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Abstract

We address the classical errors-in-variables (EIV) problem in multivariate linear regression with N dependent 
variables where each left-hand-side variable is a function of a common predictor X subject to measurement error. 
Our contribution consists in employing the remaining N −1 regressions as extra information to obtain a filtered 
version of the mismeasured series X. We test the performance of our approach using simulations whereby we 
control for different cases like low vs. high R2 models, small vs. large sample or small vs. large measurement 
error variances. The results suggest that the multivariate-Compact Genetic Algorithm (mCGA) approach yields 
estimates with lower mean-square-errors (MSEs). The MSEs are decreasing as the number of dependent variables 
increases. When there is no measurement error, our method gives results similar to those that would have been 
obtained by ordinary least-squares.
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1 Introduction

Errors-in-variables (EIV) occur when the observations of one or more variables

in a regression model do not match their true values and, consequently, contain

a measurement error. Basically, EIV in the left and/or right-hand-side variables

in a statistical model can be read as the observation equals the true values

plus measurement error with side effects ranging from “mild” to “severe” to

the researcher. The econometric treatment of EIV is at the origin of a rich

yet inconclusive literature going back as far as to Frisch, Berkson or Durbin’s

pioneering works (Frisch, 1934; Berkson, 1950; Durbin, 1954). More recent

and exhaustive treatments of the topic include, among others, Feng et al.

(2020), Racicot (2015), Chen et al. (2011), Buonaccorsi (2010), Davidson and

MacKinnon (2004, ch. 8), Hausman (2001), Bound et al. (2001), Hyslop and

Imbens (2001), Cheng and Van Ness (1999), Dagenais and Dagenais (1997),

Griliches (1987) or Fuller (1987), only to cite a few. This paper’s primary

objective is to contribute to this literature by addressing the classical EIV

model in the context of a linear regression setting with multiple dependent

variables where a single independent variable X, possibly measured with error,

is linked to N dependent variables Y1, ..., YN .

Specifically, we extend the work of Satman and Diyarbakirlioglu (2015) who

develop a modern approach to deal with EIV that requires no extra information

nor additional data to mitigate the bias generated by the measurement error

in the independent variable. We consider this feature of our approach as the

central block that marks off our work from previous studies in the field. A

detailed exposition of existing methods would inevitably extend the paper’s

scope beyond acceptable limits, so we outline a concise discussion in due course.

A first, and rather naive, way of addressing the measurement error consists

in simply ignoring the problem by admitting that it is a difficult one to solve
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and extra data may not be available to the researcher. A second approach,

known as Berkson’s approach (Berkson, 1950) considers the observed X values

as predetermined given, say, a controlled scientific study or under a laboratory

setting. Then, one would consider the observed values of X swinging around

their true equivalents due to measurement error. Under this setup, it is then

reasonable to assume that the measurement error is no longer correlated with

the observed values of the independent variable, which enables one to show

that the traditional least-squares estimator of the slope remains still unbiased

even when X is mismeasured (Durbin, 1954, p. 24-25). When it comes to social

and economic phenomena, however, such controlled experiment settings do not

truly exist outside the laboratory.

Another approach relies on correcting the bias in the estimates assuming

that the variance of the measurement error in the predictor or that of the

unobserved predictor is known. This would then make it possible to derive

unbiased estimates of model parameters using the signal-to-total variance, typ-

ically known as the reliability ratio. (Fuller, 1987, p. 5-6) gives a list of some

situations where the reliability ratio can be considered as known like IQ test

scores. Such situations where one would plausibly assume that the reliability

ratio is known are however mostly limited to survey studies in which the data

about a particular feature of a set of respondents are obtained over repeated

studies of the same nature over time and space.

Given the shortcomings associated with the approaches described briefly

above and to the extent that EIV naturally induces a specification error in

regression models, instrumental-variables estimation of EIV models consti-

tutes the central prescription to address the issue. The main idea of IV-based

processing of EIV consists in using instruments correlated with the true but

unobserved values of the predictor and uncorrelated with the measurement
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error, see, among others, Fuller (1987), Davidson and MacKinnon (2004),

Carroll et al. (2006) or Wooldridge (2010) for further developments on the

IV-estimation of EIV models. As noted by (Buonaccorsi, 2010, p. 130), the

instruments are supposed to carry independent information about the mismea-

sured predictor which can be used to obtain estimates of the coefficients. That

being said, the validity condition of good instruments just stated previously is

ironically the unique but also the most critical potential drawback associated

with the IV-estimation of EIV models to the extent that poor instruments lead

to even more serious consequences (Wooldridge, 2013, p. 499).

The bottomline is that existing approaches commonly require additional

information in the form of either better data or valid instruments (Shalabh

et al., 2010, p. 718). While there are nice examples where the researcher comes

up with an ingenious solution to overcome the impact of a badly measured

variable like the studies on the estimates of the economic return to schooling

(Ashenfelter and Krueger, 1994; Harmon and Walker, 1995), such additional

information may not be available in other situations or there may be no con-

sensus in the field as to what makes an instrument a good one (Klepper and

Leamer (1984, p. 163), Dagenais and Dagenais (1997, p. 194)). The approach

proposed here is free from such considerations. It does not require any out-

of-the-system information about the data-generating process to mitigate the

EIV problem. This is a key feature in that the unique extra information re-

quired lies in the additional dependent variables of the system. We conceive

the mismeasured variable X⋆ as consisting of two blocks, one deterministic

and the other stochastic where the deterministic part refers to the true but

unobserved portion of it. We then devise an optimization problem that min-

imizes the squared deviations from the expectation of the response variable

conditional on the estimated values of the mismeasured predictor. The latter
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variable in turn is the result of an auxiliary dummy regression of the initial

variable subject to measurement error. The key difference with the initial Sat-

man and Diyarbakirlioglu (2015) study is that we consider the case where

several dependent variables are connected to the same independent variable,

potentially measured with error.1

We employ numerical experiments to gain insights into the performance of

our method. Following a parsimonious strategy to devise the simulations, we

consider 36 different configurations to control for features like the relative ratio

of regression vs. measurement error variances, low vs. high R2 models, the

sample size and the number of dependent variables. For each configuration, we

repeat the estimations 1,000 times. We report the bias, the variance and the

mean-square-error of the coefficient estimates for the first dependent variable.2

The results are promising. The algorithm does capture and correct the bias due

to the measurement error in the independent variable, which, when ignored,

distorts seriously the parameter estimates. The bias in the slope tends to vanish

as the sample size or the number of left-hand-side variables increases. This

comes with some cost in the increase of the estimator’s variance but overall

the increase in the variance is largely offset by the decrease in the bias. This,

collectively, yields much smaller MSEs, giving further credit to our approach.

The paper is organized as follows. After a brief discussion of the classical

EIV model, section 2 describes our algorithm and gives a short discussion some

of its important features. Section 3 presents the simulation results. In section 4,

1One should also highlight that the solution presented in Satman and Diyarbakirlioglu (2015)
can be considered as a specific case of the setup we develop therein with the number of dependent
variables set to 1.

2This choice is motivated by the fact that it would be nearly impossible to report every single
intercept and slope estimate for each Yi in the model as this would make the size of the paper cross
the acceptable limits. That being said, we saved the entire output from each set of estimations.
We have also performed the procedure for 18 additional configurations where we controlled for the
performance of our approach when there is no measurement error in the independent variable. For
sake of brevity, we do not report the results of these additional simulations in the paper. These
results are available upon request.
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we give a simple example to illustrate the implementation of our algorithm.

Section 5 concludes.

2 Methodology

2.1 The multivariate CGA Algorithm

We first give a sketch of the consequences of the classical EIV model and

present our methodology afterwards.

Consider the population model Y ⋆
t = β0 + β1X

⋆
t + ϵt for t = 1, ..., T with

ϵ ∼ iid(0, σ2
e). The classical errors-in-variables (EIV) model is introduced by

assuming that the observations on Y ⋆ and/or X⋆ are recorded with error

as Yt = Y ⋆
t + νt and/or Xt = X⋆

t + δt where ν and δ are observation, or

measurement errors on Y and X respectively.3. While the cost of ν is limited to

an inflated variance of the regression error, matters are different when it comes

to δ.4 Assuming V ar(ν) = 0, V ar(δ) > 0, E (X⋆δ) = 0 and E (δϵ) = 05, simple

algebra shows that the model can now be expressed as Yt = β0 + β1Xt + ωt

where ωt = ϵt − β1δt.

Thus, we obtain a composite regression error and the predictor X

becomes correlated with the new disturbance term as Cov (Xt, ωt) =

Cov ((X⋆
t + δt) , (ϵt − β1δt)) = −β1V ar(δ). This implies that the least-squares

estimate will be biased and inconsistent even in large samples.6 In addition,

given the probability limit plim β̂LS
1 = β1+

Cov(Xt,ωt)
V ar(Xt)

, which is also commonly

expressed as plim β̂LS
1 = β1

(
V ar(X⋆

t )
V ar(X⋆

t )+V ar(δt)

)
, it can be seen that the slope

3Typically, these equations read “the observation is the sum of the true value plus measurement
error”

4If V ar(ν) > 0 and V ar(δ) = 0, the model can be rewritten as Yt = β0 +β1X
⋆
t +(ϵt + νt). The

new disturbance term is ϵ + ν. The least-squares estimates of parameters will still be unbiased.
5One last assumption holds that the measurement error, by definition, has zero mean, E (δ) = 0.
6To see the non-zero covariance between X and ω, note that E(Xt) = E (X⋆

t + δt) =
X⋆

t because E(δt) = 0. Next, substituting ωt = ϵt − β1δt back into Cov(Xt, ωt) =
E

[(
X⋆

t + δt − X̄⋆
)
(ϵt − β1δt)

]
and developing the terms, we obtain Cov(Xt, ωt) = −β1V ar(δ).
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estimate is downwards biased as long as V ar(X⋆
t )+V ar(δt) > V ar(X⋆

t ).
7 The

bias in β̂ is known as the least-squares attenuation, which Hausman (2001)

refers to as the iron law of econometrics – “the magnitude of the estimate is

usually smaller than expected”. The attenuation in β̂ also suggests that the

bias gets worse when V ar(δt) increases relative to V ar(X⋆
t ).

8 Finally, when

there is more than one predictor subject to error, it is no longer possible to de-

rive exact formulas to express neither the sign nor the magnitude of the bias in

the slope coefficients because the measurement error on a particular Xt spills

over to other model parameters, raising a further puzzling issue, which Cragg

(1994) qualifies as the contamination effect.

We now turn to our approach and extend the previous setup to accommo-

date for N dependent variables specified as a function of the same predictor

variable. We assume the population model is Y = 1Tβββ
⊤
0 + X⋆βββ⊤

1 + ϵϵϵ.9 The

true values of X are not directly given but observed as X = X⋆ + δδδ where δδδ

is a T × 1 vector of measurement errors. The multivariate EIV model can be

rewritten as Y = 1Tβββ
⊤
0 +Xβββ⊤

1 +ωωω where ωωω = ϵϵϵ−δδδβββ⊤
1 is the T ×N matrix of

composite error terms, which make the least-squares estimation of the N slope

estimates inconsistent and biased in the same way it does when N = 1. To de-

scribe how our algorithm works, consider the first two equations of the system

that relates the first and second dependent variables Ytj , j = 1, 2 to Xt:

Yt1 = β01 + β11Xt + ωt1

Yt2 = β02 + β12Xt + ωt2

7Consistent estimation of the slope using generalized least-squares is actually possible if the
value of the reliability ratio λ = V ar(X∗)/ (V ar(X∗) + V ar(δ)) is known. This is however a big
“if” because the true value of the reliability ratio is also unknown outside controlled experiment
settings (Buonaccorsi, 2010).

8The results of our simulations also highlight this fact whereby we pinpoint the case of a high
ratio of measurement error variance to independent variable variance.

9Y is a T ×N matrix that contains T observations for N dependent variables, X⋆ is a T -vector
of the observations on the true values of the independent variable, 1 is a conforming vector of ones,
βββ0 is a N-vector of intercepts, βββ1 is a N-vector of slopes, and ϵϵϵ is a T × N matrix of residuals.
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The objective is to estimate the parameters β01 and β11 for the first

equation (as well as σ2
ω), but also the parameters β02 and β12 for the second

equation too, and so on for any additional Y . The departure point of the ex-

tension we propose in this paper relative to the original approach developed in

Satman and Diyarbakirlioglu (2015) consists in employing the additional vari-

ables Yti to obtain a new series X̂mCGA
t for the regressor that can be seen as

a filtered version of the true yet unobserved values X⋆
t . This can be achieved

by running the following auxiliary regression of the observed Xt on a set of m

dummy variables as,

Xt = α0 + α1Dt1 + · · ·+ αmDtm + ηt (1)

where αj are unknown parameters that must be estimated, Dtj are j = 1, ...,m

dummy variables and ηt are regression residuals. Just like any other regression

model one would conceive, this auxiliary regression breaks down the observed

series Xt into two components, one deterministic and one random. By con-

struction, the stochastic part η is an estimate of the measurement error δ while

the deterministic part represents the series X̂mCGA
t . With no closed-form solu-

tion available, the fitted coefficients α̂j are devised as solution to the following

problem,

argmin
{D1,...,Dm}

N∑
i=1

T∑
t=1

(
Yti −

(
β̂0i + β̂1iX̂

mCGA
t

))2

(2)

where X̂mCGA
t are themselves the fitted values of the original variable obtained

from the auxiliary regression as,

X̂mCGA
t = α̂0 + α̂1Dt1 + · · ·+ α̂mDtm (3)
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Finally, the series X̂mCGA
t is plugged back into the system to estimate Yti as,

Ŷt1 = β̂01 + β̂11X̂
mCGA
t

Ŷt2 = β̂02 + β̂12X̂
mCGA
t

...
...

ŶtN = β̂0N + β̂1N X̂mCGA
t (4)

for each i = 1, ..., N . Equation (2) defines a quadratic objective function sub-

ject to the constraint defined in equation (3). With T observations and T ×m

unknown binary values10, the problem admits theoretically an infinite number

of solutions for there is no explicit rules about the appropriate number of dum-

mies that must be used. In their original paper, Satman and Diyarbakirlioglu

(2015) address this issue by observing the behaviour of the estimated inter-

cept and slope coefficients. They note that the MSE’s of the estimates tend to

stabilize about m = 10. We follow the same empirical rule in this paper too

and use 10 as the default value of this parameter. Besides, even if the num-

ber of dummies was known, the results of the algorithm should still be seen as

approximations sharing, nonetheless, the important feature of systematically

smaller MSE’s for the estimated regression parameters.11

2.2 Discussion

Having set up the mechanics of our approach, we briefly discuss some of its

main building blocks.

10Recall that m is the number of dummy variables in the auxiliary regression.
11One should bear this feature of our method in mind: The procedure does not yield a single

exact output, the results are likely to vary, at least marginally, from one iteration to another. That
does not however mean that the algorithm does not converge, so we conceive these approximations
as solutions of the system.
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First, unlike the mainstream literature on EIV models, we conjecture that

the additional information to mitigate the EIV bias can be found within the re-

lationship between the set of N dependent variables and the predictor X. One

should also underline that the procedure does not require further assumptions

about the stochastic behaviour of X, such as its distributional properties. That

is one of the key features of the approach initially adopted by Satman and

Diyarbakirlioglu (2015), which we aim to develop further in this work, to the

extent that standard methods generally require outside information to address

the EIV problem. However, as pointed out by (Buonaccorsi, 2010, p. 4-5), get-

ting such extra information either in the form of better data or instrumental

variables that satisfy many conditions can be difficult.

Second, we explain briefly the reason why we implement a (compact)

genetic algorithm-based solution. Equations (2) and (3) form together a two-

stage discrete optimization problem whose objective is to minimize the squared

deviations from the conditional expectation of the independent variable on a

set of dummy variables and model parameters. Regression of the error-prone

variable onto these dummies aims to break down this variable into a clean, but

unobserved component and another one that captures the measurement error

in X. Since the decision variables of the optimization problem take exclusively

binary values, e.g. Dtm ∈ {0, 1}, a genetic algorithm (GA) happens to be one

natural solver to estimate the dummy coefficients α of the auxiliary regression.

Developed by pioneering studies like Holland (1975), Holland (1987) or Gold-

berg (1989), among others, a GA mimics the process of natural selection with,

consequently, a related vocabulary borrowing extensively from the Theory of

Evolution. A typical GA starts by encoding an array of randomly selected can-

didate solutions in binary forms, assimilated to chromosomes, each member

of a larger population. The chances a chromosome survives for mating with
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another one to generate an offspring is determined by a fitness value, which

is a score associated with an objective function. Iterations continue until no

incremental improvement is obtained in terms of the fitness value.

A potential issue associated with GAs concerns the computational difficul-

ties associated with the optimization of the objective function. This is where

Compact Genetic Algorithms (CGAs) may be of practical help as they are de-

signed to overcome the issue of computational memory one would face when

working with a GA (Harik et al., 2006). Although one would not assert that

CGAs are superior to GAs in reaching the global optimum, they represent

several advantages. Specifically, in a CGA, candidate solutions are sampled

from a given population using a probability vector rather than screening the

entire population. The number of iterations is defined with respect to the the

population size (Harik et al., 1999). The absence of genetic operators and the

sampling strategy employed by a CGA make it a member of Estimation of

Distribution Algorithms (EDA) as it always converges to a probability vec-

tor through iterations (Pelikan et al., 2002; Baluja, 1994; Larranaga, 2002).

Therefore, our choice in implementing the CGA is simply motivated by the

fact that the algorithm provides a suitable method to solve the discrete opti-

mization problem defined in equation (3), yet it should be acknowledged that

another optimizer handling a similar problem would also be used instead.

Finally, we present some practical, but equally important, aspects of our

methodology.12 Given a set of T observations on i = 1, ..., N dependent vari-

ables Yi and one independent variable X observed with some error δ, the

procedure is initialized by setting two user-defined parameters; namely, (1)

the number of dummy variables m used in the auxiliary regression specified

in equation (3), and (2) the population size. Although there are no specific

12We provide in the appendix a pseudo-code of our entire algorithm and an R package (Satman
and Diyarbakirlioglu, 2022) including all necessary functions to perform the calculations is readily
available on CRAN repositories.
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guidelines concerning an adequate value for m, Satman and Diyarbakirlioglu

(2015) show using simulations that the mean-square-errors of the slope βCGA
1

and intercept βCGA
0 estimators stabilize around m = 10.13 For a given m, the

iterations begin with a probability vector that represents, to speak CGA, a

chromosome. For example, a 4-m length chromosome like,

P = [0.8, 0.1, 0.7, 0.2]

tells that the probability of getting the first dummy equal to 1 is 0.8, the prob-

ability of D2 = 1 is 0.1, and so on.14 Accordingly, given the P in this example,

sampling a chromosome like C = [1, 0, 1, 0] is much more likely than sam-

pling another chromosome like C ′ = [0, 1, 0, 1]. Once the number of dummies

is chosen, which we set to 10, iterations begin with a probability vector whose

elements are initially all equal to 0.5, guaranteeing that no specific dummy

coefficient is favoured relative to others. In the next step, the procedure sam-

ples two parents using the initial P , say C1 and C2. The winner is the one

with the lowest score of the cost function, which is specified as the sum of the

squared residuals of the corresponding dummy regression. Once the winner C

is determined, the vector P is updated using the formula,

Pi+1 =



Pi +

1
pop. size if Cwinner

i = 1

Pi − 1
pop. size if Cwinner

i = 0

(5)

Given the new Pi+1, the process moves forward by sampling new parents,

generating new offsprings and updating thereby Pi. Iterations continue until all

13See Satman and Diyarbakirlioglu (2015), figure 1, p. 3225. We also follow the same empirical
rule suggested by the authors in the original paper and set m = 10 in our applications.

14The term probability vector should then not be understood in the sense the elements of the
vector must sum up to 1. Instead, each element of P defines the probability that the corresponding
dummy variable to be equal to 1.
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elements of the vector P take either the value of 1 or 0. Note that the population

size is there for updating iteratively to the probability vector until the stability

condition for the auxiliary dummy variables regression is obtained.15

3 Simulations

3.1 Setup

We investigate the statistical properties of our approach by Monte Carlo

simulations. We specify our data-generating process as follows:

Yti = 5 + 5Xt + ϵti

Xt = X⋆
t + δt

ϵt ∼ iid N
(
0, σ2

ϵ

)

δt ∼ iid N
(
0, σ2

δ

)

The index t = 1, . . . , T shows the sample size and i = 1, ..., N the number of

left-hand-side variables. Each configuration is described by four parameters:

(1) The number of left-hand-side variables N , (2) the sample size T , (3) The

regression error variance σ2
ϵ and, (4) the measurement error variance σ2

δ .

We choose three different values for N ∈ {2, 5, 25} to construct the multi-

variate regression setting and three different sample sizes as T ∈ {30, 50, 100}.

The measurement error δ is introduced as X = X⋆+δ. ϵ and δ are both gener-

ated as iid normal random variables with zero-mean and constant variance as

ϵ ∼ N(0, σ2
ϵ ) and δ ∼ N(0, σ2

δ ). Regarding the “regression error ϵ & measure-

ment error δ” pairs, we distinguish four configurations as we set σϵ ∈ {1, 3}

15The choice of the population size takes into consideration the trade-off between the conver-
gence speed vs. the risk of a local optimum trap. Again, we follow the recommendations of Satman
and Diyarbakirlioglu (2015) who suggest that the population size should be 20 or higher. That is
said, the authors also note that beyond this limit, the population size has negligible effect on the
results. For the record, this parameter is set to 40 in our applications.
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together with σδ ∈ {0.5, 0.9}.16 Therefore, we distinguish between small vs.

large samples as well as low vs. high R2 models by considering different pairs

of regression error vs. measurement error variances, σϵ vs. σδ. This allows to

study the performance of our method with small vs. large attenuation bias.

Collectively, there are 36 different configurations, which we run 1,000 times

each. We thus report the results using a total of 36,000 simulated regressions.

We also repeat the experiment for 18 additional configurations17 whereby we

control for the case with no measurement error inX and keep other parameters

constant. Our objective is to verify the accuracy of the process in the idealized

case and to compare the least-squares with the mCGA method. We find no

significant difference between the statistical properties of the two methods. The

mCGA therefore conveys no erroneous signal in the absence of measurement

error.

3.2 Simulation results

We report our results in Tables 1 to 3. These tables show the results by the

number of dependent variables, i.e. N = 2, 5, and 25, respectively. We calculate

for each configuration the parameter bias as E(θ̂)−θ, the variance V ar(θ̂) and

the MSE =
(
E(θ̂)− θ

)2

+V ar(θ̂) of the intercept β0 and slope β1 estimates.

We also provide two additional tables in which we organize the results by σϵ&σδ

pairs and for increasing number of observations T to enable a complementary

reading of our numerical experiments. These are given in Tables 4 and 5. As

a supplement, we also provide a graphical summary of part of the output in

Figures 1 and 2 where we show the bias and the MSE scores of the slope

estimates, broken down by the number of dependent variables.

We can make several observations on the basis of our numerical experiment.

16We also consider the case with no measurement error by setting σδ = 0. For sake of brevity,
we do not report the results of these configurations, which are available upon request.

17The results are available upon request.
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First, we observe, regardless of the configuration, that the least-squares

estimate of the slope suffers from the attenuation bias when the predictor is

subject to measurement error. For example, when we set σϵ = 1 and σδ = 0.5,

one would expect that the least-squares estimate of the slope to be biased

downwards by 20% relative to the true value of the parameter, which implies

that β1 set initially to 5 will be cut down to 4. This observation holds indeed

for the case (σϵ = 1, σδ = 0.5) in Tables 1 to 3 regardless of the sample size

chosen. The bias in β1 is even more pronounced when the variability of the

measurement error increases relative to that of the regression error.

Second, the performance of our method in mitigating the attenuation bias

in the slope is noticeable. In some cases, especially for the σϵ = 1 & σδ = 0.5

pair, the algorithm comes up with an estimate of the slope fairly close to the

true value of the parameter. In addition, we observe, as one would expect

from our setup, even better-behaved results for the bias in β1 as we increase

the number of dependent variables across Tables 2 and 3. That is said, the

decrease in the bias of the slope estimate is not homogeneous as for larger

values of the regression error variance. To sum up, the simulations yield a

systematically lower bias of the CGA-estimate of the slope β̂mCGA
1 relative to

that the least-squares estimate β̂LS
1 for all configurations.

Third, we look at the variance and mean-square errors (MSE) of the es-

timates. Overall, we note that the variance of the estimates remains stable

across different simulation configurations; while the number of left-hand-side

variables has seemingly no effect on the variance, the sample size appears to

significantly flatten the variance of the mCGA estimates within a given simu-

lation configuration. Given the decrease in the bias, this results in lower MSE

associated with β̂mCGA
1 , as suggested in Tables 2 to 3 for any configuration

one would consider. For a given number of dependent variables N and the σϵ
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& σδ pair, we observe that the MSEs decrease systematically as the sample

size increases. This can be easily observed in Table 4. The same observations

also hold for the MSE values of the intercept estimates. On the other hand,

when we consider the results for the intercept in Tables 1 to 3 and 5, we note

that, as expected, the least-squares estimator tends to outperform the mCGA

as β̂LS
0 remains unbiased with minimum variance even with measurement er-

ror. β̂mCGA
0 , however, bears bias and variance values comparable to those of

the least-squares. For example, in the first row of table 3 with σϵ = 1 and

σδ = 0.5, we read the bias in β̂mCGA
0 as 0.0072 while it is −0.0032 for the LS.

In addition, the MSEs of β̂0’s are insensitive to the simulation configurations,

seemingly independent of the number of dependent variables and decreasing

as the sample size increases. We also note that an increase in the measurement

error standard deviation and that of the disturbances tend to degrade the sta-

tistical properties of the intercept estimator while an increase in σδ has more

destructive effects than an increase in σϵ.

To conclude this section, we also give a graphical summary of the message

carried out by our numerical experiments. Specifically, in figures 1 and 2, we

show using bar charts how the bias and the MSE of estimated β1’s change

when one applies the m-CGA estimator (dark bars) relative to least-squares

(grey bars). We consider three panels to distinguish the three different values

we chose for the number of dependent variables N . The x-axis labels consist

of three consecutive numbers that define a given simulation configuration,

namely (1) the regression error standard deviation σϵ, (2) the measurement

error standard deviation σδ, and (3) the sample size T .

The bars are of the same length regardless of these values for the bias

and MSE scores associated with the LS estimates. In a nutshell, the shorter

the bars, the better the results, which is the case for every configuration we

consider in terms of both bias and MSE of the estimates: The CGA estimates of
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Figure 1: Comparing Bias(β̂1), OLS vs. mCGA
(a) Panel A: N = 2

(b) Panel B: N = 5

(c) Panel C: N = 25

the regression slope have better statistical properties than those of their least-

squares equivalents. The downward bias caused by the measurement error is
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Figure 2: Comparing MSE(β̂1), OLS vs. mCGA
(a) Panel A: N = 2

(b) Panel B: N = 5

(c) Panel C: N = 25

noticeable based on the plots on the left-side of the figures. The CGA estimator

is on the other hand successful in pulling the estimate back to its original
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value in such a way that Bias
β1


nearly disappears as suggested in panel C

of figure 1 where we consider the case with 25 left-hand-side variables in the

multivariate regression.

4 Empirical illustration

We provide a simple empirical illustration of our approach. We prefer an ide-

alized setup for ease of tractability of the results in a multivariate multiple

regression model with two response variables and three predictor variables,

one of which is measured with error. For t = 1, ..., 25 observations and the ith

response variable, i = 1, 2, we consider the following data generating process:

Yti = α+ βX⋆
t + γ1Wt1 + γ2Wt2 + ϵti

ϵi ∼ iid N (0, 1)

X⋆,W1,W2 ∼ iid N (0, 1)

Table 6 shows our artificial dataset. The model parameters α, β, γ1 and γ2

are all equal to 5. Therefore, the population regression function for the first

response variable is Yt1 = 5 + 5X⋆
t + 5Wt1 + 5Wt2 + ϵt1. Then, we introduce

the measurement error in X⋆ using Xt = X⋆
t + δt where δ ∼ iid N

�
0, 0.52


.

We focus on the β coefficient associated with the variable X and fit the

following regressions to analyze the behaviour of the coefficient β in,

Yt1 =




αi + βX⋆
t + γ1Wt1 + γ2Wt2 + ϵt1 Model 1: No EIV

αi + βXt + γ1Wt1 + γ2Wt2 + ωt1 Model 2: EIV

αi + βXmCGA
t + γ1Wt1 + γ2Wt2 + ut1 Model 3: mCGA
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The first model is the initial case with no measurement error whereby the

least-squares method is expected to yield a BLUE estimator of β. The second

model involves the errors-in-variables case where we expect an attenuation

bias by 80% in β. The true beta being equal to 5, the fitted beta with error in

X should be close to β ×
(
1/(1 + 0.52)

)
= 4.18 Model 3 shows the case where

we implement our method to mitigate the errors-in-variables bias. Table 7

summarizes the estimation results.

The message of the example is conspicuous. With no error in X⋆, on the

first column of table 7, the OLS yields virtually “perfect” results as long as we

consider the idealized where several assumptions of the estimator hold within

the simulation setting from the very beginning. When we add the measurement

error δ and run the model using X, as reported by model 2, the point estimate

of β is downsized, unsurprisingly, by more than 20%, going down from 5.048

to 3.931, with a standard error nearly twice as much as the one found by the

OLS. Finally, the mCGA estimator is remarkably successful as it pulls the β

associated with the mismeasured variable back to 4.662.

Additional practical and important observations concern the pairwise rela-

tionships between the variables of interest. We mentioned earlier in section ??

that the principal feature of the algorithm we devise consists in filtering out

the variable X into two components as X = X̂mCGA + η̂: The random com-

ponent stands for the estimate of the additive measurement error δ while the

deterministic component X̂mCGA matches the fitted X, which we use in the

second-stage regressions.19 These two parts must then be uncorrelated. This

is indeed the case: The sample correlation between the measurement error

δ and the fitted errors is Cor(δ, η̂) = 0.8786, suggesting that the algorithm

18The calculation is possible thanks to the knowledge about the measurement error and
regression error variances.

19There are other instances in the EIV literature following a similar two-stage path like the one
we introduce here. See, among others, Dagenais and Dagenais (1997), Racicot (2015).
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comes up with an accurate estimate of the measurement error. In addition,

by assumptions of the classical EIV model, we expect the measurement er-

ror δ to be uncorrelated with the true values of the predictor X⋆. The weak

sample correlation between the two series in our data validates this insight:

Cor(δ,X⋆) = 0.2007. Finally, and above all else, the filtered series X̂mCGA has

a very strong correlation with the true values X⋆ (assumed unobserved). The

correlation between X̂mCGA and X⋆ is 0.9726. In words, the method comes

up with a clean series for the variable of interest, by providing very close to

the true but unobserved series.

5 Conclusion

This paper addresses the classical errors-in-variables problem in multivariate

linear regression by introducing a compact genetic algorithm-based estimator

designed to mitigate the EIV bias. We build on the original work by Satman

and Diyarbakirlioglu (2015). The authors developed a framework that consid-

ers the measurement error problem within a constrained convex optimization

setting and generates a cleaner version of the error-prone regressor with no

outside information. This paper extends their idea in a multivariate regression

system involving N response variables, where each variable is a function of the

same regressor and, doing so, aims to take advantage of the additional infor-

mation provided by the N − 1 variables to obtain better-behaved estimates of

model coefficients.

In the same spirit as the original paper, our approach consists of a two-stage

optimization process in which the first stage comes up with a filtered version

of the independent variable through an auxiliary dummy-variables regression.

The new series is then plugged back into the initial model in the second stage

to mitigate the EIV problem. We perform extensive simulation analyses to
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assess our approach. We consider several control parameters like the sample

size, the number of dependent variables of the multivariate regression or the

regression vs. measurement error variances. We also provide a simple empirical

application of our method again using simulated data to further highlight

the accuracy of our approach. To summarize, the results overall suggest that

the inclusion of additional response variables as extra information reduces the

bias at the expense of a relatively tolerable increase in the variance. That is

said, the increase in the variance is largely offset as we observe systematically

smaller MSE’s in all simulation configurations, endorsing the performance of

our approach.

There are several options for future studies. A direct extension would fo-

cus on an in-depth investigation of the statistical properties of our estimator.

Although the slight increase in the variance is substantially offset by lower

bias in the coefficient estimates, yielding, collectively, systematically lower

mean-square-errors, studying other features of our method like the consistency,

decision error probabilities or robustness is equally desirable. Therefore, we

consider such a simulation-driven study as a starting point for future work

to provide further credit to the framework we aim to develop. Another av-

enue for future work concerns the empirical ground so that one would check

the CGA estimator in action with real data.20 There are of course several in-

stances in different disciplines in which the model involves a linear relationship

between several response variables each function of the same set of regres-

sors. For example, a particularly interesting case in financial economics is the

so-called factor pricing models where many dependent variables, i.e. returns

on a set of assets or portfolios, are modelled as a linear function of a given

set of independent variables, i.e. risk factors. In a recent study conducted by

20As a matter of fact, the main issue related to empirical work is that it is rarely possible to
know about the population model, making the comparison of the results with those obtained from
simulations difficult.
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Diyarbakirlioglu et al. (2022), the authors provide a real-world data applica-

tion of the original method developed in Satman and Diyarbakirlioglu (2015).

Specifically, they focus on the impact of the measurement error on the market

risk factor for a large number of test assets across three popular asset pricing

models, namely the Capital Asset Pricing Model, the Fama-French three-factor

model and the Fama-French five-factor model. We thus leave the investigation

of the behaviour of our method in these financial models, which are basically

multivariate-multiple regressions, for future work.
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Table 4: Simulation results for β1

σϵ σδ T Bias β̂LS
1 Bias β̂mCGA

1 V ar(β̂LS
1 ) V ar(β̂mCGA

1 ) MSE β̂LS
1 MSE β̂mCGA

1

Panel A: Number of dependent variables, N = 2

1 0.5 30 -1.0021 0.0876 0.1736 0.2419 1.1778 0.2495
50 -0.9963 0.0937 0.1004 0.1704 1.0930 0.1792
100 -0.9941 0.0914 0.0484 0.0804 1.0366 0.0887

1 0.9 30 -2.2521 -0.1240 0.2413 0.6710 5.3134 0.6863
50 -2.2391 -0.0721 0.1383 0.3637 5.1518 0.3689
100 -2.2369 0.0161 0.0684 0.2227 5.0720 0.2230

3 0.5 30 -1.0029 0.8016 0.4324 0.8770 1.4381 1.5195
50 -0.9966 0.8482 0.2343 0.4902 1.2275 1.2096
100 -0.9982 0.8713 0.1096 0.2374 1.1060 0.9965

3 0.9 30 -2.2389 0.4999 0.4123 1.1643 5.4251 1.4142
50 -2.2527 0.6207 0.2444 0.7463 5.3189 1.1315
100 -2.2424 0.7515 0.1995 0.3820 5.1480 0.9468

Panel B: N = 5

1 0.5 30 -0.9876 0.0131 0.1713 0.2748 1.1467 0.2750
50 -1.0052 0.0166 0.1030 0.1650 1.1135 0.1653
100 -1.0065 0.0229 0.0543 0.0823 1.0674 0.0828

1 0.9 30 -2.2589 -0.2095 0.2557 0.5540 5.3582 0.5979
50 -2.2357 -0.0812 0.1361 0.4095 5.1346 0.4161
100 -2.2379 -0.0501 0.0749 0.1953 5.0832 0.1978

3 0.5 30 -0.9715 0.3680 0.4332 0.7208 1.3770 0.8562
50 -1.0225 0.3303 0.2312 0.4015 1.2766 0.5106
100 -1.0177 0.3513 0.1043 0.1835 1.1400 0.3069

3 0.9 30 -2.2260 0.1230 0.3907 0.9173 5.3458 0.9324
50 -2.2359 0.1811 0.2381 0.6141 5.2375 0.6469
100 -2.2449 0.2349 0.1185 0.3429 5.1580 0.3981

Panel C: N = 25

1 0.5 30 -1.0087 -0.0445 0.1717 0.2671 1.1891 0.2691
50 -1.0225 0.0037 0.1086 0.1592 1.1540 0.1593
100 -0.9960 0.0127 0.0500 0.0785 1.0420 0.0787

1 0.9 30 -2.2353 -0.1845 0.2545 0.6258 5.2509 0.6598
50 -2.2302 -0.0969 0.1392 0.4075 5.1129 0.4169
100 -2.2544 -0.0433 0.0749 0.2070 5.1572 0.2089

3 0.5 30 -0.9725 0.0969 0.4306 0.6313 1.3763 0.6407
50 -1.0134 0.0283 0.2248 0.3352 1.2519 0.3360
100 -0.9946 0.0717 0.1172 0.1768 1.1065 0.1820

3 0.9 30 -2.2341 -0.1492 0.4196 0.9235 5.4106 0.9457
50 -2.2545 -0.0456 0.2419 0.6059 5.3246 0.6079
100 -2.2386 0.0053 0.1234 0.2884 5.1349 0.2885

The table shows the bias, variance and the mean-square error of the regression slope es-
timates β̂mCGA

1 . The data generating process is specified as Yti = 5 + 5Xt + ϵti, where
i = 1, ..., N is the number of dependent variables and t = 1, ..., T the sample size. A given
configuration is described by four parameters, namely the standard deviation of regression
error σϵ, the standard deviation of measurement error σδ , the sample size T , and the number
of dependent variables N .
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Table 5: Simulation results for β0

σϵ σδ T Bias β̂LS
0 Bias β̂mCGA

0 V ar(β̂LS
0 ) V ar(β̂mCGA

0 ) MSE β̂LS
0 MSE β̂mCGA

0

Panel A: Number of dependent variables, N = 2

1 0.5 30 -0.0100 -0.0144 0.2129 0.2717 0.2130 0.2719
50 -0.0018 0.0019 0.1215 0.1580 0.1215 0.1580
100 -0.0053 -0.0068 0.0626 0.0763 0.0626 0.0764

1 0.9 30 -0.0001 -0.0222 0.4900 0.8026 0.4900 0.8031
50 0.0290 0.0101 0.2489 0.4336 0.2498 0.4337
100 0.0028 -0.0146 0.1230 0.2121 0.1230 0.2123

3 0.5 30 -0.0097 -0.0178 0.4880 0.6680 0.4881 0.6683
50 0.0186 0.0071 0.3179 0.4276 0.3182 0.4276
100 -0.0055 -0.0043 0.1580 0.2005 0.1581 0.2005

3 0.9 30 0.0324 0.0294 0.7209 1.1841 0.7220 1.1850
50 -0.0023 -0.0444 0.4195 0.7585 0.4195 0.7604
100 -0.0489 -0.0465 0.2259 0.3787 0.2283 0.3809

Panel B: N = 5

1 0.5 30 -0.0195 -0.0140 0.1971 0.2486 0.1974 0.2488
50 -0.0131 -0.0066 0.1167 0.1461 0.1169 0.1461
100 -0.0018 -0.0033 0.0603 0.0744 0.0603 0.0744

1 0.9 30 -0.0036 -0.0020 0.4200 0.6908 0.4200 0.6908
50 -0.0091 0.0023 0.2602 0.4494 0.2602 0.4494
100 -0.0051 -0.0147 0.1177 0.2136 0.1177 0.2138

3 0.5 30 -0.0296 -0.0187 0.4699 0.5622 0.4708 0.5626
50 0.0066 0.0048 0.2818 0.3353 0.2819 0.3353
100 -0.0072 -0.0079 0.1346 0.1665 0.1346 0.1666

3 0.9 30 0.0044 -0.0058 0.6706 1.0244 0.6706 1.0244
50 0.0244 0.0015 0.4208 0.6434 0.4214 0.6434
100 -0.0009 -0.0036 0.1982 0.3197 0.1982 0.3197

Panel C: N = 25

1 0.5 30 -0.0032 0.0072 0.2222 0.2547 0.2222 0.2547
50 0.0125 0.0119 0.1198 0.1476 0.1199 0.1477
100 0.0083 0.0121 0.0601 0.0730 0.0602 0.0731

1 0.9 30 0.0071 -0.0080 0.4104 0.6660 0.4104 0.6661
50 -0.0308 -0.0144 0.2465 0.3983 0.2475 0.3985
100 0.0224 0.0263 0.1279 0.2120 0.1284 0.2127

3 0.5 30 -0.0154 -0.0117 0.5158 0.5778 0.5161 0.5779
50 -0.0126 -0.0108 0.2707 0.3081 0.2709 0.3082
100 0.0085 0.0117 0.1469 0.1607 0.1470 0.1609

3 0.9 30 0.0110 0.0325 0.6817 0.9573 0.6818 0.9583
50 0.0156 0.0074 0.4292 0.6543 0.4294 0.6544
100 -0.0040 -0.0017 0.2054 0.3125 0.2054 0.3125

The table shows the bias, variance and the mean-square error of the regression intercept
estimates β̂mCGA

0 . The data generating process is specified as Yti = 5 + 5Xt + ϵti, where
i = 1, ..., N is the number of dependent variables and t = 1, ..., T the sample size. A given
configuration is described by four parameters, namely the standard deviation of regression
error σϵ, the standard deviation of measurement error σδ , the sample size T , and the number
of dependent variables N .
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Table 6: Artificial multivariate errors-in-variables model dataset

t Y1 Y2 X⋆ δ X W1 W2

1 7.882 7.940 -0.560 -0.843 -1.404 0.253 1.026
2 2.539 2.518 -0.230 0.419 0.189 -0.029 -0.285
3 6.229 6.554 1.559 0.077 1.635 -0.043 -1.221
4 12.755 12.140 0.071 -0.569 -0.499 1.369 0.181
5 2.872 3.752 0.129 0.627 0.756 -0.226 -0.139
6 21.141 22.631 1.715 0.213 1.928 1.516 0.006
7 0.702 1.939 0.461 -0.148 0.313 -1.549 0.385
8 -1.923 -0.214 -1.265 0.448 -0.817 0.585 -0.371
9 5.027 4.984 -0.687 0.439 -0.248 0.124 0.644
10 3.668 0.696 -0.446 0.411 -0.035 0.216 -0.220
11 14.102 15.809 1.224 0.344 1.568 0.380 0.332
12 10.380 8.311 0.360 0.277 0.637 -0.502 1.097
13 5.896 8.254 0.401 -0.031 0.370 -0.333 0.435
14 -1.225 0.740 0.111 -0.153 -0.042 -1.019 -0.326
15 3.125 1.162 -0.556 -0.190 -0.746 -1.072 1.149
16 20.721 21.122 1.787 -0.347 1.440 0.304 0.994
17 12.578 12.210 0.498 -0.104 0.394 0.448 0.548
18 -4.015 -4.947 -1.967 -0.633 -2.599 0.053 0.239
19 9.129 8.464 0.701 1.084 1.786 0.922 -0.628
20 18.666 18.088 -0.473 0.604 0.131 2.050 1.361
21 -5.678 -6.326 -1.068 -0.562 -1.629 -0.491 -0.600
22 2.353 1.839 -0.218 -0.201 -0.419 -2.309 2.187
23 12.071 13.250 -1.026 -0.233 -1.259 1.006 1.533
24 -3.625 -1.269 -0.729 0.390 -0.339 -0.709 -0.236
25 -4.853 -7.984 -0.625 -0.042 -0.667 -0.688 -1.026

The table shows the dataset used in the empirical example. Y1 and Y2 are the response
variables. X⋆ refers to the true regressor, with no measurement error. X is the error-prone
regressor, defined as X = X⋆ + δ. W1 and W2 are additional regressors, generated with no
errors-in-variables.
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Table 7: Estimation results

Model 1: OLS Model 2: EIV Model 3: mCGA

β 5.048 3.931 4.662
(0.174) (0.418) (0.208)

γ1 4.86 4.592 5.489
(0.169) (0.481) (0.215)

γ2 4.776 5.199 5.118
(0.197) (0.561) (0.255)

α 4.789 4.434 4.436
(0.169) (0.476) (0.217)

Observations 25 25 25
Adjusted R2 0.989 0.918 0.982

The table shows the estimation results for the regression model Yti = α + βX⋆
t + γ1Wt1 +

γ2Wt2 + ϵti using the artificial dataset for the first response variable Y1. The population
parameters are all equal to 5. Model 1 refers to the initial case where the true observations
on X⋆ are assumed to be available. Model 2 considers the classical errors-in-variables case
where the values X⋆ are observed with error as X = X⋆ + δ. Model 3 shows the output
obtained using the mCGA method.



JAME, Volume : 4 -  Issue : 1 -  Year: 2024

65


