditional correlations in the past period 
have no effect on the global economic political uncertainty index and Ethereum returns 
dynamic conditional correlations in the current period. This result is also an indication 
that there is no dynamic relationship or volatility interaction between the global economic 
political uncertainty index and Ethereum returns. When the predictions of wavelet-based 
DCC-GARCH(1,1) models (from D1 to D4) are examined; It took values of 𝛼𝛼𝛼𝛼 + 𝛽𝛽𝛽𝛽 <1 at 
all time scales. However, it was concluded that 𝛼𝛼𝛼𝛼 + 𝛽𝛽𝛽𝛽 <1 was statistically significant in 
the D2 and D4 time scales. This finding shows that dynamic correlations fluctuate around 
a fixed level in the 4-8 month and 16-32 month investment cycles and have a process that 
tends to return to the mean. The 𝛼𝛼𝛼𝛼  coefficient estimates of the DCC-GARCH(1,1) models 
at all time scales are positive and statistically significant at the 1% significance level, but 
the statistical significance of the 𝛽𝛽𝛽𝛽  coefficients is significant at the 1% significance level 
in D2 and D4, but the 𝛽𝛽𝛽𝛽  coefficients are significant at D1 and D3 time scales. It was 
observed that it was not significant. 
When these findings are evaluated, it can be said that past period conditional correlations 
have no effect on current period correlations in D1 and D3 time scales, in other words, 
volatility shocks do not show permanence in 2-4 month and 8-16 month investment 
cycles. It can even be stated that there is no volatility interaction in these investment 
cycles. On the other hand, it can be stated that there are time-varying correlations between 
GEPU and Ethereum returns on the D2 and D4, time scales, and past volatility shocks and 
conditional correlations are effective on these correlations. In other words, volatility 

 time scales of Bitcoin and VIX returns was statistically significant. This finding 
shows that dynamic correlations fluctuate around a fixed level in the 4-8 month and 16-32 month investment cycles 
and have a process that tends to return to the mean. Both 𝛼 coefficient estimates of DCC-GARCH(1,1) models 
at all time scales are statistically significant; However, the statistical significance of the 𝛽 coefficients was found 
to be significant at the 

this result, volatility shocks and dynamic conditional correlations in the past period show 
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correlations in the current period. In other words, it is an indication that there is no 
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determined that the 𝛼𝛼𝛼𝛼  coefficient estimates of the DCC-GARCH (1,1) models were not 
statistically significant at all time scales. When the 𝛽𝛽𝛽𝛽  coefficient estimates are examined, 
it is not statistically significant in the 2-4 month and 16-32 month investment cycles, but 
it is statistically significant in the 4-8 month and 8-16 month investment cycles. 
According to these findings, it has been determined that there is no relationship between 
the fear index and volatility shocks and dynamic correlations in the past period, volatility 
shocks and dynamic conditional correlations in the current period in Ethereum returns 
according to different time scales. 
Table 8. Analysis Results for GEPU-Ethereum Raw Data and Return Scales 
 

Panel A: 
Raw Data 𝛼𝛼𝛼𝛼  p 𝛽𝛽𝛽𝛽  p 𝛼𝛼𝛼𝛼 + 𝛽𝛽𝛽𝛽  
Ethereum -0.0000 0.9999 0.4132 0.3956 0.4132 
Panel B: 
Return Scales      
D1 0.3023 0.0139 0.2152 0.2535 0.5175 
D2 0.3271 0.0112 0.4845 0.0020 0.8116 
D3 0.3239 0.0000 -0.0000 0.9999 0.3239 
D4 0.8268 0.0000 0.0883 0.0000 0.9151 

 
Table 8. includes the Global Economic Political Uncertainty Index (GEPU) and Ethereum 
raw data and analysis findings for different time scales. According to the findings, it can 
be concluded that the 𝛼𝛼𝛼𝛼  and 𝛽𝛽𝛽𝛽  coefficients of Ethereum raw data returns are not 
significant, and that the shocks and dynamic conditional correlations in the past period 
have no effect on the global economic political uncertainty index and Ethereum returns 
dynamic conditional correlations in the current period. This result is also an indication 
that there is no dynamic relationship or volatility interaction between the global economic 
political uncertainty index and Ethereum returns. When the predictions of wavelet-based 
DCC-GARCH(1,1) models (from D1 to D4) are examined; It took values of 𝛼𝛼𝛼𝛼 + 𝛽𝛽𝛽𝛽 <1 at 
all time scales. However, it was concluded that 𝛼𝛼𝛼𝛼 + 𝛽𝛽𝛽𝛽 <1 was statistically significant in 
the D2 and D4 time scales. This finding shows that dynamic correlations fluctuate around 
a fixed level in the 4-8 month and 16-32 month investment cycles and have a process that 
tends to return to the mean. The 𝛼𝛼𝛼𝛼  coefficient estimates of the DCC-GARCH(1,1) models 
at all time scales are positive and statistically significant at the 1% significance level, but 
the statistical significance of the 𝛽𝛽𝛽𝛽  coefficients is significant at the 1% significance level 
in D2 and D4, but the 𝛽𝛽𝛽𝛽  coefficients are significant at D1 and D3 time scales. It was 
observed that it was not significant. 
When these findings are evaluated, it can be said that past period conditional correlations 
have no effect on current period correlations in D1 and D3 time scales, in other words, 
volatility shocks do not show permanence in 2-4 month and 8-16 month investment 
cycles. It can even be stated that there is no volatility interaction in these investment 
cycles. On the other hand, it can be stated that there are time-varying correlations between 
GEPU and Ethereum returns on the D2 and D4, time scales, and past volatility shocks and 
conditional correlations are effective on these correlations. In other words, volatility 
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this result, volatility shocks and dynamic conditional correlations in the past period show 
that there is no effect on the fear index and Ethereum returns dynamic conditional 
correlations in the current period. In other words, it is an indication that there is no 
volatility interaction between the fear index and Ethereum returns. When the estimates of 
the wavelet-based DCC-GARCH(1,1) models (from D1 to D4) were examined, it was 
determined that the 𝛼𝛼𝛼𝛼  coefficient estimates of the DCC-GARCH (1,1) models were not 
statistically significant at all time scales. When the 𝛽𝛽𝛽𝛽  coefficient estimates are examined, 
it is not statistically significant in the 2-4 month and 16-32 month investment cycles, but 
it is statistically significant in the 4-8 month and 8-16 month investment cycles. 
According to these findings, it has been determined that there is no relationship between 
the fear index and volatility shocks and dynamic correlations in the past period, volatility 
shocks and dynamic conditional correlations in the current period in Ethereum returns 
according to different time scales. 
Table 8. Analysis Results for GEPU-Ethereum Raw Data and Return Scales 
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Table 8. includes the Global Economic Political Uncertainty Index (GEPU) and Ethereum 
raw data and analysis findings for different time scales. According to the findings, it can 
be concluded that the 𝛼𝛼𝛼𝛼  and 𝛽𝛽𝛽𝛽  coefficients of Ethereum raw data returns are not 
significant, and that the shocks and dynamic conditional correlations in the past period 
have no effect on the global economic political uncertainty index and Ethereum returns 
dynamic conditional correlations in the current period. This result is also an indication 
that there is no dynamic relationship or volatility interaction between the global economic 
political uncertainty index and Ethereum returns. When the predictions of wavelet-based 
DCC-GARCH(1,1) models (from D1 to D4) are examined; It took values of 𝛼𝛼𝛼𝛼 + 𝛽𝛽𝛽𝛽 <1 at 
all time scales. However, it was concluded that 𝛼𝛼𝛼𝛼 + 𝛽𝛽𝛽𝛽 <1 was statistically significant in 
the D2 and D4 time scales. This finding shows that dynamic correlations fluctuate around 
a fixed level in the 4-8 month and 16-32 month investment cycles and have a process that 
tends to return to the mean. The 𝛼𝛼𝛼𝛼  coefficient estimates of the DCC-GARCH(1,1) models 
at all time scales are positive and statistically significant at the 1% significance level, but 
the statistical significance of the 𝛽𝛽𝛽𝛽  coefficients is significant at the 1% significance level 
in D2 and D4, but the 𝛽𝛽𝛽𝛽  coefficients are significant at D1 and D3 time scales. It was 
observed that it was not significant. 
When these findings are evaluated, it can be said that past period conditional correlations 
have no effect on current period correlations in D1 and D3 time scales, in other words, 
volatility shocks do not show permanence in 2-4 month and 8-16 month investment 
cycles. It can even be stated that there is no volatility interaction in these investment 
cycles. On the other hand, it can be stated that there are time-varying correlations between 
GEPU and Ethereum returns on the D2 and D4, time scales, and past volatility shocks and 
conditional correlations are effective on these correlations. In other words, volatility 

 time scales. According to these findings, it is an indicator of the persistence of 
volatility shocks in both 4-8 month and 16-32 month investment cycles. In addition, in the 4-8 and 16-32 month 
investment cycles, although 𝛼+ 𝛽<1, it is very close to l (one); With VIX, it can be said that conditional volatility 
for Bitcoin is more likely to be permanent. In other words, there is a positive and strong relationship between 
returns that varies over time.

When the time scales between Bitcoin and GEPU are examined, it is concluded that there are time-varying 
correlations between GEPU and Bitcoin returns only in 

this result, volatility shocks and dynamic conditional correlations in the past period show 
that there is no effect on the fear index and Ethereum returns dynamic conditional 
correlations in the current period. In other words, it is an indication that there is no 
volatility interaction between the fear index and Ethereum returns. When the estimates of 
the wavelet-based DCC-GARCH(1,1) models (from D1 to D4) were examined, it was 
determined that the 𝛼𝛼𝛼𝛼  coefficient estimates of the DCC-GARCH (1,1) models were not 
statistically significant at all time scales. When the 𝛽𝛽𝛽𝛽  coefficient estimates are examined, 
it is not statistically significant in the 2-4 month and 16-32 month investment cycles, but 
it is statistically significant in the 4-8 month and 8-16 month investment cycles. 
According to these findings, it has been determined that there is no relationship between 
the fear index and volatility shocks and dynamic correlations in the past period, volatility 
shocks and dynamic conditional correlations in the current period in Ethereum returns 
according to different time scales. 
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Table 8. includes the Global Economic Political Uncertainty Index (GEPU) and Ethereum 
raw data and analysis findings for different time scales. According to the findings, it can 
be concluded that the 𝛼𝛼𝛼𝛼  and 𝛽𝛽𝛽𝛽  coefficients of Ethereum raw data returns are not 
significant, and that the shocks and dynamic conditional correlations in the past period 
have no effect on the global economic political uncertainty index and Ethereum returns 
dynamic conditional correlations in the current period. This result is also an indication 
that there is no dynamic relationship or volatility interaction between the global economic 
political uncertainty index and Ethereum returns. When the predictions of wavelet-based 
DCC-GARCH(1,1) models (from D1 to D4) are examined; It took values of 𝛼𝛼𝛼𝛼 + 𝛽𝛽𝛽𝛽 <1 at 
all time scales. However, it was concluded that 𝛼𝛼𝛼𝛼 + 𝛽𝛽𝛽𝛽 <1 was statistically significant in 
the D2 and D4 time scales. This finding shows that dynamic correlations fluctuate around 
a fixed level in the 4-8 month and 16-32 month investment cycles and have a process that 
tends to return to the mean. The 𝛼𝛼𝛼𝛼  coefficient estimates of the DCC-GARCH(1,1) models 
at all time scales are positive and statistically significant at the 1% significance level, but 
the statistical significance of the 𝛽𝛽𝛽𝛽  coefficients is significant at the 1% significance level 
in D2 and D4, but the 𝛽𝛽𝛽𝛽  coefficients are significant at D1 and D3 time scales. It was 
observed that it was not significant. 
When these findings are evaluated, it can be said that past period conditional correlations 
have no effect on current period correlations in D1 and D3 time scales, in other words, 
volatility shocks do not show permanence in 2-4 month and 8-16 month investment 
cycles. It can even be stated that there is no volatility interaction in these investment 
cycles. On the other hand, it can be stated that there are time-varying correlations between 
GEPU and Ethereum returns on the D2 and D4, time scales, and past volatility shocks and 
conditional correlations are effective on these correlations. In other words, volatility 

 , that is, the 4-8 month investment cycle period, and 
that past volatility shocks and conditional correlations are effective on these correlations. In other words, volatility 
shocks are permanent in the 4-8 month investment cycle. In addition, in the investment cycle period of 4-8 months, 
although 𝛼+ 𝛽<1, it is very close to l (one); With GEPU, it can be stated that conditional volatility for Bitcoin is 
more likely to be permanent. It has been determined that 𝛼+ 𝛽<1 on the  and  time scales of Ethereum and GEPU 
returns is statistically significant. This finding shows that dynamic correlations fluctuate around a fixed level in the 
4-8 month and 16-32 month investment cycles and have a process that tends to return to the mean.

Both 𝛼 coefficient estimates of DCC-GARCH(1,1) models at all time scales are statistically significant; However, 
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 time scales. According 
to these findings, it is an indicator of the persistence of volatility shocks in both 4-8 month and 16-32 month 
investment cycles. In addition, in the 4-8 and 16-32 month investment cycles, although 𝛼+ 𝛽<1, it is very close to l 
(one); It can be said that conditional volatility for Ethereum and GEPU is more likely to persist. On the other hand, 
it has been determined that there is no relationship between the fear index and the volatility shocks and dynamic 
correlations in the past period and the volatility shocks and dynamic conditional correlations in the current period 
in Ethereum returns according to different time scales.

In conclusion, these findings have practical implications for both investors and policy makers. As both the 
economic and political uncertainty index and the fear index are the volatility interaction between global currencies, 
this study shows that this affects the cryptocurrencies Bitcoin and Ethereum. Therefore, investors need to have 
comprehensive information about changes in the global economy and politics. Information-related policy changes 
should be factored into portfolio selection to avoid random market fluctuations. In addition, investors can obtain 
comprehensive information about the global economy and policy changes in the market, which is more turbulent 
and subject to sudden changes in the short term due to its unregulated structure. It is thought that these results will 
provide insight for both investors and policy makers.
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