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Abstract

Gold has been a precious resource for people on earth from the past to the present. It is used as both a value gain and jewelry, 
and is the focus of interest for people in terms of receiving attention and protecting its value. Especially recently, it has been 
the most favorite for investors due to its excess value increase and decrease which is constantly monitored. The study aimed 
to compare the predictive performance of the gold price return using the Support Vector Regression-GARCH hybrid models 
combined with the traditional volatility models. It has been examined whether the Support Vector Regression GARCH models 
would increase foresight performance. The study used data on the daily frequency between 01/01/2010–01/04/2023. Gener-
alized Autoregressive Conditional Variable Variance, Glosten-Jaganthan-Runkle GARCH, Exponential GARCH and hybrid 
model Support Vector Regression -GARCH are utilized as prediction methods. For all methods, the gold series is divided into 
two groups as training and test data. The Root Mean Square Error values are compared as a model performance criterion. The 
RMSE values and graphics outputs have been concluded that the Support Vector Regression-GARCH model based on predict-
ed linear, radial-based and polynomial kernel predicts more effectively than the GARCH models.
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1. INTRODUCTION

Since gold has been considered as an investment tool from the past to the present, it attracts the attention of indi-
viduals and institutions due to its exchangeability. Especially in recent times, the price value of gold has encour-
aged investors to follow gold more. Gold is constantly volatile likewise other financial instruments. This is due to 
the issues that occur within the country as well as in the globe. Therefore, it is important to model this volatility 
that financial markets have. This is because investors would like to make maximum profit from their investments. 
However, the high volatility of financial markets means that the risk is high. As a result of the high risk, investors 
want to have an insight into the financial assets they would invest in before making the actual investment.

The traditional methods (ARIMA, GARCH, etc.) are used to estimate volatility in their financial series. When the 
literature is examined, it is stated that recently machine learning algorithms are included in the predictions of the 
financial time series and making effective forecasts (Bildirici & Ersin 2012).

The econometric model commonly used for estimating volatility in financial markets is the ARCH model devel-
oped by Engle (1982). However, the ARCH model assumes that the impact of positive and negative news affecting 
the market on volatility is the same. Due to the diversity of the data and the differing problems, the ARCH model is 
developed by Bollerslev (1986) and is called the GARCH model. The ARCH and GARCH models assume that the 
variance effect of positive and negative shocks is the same. However, it seems that negative shocks representing 
bad news in the financial markets affect volatility more than positive shocks which represent good news. For this 
reason, the E-GARCH model, expressed as the exponential GARCH (E-GARCH), has been developed by Nelson 
(1991) to eliminate weaknesses ignored in the symmetrical models (Engle 1993: 75; Nelson 1991). One of the 
main shortcomings of the GARCH model is that this model does not consider the possible asymmetrical impact 
observed in the financial time series. Therefore, the GJR-GARCH model has been proposed by Glosten, Jagana-
than and Runkle (1993), which takes into account the asymmetrical impact. 

The study will estimate the GARCH, GJR-GARCH, E-GARCH and SVR-GARCH models and use the RMSE val-
ue determined as the model performance criterion. This study aims to examine whether the SVR-GARCH hybrid 
model is associated with higher performance compared to the GARCH, GJR-GARCH and E-GARCH models.

2. LITERATURE

When the literature is examined, Perez-Cruz et al. (2003) stated that the models predicted using SVR, in contrast 
to the GARCH models performed with the most probability estimation method applied to the time series in their 
studies, performed the best prediction.

Alberg et al. (2008) used GJR-GARCH, APARCH, E-GARCH models to estimate the return and conditional 
variance on the Tel Aviv Stock Exchange. The study utilized a variety of comparison criteria (i.e. MSE, MedSE, 
MAE and AMAPE and TIC) for comparison purposes and determined that the E-GARCH model with student-t 
distribution was the best predictor.

Ou and Wang (2010) used LS-SVM (Least Square Support Vector Machine), GARCH, E-GARCH, GJR-GARCH 
models to estimate the volatility of the ASEAN stock exchange. They stated that the LSSVM model provided more 
resistant and robust performance against volatility. 

Jena and Goyari (2010) investigated the existence of a high volatility regime between 2005 and 2009, using the 
MS-ARCH model for oil and gold prices traded in the Indian market. The study reported that the high volatility 
was observed during the global financial crisis and the crisis is passed to a lower volatility regime after the crisis.

Bildirici and Ersin (2012) estimated BIST-100 index using the GARCH, SVR-GARCH and MLP (artificial neural 
networks)-GARCH models. It was concluded that SVR-GARCH and MLP-GARCH were better than the GARCH 
model.
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Wang et al. (2013) compared error statistics for the model performance benchmark by performing Markov-switch-
ing (MSM), GARCH (1,1) and SVM-based Markov-switching (SVM-MSM) model forecasts for two different 
financial time series. The results showed that the best models were SVM-MSM, MSM and GARCH (1,1) respec-
tively.

Gürsoy and Balaban (2014), using the BIST-100 index, estimated GARCH, E-GARCH, GJR-GARCH and SVR-
GARCH models and stated that the best model was the SVR-GARCH model.

Karabacak et al. (2014) predicted volatility with the ARCH, GARCH, TARCH, E-GARCH and IGARCH models 
using the BIST-100 index return and gold return series in their study. TARCH stated that the best model for BIST 
100 index return was the GARCH model for the gold return series.

Birau et al. (2015) used Bombay Stock Exchange Bank Index (BANK) used ARCH and GARCH models for vol-
atility estimation. It was stated that the GARCH model predicted better than the ARCH model.

Katsiampa (2017) employed GARCH, EGARCH, TGARCH, APGARCH, C-GARCH, and AC-GARCH models 
for volatility modeling using Bitcoin data in his study. By comparing the AIC, SIC and HQ information criteria of 
the models, he determined that C-GARCH was the best model.

Cihangir and Uğurlu (2017) used GARCH, APARCH, TARCH and EGARCH estimation methods for the vol-
atility of the gold price between 2010 and 2016 for their work. The study reported that APARCH was the most 
appropriate model.

Peng et al. (2018) examined the volatility of three different cryptocurrencies they identified. They applied GARCH, 
EGARCH, GJR-GARCH and SVR-GARCH models to the daily and hourly frequency data. The study reports that 
the SVR-GARCH model performs better than other models.

When the literature is examined econometrically, it is seen that gold prices and GARCH models are included in 
many studies. In this study, the hybrid model created by using the traditional methods and integrating with SVR, 
the recently widespread machine learning prediction algorithm, is created. For the performance evaluation of the 
applied prediction models, it is aimed to select the best prediction model by comparing the Root Mean Square 
Error (RMSE) values.

3. METHODS OF RESEARCH 

Modeling and predicting volatility is very important in the financial markets. The high volatility states that the 
financial asset is risky. The correct estimate of the financial return volatility is crucial to assess investment risk.

Linear and nonlinear methods are used in time series. Linear models could be listed as ARIMA and GARCH. Sup-
port Vector Regressions and Artificial Neural Networks can be exemplified to nonlinear models. In this study, the 
hybrid GARCH model combined with SVR with the GARCH, GJR-GARCH, E-GARCH models will be estimated 
and the model with small error statistics will be determined.

The ARCH model is an autoregressive model developed by Engle (1982). ARCH is one of the most widely used 
models to model volatility in the market. It assumes that the variance value of the error terms is related to the pre-
vious period error values. It is possible to predict the variance of the series within a given time.

The ARCH model does not allow the conditional variance to change over time as a function of past errors which 
leaves the unconditional variance constant (Bolleslev 1986).
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The ARCH model formulas are showed in Equation 1:
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𝜎𝜎𝜎𝜎𝑡𝑡𝑡𝑡2 =  𝛼𝛼𝛼𝛼0 + 𝛼𝛼𝛼𝛼1𝜀𝜀𝜀𝜀𝑡𝑡𝑡𝑡𝑡12 + 𝛼𝛼𝛼𝛼2𝜀𝜀𝜀𝜀𝑡𝑡𝑡𝑡𝑡22 + ⋯+ 𝛼𝛼𝛼𝛼𝑝𝑝𝑝𝑝𝜀𝜀𝜀𝜀𝑡𝑡𝑡𝑡𝑡𝑝𝑝𝑝𝑝2 =  𝛼𝛼𝛼𝛼0 + ∑ 𝛼𝛼𝛼𝛼𝑖𝑖𝑖𝑖𝜀𝜀𝜀𝜀𝑡𝑡𝑡𝑡𝑡𝑖𝑖𝑖𝑖2𝑝𝑝𝑝𝑝
𝑖𝑖𝑖𝑖𝑖1                                             (1)    

 𝜀𝜀𝜀𝜀𝑡𝑡𝑡𝑡 = 𝑦𝑦𝑦𝑦𝑡𝑡𝑡𝑡 −  𝑥𝑥𝑥𝑥𝑡𝑡𝑡𝑡𝑏𝑏𝑏𝑏                                               

ARCH model constraints exist; ℎ𝑡𝑡𝑡𝑡 and 𝜀𝜀𝜀𝜀𝑡𝑡𝑡𝑡 must be positive. In other words, 𝛼𝛼𝛼𝛼0 > 0 other 
parameters 𝛼𝛼𝛼𝛼𝑖𝑖𝑖𝑖 ≥ 0. The other constraint should be 0 ≤ 𝛼𝛼𝛼𝛼𝑖𝑖𝑖𝑖 ≤ 1 (Engel 1982). 
The GARCH model is developed by Bolleslev (1986) and Taylor (1986). The GARCH model 
estimates the conditional variance of the process variable based on its own delayed values. The 
error squares calculated in the mean equation gives information about volatility in past periods. 
When the literature is examined, it is seen that the GARCH model makes a more effective 
prediction than the ARCH model. The GARCH (1,1) model is the simplest but most powerful 
model of volatility (Engle 2001). 
The GARCH model formula is showed in Equation 2: 

𝜎𝜎𝜎𝜎𝑡𝑡𝑡𝑡2 = 𝛼𝛼𝛼𝛼0 + ∑ 𝛼𝛼𝛼𝛼𝑖𝑖𝑖𝑖𝜀𝜀𝜀𝜀𝑡𝑡𝑡𝑡𝑡𝑖𝑖𝑖𝑖2𝑞𝑞𝑞𝑞
𝑖𝑖𝑖𝑖𝑖1 +  ∑ 𝛽𝛽𝛽𝛽𝑖𝑖𝑖𝑖𝜎𝜎𝜎𝜎𝑡𝑡𝑡𝑡𝑡𝑖𝑖𝑖𝑖        2𝑝𝑝𝑝𝑝

𝑖𝑖𝑖𝑖𝑖1                                                                                  (2) 

As a GARCH model constraint is, 𝛼𝛼𝛼𝛼0 > 0, 𝛼𝛼𝛼𝛼𝑖𝑖𝑖𝑖 ≥ 0 , 𝛽𝛽𝛽𝛽𝑖𝑖𝑖𝑖 ≥ 0 and ∑ 𝛼𝛼𝛼𝛼𝑖𝑖𝑖𝑖
𝑝𝑝𝑝𝑝
𝑖𝑖𝑖𝑖𝑖1 +  ∑ 𝛽𝛽𝛽𝛽𝑖𝑖𝑖𝑖

𝑝𝑝𝑝𝑝
𝑖𝑖𝑖𝑖𝑖1 < 1  

(Bolleslev 1986). 
The GJR-GARCH model is developed in 1993 by the Glosten, Jaganthan and Runkle. This 
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recommended to determine the leverage effect in time series. 
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is expressed. 
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and GARCH. Support Vector Regressions and Artificial Neural Networks can be exemplified 
to nonlinear models. In this study, the hybrid GARCH model combined with SVR with the 
GARCH, GJR-GARCH, E-GARCH models will be estimated and the model with small error 
statistics will be determined. 
The ARCH model is an autoregressive model developed by Engle (1982). ARCH is one of the 
most widely used models to model volatility in the market. It assumes that the variance value 
of the error terms is related to the previous period error values. It is possible to predict the 
variance of the series within a given time. 
The ARCH model does not allow the conditional variance to change over time as a function of 
past errors which leaves the unconditional variance constant (Bolleslev 1986). 
The ARCH model formulas are showed in Equation 1: 

𝑦𝑦𝑦𝑦𝑡𝑡𝑡𝑡 = 𝜃𝜃𝜃𝜃0 + 𝜃𝜃𝜃𝜃1𝑦𝑦𝑦𝑦𝑡𝑡𝑡𝑡𝑡1 + ⋯+ 𝜃𝜃𝜃𝜃𝑛𝑛𝑛𝑛𝑦𝑦𝑦𝑦𝑛𝑛𝑛𝑛𝑡1 + 𝜀𝜀𝜀𝜀𝑡𝑡𝑡𝑡                                 𝜀𝜀𝜀𝜀|𝐼𝐼𝐼𝐼𝑡𝑡𝑡𝑡𝑡1𝑁𝑁𝑁𝑁(0,𝜎𝜎𝜎𝜎𝑡𝑡𝑡𝑡2)      

𝜎𝜎𝜎𝜎𝑡𝑡𝑡𝑡2 =  𝛼𝛼𝛼𝛼0 + 𝛼𝛼𝛼𝛼1𝜀𝜀𝜀𝜀𝑡𝑡𝑡𝑡𝑡12 + 𝛼𝛼𝛼𝛼2𝜀𝜀𝜀𝜀𝑡𝑡𝑡𝑡𝑡22 + ⋯+ 𝛼𝛼𝛼𝛼𝑝𝑝𝑝𝑝𝜀𝜀𝜀𝜀𝑡𝑡𝑡𝑡𝑡𝑝𝑝𝑝𝑝2 =  𝛼𝛼𝛼𝛼0 + ∑ 𝛼𝛼𝛼𝛼𝑖𝑖𝑖𝑖𝜀𝜀𝜀𝜀𝑡𝑡𝑡𝑡𝑡𝑖𝑖𝑖𝑖2𝑝𝑝𝑝𝑝
𝑖𝑖𝑖𝑖𝑖1                                             (1)    

 𝜀𝜀𝜀𝜀𝑡𝑡𝑡𝑡 = 𝑦𝑦𝑦𝑦𝑡𝑡𝑡𝑡 −  𝑥𝑥𝑥𝑥𝑡𝑡𝑡𝑡𝑏𝑏𝑏𝑏                                               

ARCH model constraints exist; ℎ𝑡𝑡𝑡𝑡 and 𝜀𝜀𝜀𝜀𝑡𝑡𝑡𝑡 must be positive. In other words, 𝛼𝛼𝛼𝛼0 > 0 other 
parameters 𝛼𝛼𝛼𝛼𝑖𝑖𝑖𝑖 ≥ 0. The other constraint should be 0 ≤ 𝛼𝛼𝛼𝛼𝑖𝑖𝑖𝑖 ≤ 1 (Engel 1982). 
The GARCH model is developed by Bolleslev (1986) and Taylor (1986). The GARCH model 
estimates the conditional variance of the process variable based on its own delayed values. The 
error squares calculated in the mean equation gives information about volatility in past periods. 
When the literature is examined, it is seen that the GARCH model makes a more effective 
prediction than the ARCH model. The GARCH (1,1) model is the simplest but most powerful 
model of volatility (Engle 2001). 
The GARCH model formula is showed in Equation 2: 

𝜎𝜎𝜎𝜎𝑡𝑡𝑡𝑡2 = 𝛼𝛼𝛼𝛼0 + ∑ 𝛼𝛼𝛼𝛼𝑖𝑖𝑖𝑖𝜀𝜀𝜀𝜀𝑡𝑡𝑡𝑡𝑡𝑖𝑖𝑖𝑖2𝑞𝑞𝑞𝑞
𝑖𝑖𝑖𝑖𝑖1 +  ∑ 𝛽𝛽𝛽𝛽𝑖𝑖𝑖𝑖𝜎𝜎𝜎𝜎𝑡𝑡𝑡𝑡𝑡𝑖𝑖𝑖𝑖        2𝑝𝑝𝑝𝑝

𝑖𝑖𝑖𝑖𝑖1                                                                                  (2) 

As a GARCH model constraint is, 𝛼𝛼𝛼𝛼0 > 0, 𝛼𝛼𝛼𝛼𝑖𝑖𝑖𝑖 ≥ 0 , 𝛽𝛽𝛽𝛽𝑖𝑖𝑖𝑖 ≥ 0 and ∑ 𝛼𝛼𝛼𝛼𝑖𝑖𝑖𝑖
𝑝𝑝𝑝𝑝
𝑖𝑖𝑖𝑖𝑖1 +  ∑ 𝛽𝛽𝛽𝛽𝑖𝑖𝑖𝑖

𝑝𝑝𝑝𝑝
𝑖𝑖𝑖𝑖𝑖1 < 1  

(Bolleslev 1986). 
The GJR-GARCH model is developed in 1993 by the Glosten, Jaganthan and Runkle. This 
model reacts to past negative and positive changes of the conditional variance. This model is 
recommended to determine the leverage effect in time series. 
The GJR-GARCH model formula is showed in Equation 3: 

𝜎𝜎𝜎𝜎𝑡𝑡𝑡𝑡2 = 𝛼𝛼𝛼𝛼0 + ∑ 𝛼𝛼𝛼𝛼𝑖𝑖𝑖𝑖𝜀𝜀𝜀𝜀𝑡𝑡𝑡𝑡𝑡𝑖𝑖𝑖𝑖2𝑝𝑝𝑝𝑝
𝑖𝑖𝑖𝑖𝑖1 +  𝛾𝛾𝛾𝛾𝑖𝑖𝑖𝑖𝜀𝜀𝜀𝜀𝑡𝑡𝑡𝑡𝑡𝑖𝑖𝑖𝑖2 𝐼𝐼𝐼𝐼𝑡𝑡𝑡𝑡𝑡1 ∑ 𝛽𝛽𝛽𝛽𝑗𝑗𝑗𝑗𝜎𝜎𝜎𝜎𝑡𝑡𝑡𝑡𝑡𝑗𝑗𝑗𝑗       

 2𝑝𝑝𝑝𝑝
𝑖𝑖𝑖𝑖𝑖1                                                                      (3) 

The 𝐼𝐼𝐼𝐼𝑡𝑡𝑡𝑡𝑡1 parameter in Equation 3 refers to unexpected news; 

𝐼𝐼𝐼𝐼𝑡𝑡𝑡𝑡𝑡1 =    �1  if  𝜀𝜀𝜀𝜀𝑡𝑡𝑡𝑡𝑡1 < 0, bad news 
0 if 𝜀𝜀𝜀𝜀𝑡𝑡𝑡𝑡𝑡1  ≥ 0, good news  , 

is expressed. 

 must be positive. In other words, 

3. METHODS OF RESEARCH  

Modeling and predicting volatility is very important in the financial markets. The high volatility 
states that the financial asset is risky. The correct estimate of the financial return volatility is 
crucial to assess investment risk. 
Linear and nonlinear methods are used in time series. Linear models could be listed as ARIMA 
and GARCH. Support Vector Regressions and Artificial Neural Networks can be exemplified 
to nonlinear models. In this study, the hybrid GARCH model combined with SVR with the 
GARCH, GJR-GARCH, E-GARCH models will be estimated and the model with small error 
statistics will be determined. 
The ARCH model is an autoregressive model developed by Engle (1982). ARCH is one of the 
most widely used models to model volatility in the market. It assumes that the variance value 
of the error terms is related to the previous period error values. It is possible to predict the 
variance of the series within a given time. 
The ARCH model does not allow the conditional variance to change over time as a function of 
past errors which leaves the unconditional variance constant (Bolleslev 1986). 
The ARCH model formulas are showed in Equation 1: 

𝑦𝑦𝑦𝑦𝑡𝑡𝑡𝑡 = 𝜃𝜃𝜃𝜃0 + 𝜃𝜃𝜃𝜃1𝑦𝑦𝑦𝑦𝑡𝑡𝑡𝑡𝑡1 + ⋯+ 𝜃𝜃𝜃𝜃𝑛𝑛𝑛𝑛𝑦𝑦𝑦𝑦𝑛𝑛𝑛𝑛𝑡1 + 𝜀𝜀𝜀𝜀𝑡𝑡𝑡𝑡                                 𝜀𝜀𝜀𝜀|𝐼𝐼𝐼𝐼𝑡𝑡𝑡𝑡𝑡1𝑁𝑁𝑁𝑁(0,𝜎𝜎𝜎𝜎𝑡𝑡𝑡𝑡2)      

𝜎𝜎𝜎𝜎𝑡𝑡𝑡𝑡2 =  𝛼𝛼𝛼𝛼0 + 𝛼𝛼𝛼𝛼1𝜀𝜀𝜀𝜀𝑡𝑡𝑡𝑡𝑡12 + 𝛼𝛼𝛼𝛼2𝜀𝜀𝜀𝜀𝑡𝑡𝑡𝑡𝑡22 + ⋯+ 𝛼𝛼𝛼𝛼𝑝𝑝𝑝𝑝𝜀𝜀𝜀𝜀𝑡𝑡𝑡𝑡𝑡𝑝𝑝𝑝𝑝2 =  𝛼𝛼𝛼𝛼0 + ∑ 𝛼𝛼𝛼𝛼𝑖𝑖𝑖𝑖𝜀𝜀𝜀𝜀𝑡𝑡𝑡𝑡𝑡𝑖𝑖𝑖𝑖2𝑝𝑝𝑝𝑝
𝑖𝑖𝑖𝑖𝑖1                                             (1)    

 𝜀𝜀𝜀𝜀𝑡𝑡𝑡𝑡 = 𝑦𝑦𝑦𝑦𝑡𝑡𝑡𝑡 −  𝑥𝑥𝑥𝑥𝑡𝑡𝑡𝑡𝑏𝑏𝑏𝑏                                               

ARCH model constraints exist; ℎ𝑡𝑡𝑡𝑡 and 𝜀𝜀𝜀𝜀𝑡𝑡𝑡𝑡 must be positive. In other words, 𝛼𝛼𝛼𝛼0 > 0 other 
parameters 𝛼𝛼𝛼𝛼𝑖𝑖𝑖𝑖 ≥ 0. The other constraint should be 0 ≤ 𝛼𝛼𝛼𝛼𝑖𝑖𝑖𝑖 ≤ 1 (Engel 1982). 
The GARCH model is developed by Bolleslev (1986) and Taylor (1986). The GARCH model 
estimates the conditional variance of the process variable based on its own delayed values. The 
error squares calculated in the mean equation gives information about volatility in past periods. 
When the literature is examined, it is seen that the GARCH model makes a more effective 
prediction than the ARCH model. The GARCH (1,1) model is the simplest but most powerful 
model of volatility (Engle 2001). 
The GARCH model formula is showed in Equation 2: 

𝜎𝜎𝜎𝜎𝑡𝑡𝑡𝑡2 = 𝛼𝛼𝛼𝛼0 + ∑ 𝛼𝛼𝛼𝛼𝑖𝑖𝑖𝑖𝜀𝜀𝜀𝜀𝑡𝑡𝑡𝑡𝑡𝑖𝑖𝑖𝑖2𝑞𝑞𝑞𝑞
𝑖𝑖𝑖𝑖𝑖1 +  ∑ 𝛽𝛽𝛽𝛽𝑖𝑖𝑖𝑖𝜎𝜎𝜎𝜎𝑡𝑡𝑡𝑡𝑡𝑖𝑖𝑖𝑖        2𝑝𝑝𝑝𝑝

𝑖𝑖𝑖𝑖𝑖1                                                                                  (2) 

As a GARCH model constraint is, 𝛼𝛼𝛼𝛼0 > 0, 𝛼𝛼𝛼𝛼𝑖𝑖𝑖𝑖 ≥ 0 , 𝛽𝛽𝛽𝛽𝑖𝑖𝑖𝑖 ≥ 0 and ∑ 𝛼𝛼𝛼𝛼𝑖𝑖𝑖𝑖
𝑝𝑝𝑝𝑝
𝑖𝑖𝑖𝑖𝑖1 +  ∑ 𝛽𝛽𝛽𝛽𝑖𝑖𝑖𝑖

𝑝𝑝𝑝𝑝
𝑖𝑖𝑖𝑖𝑖1 < 1  

(Bolleslev 1986). 
The GJR-GARCH model is developed in 1993 by the Glosten, Jaganthan and Runkle. This 
model reacts to past negative and positive changes of the conditional variance. This model is 
recommended to determine the leverage effect in time series. 
The GJR-GARCH model formula is showed in Equation 3: 

𝜎𝜎𝜎𝜎𝑡𝑡𝑡𝑡2 = 𝛼𝛼𝛼𝛼0 + ∑ 𝛼𝛼𝛼𝛼𝑖𝑖𝑖𝑖𝜀𝜀𝜀𝜀𝑡𝑡𝑡𝑡𝑡𝑖𝑖𝑖𝑖2𝑝𝑝𝑝𝑝
𝑖𝑖𝑖𝑖𝑖1 +  𝛾𝛾𝛾𝛾𝑖𝑖𝑖𝑖𝜀𝜀𝜀𝜀𝑡𝑡𝑡𝑡𝑡𝑖𝑖𝑖𝑖2 𝐼𝐼𝐼𝐼𝑡𝑡𝑡𝑡𝑡1 ∑ 𝛽𝛽𝛽𝛽𝑗𝑗𝑗𝑗𝜎𝜎𝜎𝜎𝑡𝑡𝑡𝑡𝑡𝑗𝑗𝑗𝑗       

 2𝑝𝑝𝑝𝑝
𝑖𝑖𝑖𝑖𝑖1                                                                      (3) 

The 𝐼𝐼𝐼𝐼𝑡𝑡𝑡𝑡𝑡1 parameter in Equation 3 refers to unexpected news; 

𝐼𝐼𝐼𝐼𝑡𝑡𝑡𝑡𝑡1 =    �1  if  𝜀𝜀𝜀𝜀𝑡𝑡𝑡𝑡𝑡1 < 0, bad news 
0 if 𝜀𝜀𝜀𝜀𝑡𝑡𝑡𝑡𝑡1  ≥ 0, good news  , 

is expressed. 

 other parameters 

3. METHODS OF RESEARCH  

Modeling and predicting volatility is very important in the financial markets. The high volatility 
states that the financial asset is risky. The correct estimate of the financial return volatility is 
crucial to assess investment risk. 
Linear and nonlinear methods are used in time series. Linear models could be listed as ARIMA 
and GARCH. Support Vector Regressions and Artificial Neural Networks can be exemplified 
to nonlinear models. In this study, the hybrid GARCH model combined with SVR with the 
GARCH, GJR-GARCH, E-GARCH models will be estimated and the model with small error 
statistics will be determined. 
The ARCH model is an autoregressive model developed by Engle (1982). ARCH is one of the 
most widely used models to model volatility in the market. It assumes that the variance value 
of the error terms is related to the previous period error values. It is possible to predict the 
variance of the series within a given time. 
The ARCH model does not allow the conditional variance to change over time as a function of 
past errors which leaves the unconditional variance constant (Bolleslev 1986). 
The ARCH model formulas are showed in Equation 1: 

𝑦𝑦𝑦𝑦𝑡𝑡𝑡𝑡 = 𝜃𝜃𝜃𝜃0 + 𝜃𝜃𝜃𝜃1𝑦𝑦𝑦𝑦𝑡𝑡𝑡𝑡𝑡1 + ⋯+ 𝜃𝜃𝜃𝜃𝑛𝑛𝑛𝑛𝑦𝑦𝑦𝑦𝑛𝑛𝑛𝑛𝑡1 + 𝜀𝜀𝜀𝜀𝑡𝑡𝑡𝑡                                 𝜀𝜀𝜀𝜀|𝐼𝐼𝐼𝐼𝑡𝑡𝑡𝑡𝑡1𝑁𝑁𝑁𝑁(0,𝜎𝜎𝜎𝜎𝑡𝑡𝑡𝑡2)      

𝜎𝜎𝜎𝜎𝑡𝑡𝑡𝑡2 =  𝛼𝛼𝛼𝛼0 + 𝛼𝛼𝛼𝛼1𝜀𝜀𝜀𝜀𝑡𝑡𝑡𝑡𝑡12 + 𝛼𝛼𝛼𝛼2𝜀𝜀𝜀𝜀𝑡𝑡𝑡𝑡𝑡22 + ⋯+ 𝛼𝛼𝛼𝛼𝑝𝑝𝑝𝑝𝜀𝜀𝜀𝜀𝑡𝑡𝑡𝑡𝑡𝑝𝑝𝑝𝑝2 =  𝛼𝛼𝛼𝛼0 + ∑ 𝛼𝛼𝛼𝛼𝑖𝑖𝑖𝑖𝜀𝜀𝜀𝜀𝑡𝑡𝑡𝑡𝑡𝑖𝑖𝑖𝑖2𝑝𝑝𝑝𝑝
𝑖𝑖𝑖𝑖𝑖1                                             (1)    

 𝜀𝜀𝜀𝜀𝑡𝑡𝑡𝑡 = 𝑦𝑦𝑦𝑦𝑡𝑡𝑡𝑡 −  𝑥𝑥𝑥𝑥𝑡𝑡𝑡𝑡𝑏𝑏𝑏𝑏                                               

ARCH model constraints exist; ℎ𝑡𝑡𝑡𝑡 and 𝜀𝜀𝜀𝜀𝑡𝑡𝑡𝑡 must be positive. In other words, 𝛼𝛼𝛼𝛼0 > 0 other 
parameters 𝛼𝛼𝛼𝛼𝑖𝑖𝑖𝑖 ≥ 0. The other constraint should be 0 ≤ 𝛼𝛼𝛼𝛼𝑖𝑖𝑖𝑖 ≤ 1 (Engel 1982). 
The GARCH model is developed by Bolleslev (1986) and Taylor (1986). The GARCH model 
estimates the conditional variance of the process variable based on its own delayed values. The 
error squares calculated in the mean equation gives information about volatility in past periods. 
When the literature is examined, it is seen that the GARCH model makes a more effective 
prediction than the ARCH model. The GARCH (1,1) model is the simplest but most powerful 
model of volatility (Engle 2001). 
The GARCH model formula is showed in Equation 2: 

𝜎𝜎𝜎𝜎𝑡𝑡𝑡𝑡2 = 𝛼𝛼𝛼𝛼0 + ∑ 𝛼𝛼𝛼𝛼𝑖𝑖𝑖𝑖𝜀𝜀𝜀𝜀𝑡𝑡𝑡𝑡𝑡𝑖𝑖𝑖𝑖2𝑞𝑞𝑞𝑞
𝑖𝑖𝑖𝑖𝑖1 +  ∑ 𝛽𝛽𝛽𝛽𝑖𝑖𝑖𝑖𝜎𝜎𝜎𝜎𝑡𝑡𝑡𝑡𝑡𝑖𝑖𝑖𝑖        2𝑝𝑝𝑝𝑝

𝑖𝑖𝑖𝑖𝑖1                                                                                  (2) 

As a GARCH model constraint is, 𝛼𝛼𝛼𝛼0 > 0, 𝛼𝛼𝛼𝛼𝑖𝑖𝑖𝑖 ≥ 0 , 𝛽𝛽𝛽𝛽𝑖𝑖𝑖𝑖 ≥ 0 and ∑ 𝛼𝛼𝛼𝛼𝑖𝑖𝑖𝑖
𝑝𝑝𝑝𝑝
𝑖𝑖𝑖𝑖𝑖1 +  ∑ 𝛽𝛽𝛽𝛽𝑖𝑖𝑖𝑖

𝑝𝑝𝑝𝑝
𝑖𝑖𝑖𝑖𝑖1 < 1  

(Bolleslev 1986). 
The GJR-GARCH model is developed in 1993 by the Glosten, Jaganthan and Runkle. This 
model reacts to past negative and positive changes of the conditional variance. This model is 
recommended to determine the leverage effect in time series. 
The GJR-GARCH model formula is showed in Equation 3: 

𝜎𝜎𝜎𝜎𝑡𝑡𝑡𝑡2 = 𝛼𝛼𝛼𝛼0 + ∑ 𝛼𝛼𝛼𝛼𝑖𝑖𝑖𝑖𝜀𝜀𝜀𝜀𝑡𝑡𝑡𝑡𝑡𝑖𝑖𝑖𝑖2𝑝𝑝𝑝𝑝
𝑖𝑖𝑖𝑖𝑖1 +  𝛾𝛾𝛾𝛾𝑖𝑖𝑖𝑖𝜀𝜀𝜀𝜀𝑡𝑡𝑡𝑡𝑡𝑖𝑖𝑖𝑖2 𝐼𝐼𝐼𝐼𝑡𝑡𝑡𝑡𝑡1 ∑ 𝛽𝛽𝛽𝛽𝑗𝑗𝑗𝑗𝜎𝜎𝜎𝜎𝑡𝑡𝑡𝑡𝑡𝑗𝑗𝑗𝑗       

 2𝑝𝑝𝑝𝑝
𝑖𝑖𝑖𝑖𝑖1                                                                      (3) 

The 𝐼𝐼𝐼𝐼𝑡𝑡𝑡𝑡𝑡1 parameter in Equation 3 refers to unexpected news; 

𝐼𝐼𝐼𝐼𝑡𝑡𝑡𝑡𝑡1 =    �1  if  𝜀𝜀𝜀𝜀𝑡𝑡𝑡𝑡𝑡1 < 0, bad news 
0 if 𝜀𝜀𝜀𝜀𝑡𝑡𝑡𝑡𝑡1  ≥ 0, good news  , 

is expressed. 

 
The other constraint should be 

3. METHODS OF RESEARCH  

Modeling and predicting volatility is very important in the financial markets. The high volatility 
states that the financial asset is risky. The correct estimate of the financial return volatility is 
crucial to assess investment risk. 
Linear and nonlinear methods are used in time series. Linear models could be listed as ARIMA 
and GARCH. Support Vector Regressions and Artificial Neural Networks can be exemplified 
to nonlinear models. In this study, the hybrid GARCH model combined with SVR with the 
GARCH, GJR-GARCH, E-GARCH models will be estimated and the model with small error 
statistics will be determined. 
The ARCH model is an autoregressive model developed by Engle (1982). ARCH is one of the 
most widely used models to model volatility in the market. It assumes that the variance value 
of the error terms is related to the previous period error values. It is possible to predict the 
variance of the series within a given time. 
The ARCH model does not allow the conditional variance to change over time as a function of 
past errors which leaves the unconditional variance constant (Bolleslev 1986). 
The ARCH model formulas are showed in Equation 1: 

𝑦𝑦𝑦𝑦𝑡𝑡𝑡𝑡 = 𝜃𝜃𝜃𝜃0 + 𝜃𝜃𝜃𝜃1𝑦𝑦𝑦𝑦𝑡𝑡𝑡𝑡𝑡1 + ⋯+ 𝜃𝜃𝜃𝜃𝑛𝑛𝑛𝑛𝑦𝑦𝑦𝑦𝑛𝑛𝑛𝑛𝑡1 + 𝜀𝜀𝜀𝜀𝑡𝑡𝑡𝑡                                 𝜀𝜀𝜀𝜀|𝐼𝐼𝐼𝐼𝑡𝑡𝑡𝑡𝑡1𝑁𝑁𝑁𝑁(0,𝜎𝜎𝜎𝜎𝑡𝑡𝑡𝑡2)      

𝜎𝜎𝜎𝜎𝑡𝑡𝑡𝑡2 =  𝛼𝛼𝛼𝛼0 + 𝛼𝛼𝛼𝛼1𝜀𝜀𝜀𝜀𝑡𝑡𝑡𝑡𝑡12 + 𝛼𝛼𝛼𝛼2𝜀𝜀𝜀𝜀𝑡𝑡𝑡𝑡𝑡22 + ⋯+ 𝛼𝛼𝛼𝛼𝑝𝑝𝑝𝑝𝜀𝜀𝜀𝜀𝑡𝑡𝑡𝑡𝑡𝑝𝑝𝑝𝑝2 =  𝛼𝛼𝛼𝛼0 + ∑ 𝛼𝛼𝛼𝛼𝑖𝑖𝑖𝑖𝜀𝜀𝜀𝜀𝑡𝑡𝑡𝑡𝑡𝑖𝑖𝑖𝑖2𝑝𝑝𝑝𝑝
𝑖𝑖𝑖𝑖𝑖1                                             (1)    

 𝜀𝜀𝜀𝜀𝑡𝑡𝑡𝑡 = 𝑦𝑦𝑦𝑦𝑡𝑡𝑡𝑡 −  𝑥𝑥𝑥𝑥𝑡𝑡𝑡𝑡𝑏𝑏𝑏𝑏                                               

ARCH model constraints exist; ℎ𝑡𝑡𝑡𝑡 and 𝜀𝜀𝜀𝜀𝑡𝑡𝑡𝑡 must be positive. In other words, 𝛼𝛼𝛼𝛼0 > 0 other 
parameters 𝛼𝛼𝛼𝛼𝑖𝑖𝑖𝑖 ≥ 0. The other constraint should be 0 ≤ 𝛼𝛼𝛼𝛼𝑖𝑖𝑖𝑖 ≤ 1 (Engel 1982). 
The GARCH model is developed by Bolleslev (1986) and Taylor (1986). The GARCH model 
estimates the conditional variance of the process variable based on its own delayed values. The 
error squares calculated in the mean equation gives information about volatility in past periods. 
When the literature is examined, it is seen that the GARCH model makes a more effective 
prediction than the ARCH model. The GARCH (1,1) model is the simplest but most powerful 
model of volatility (Engle 2001). 
The GARCH model formula is showed in Equation 2: 

𝜎𝜎𝜎𝜎𝑡𝑡𝑡𝑡2 = 𝛼𝛼𝛼𝛼0 + ∑ 𝛼𝛼𝛼𝛼𝑖𝑖𝑖𝑖𝜀𝜀𝜀𝜀𝑡𝑡𝑡𝑡𝑡𝑖𝑖𝑖𝑖2𝑞𝑞𝑞𝑞
𝑖𝑖𝑖𝑖𝑖1 +  ∑ 𝛽𝛽𝛽𝛽𝑖𝑖𝑖𝑖𝜎𝜎𝜎𝜎𝑡𝑡𝑡𝑡𝑡𝑖𝑖𝑖𝑖        2𝑝𝑝𝑝𝑝

𝑖𝑖𝑖𝑖𝑖1                                                                                  (2) 

As a GARCH model constraint is, 𝛼𝛼𝛼𝛼0 > 0, 𝛼𝛼𝛼𝛼𝑖𝑖𝑖𝑖 ≥ 0 , 𝛽𝛽𝛽𝛽𝑖𝑖𝑖𝑖 ≥ 0 and ∑ 𝛼𝛼𝛼𝛼𝑖𝑖𝑖𝑖
𝑝𝑝𝑝𝑝
𝑖𝑖𝑖𝑖𝑖1 +  ∑ 𝛽𝛽𝛽𝛽𝑖𝑖𝑖𝑖

𝑝𝑝𝑝𝑝
𝑖𝑖𝑖𝑖𝑖1 < 1  

(Bolleslev 1986). 
The GJR-GARCH model is developed in 1993 by the Glosten, Jaganthan and Runkle. This 
model reacts to past negative and positive changes of the conditional variance. This model is 
recommended to determine the leverage effect in time series. 
The GJR-GARCH model formula is showed in Equation 3: 

𝜎𝜎𝜎𝜎𝑡𝑡𝑡𝑡2 = 𝛼𝛼𝛼𝛼0 + ∑ 𝛼𝛼𝛼𝛼𝑖𝑖𝑖𝑖𝜀𝜀𝜀𝜀𝑡𝑡𝑡𝑡𝑡𝑖𝑖𝑖𝑖2𝑝𝑝𝑝𝑝
𝑖𝑖𝑖𝑖𝑖1 +  𝛾𝛾𝛾𝛾𝑖𝑖𝑖𝑖𝜀𝜀𝜀𝜀𝑡𝑡𝑡𝑡𝑡𝑖𝑖𝑖𝑖2 𝐼𝐼𝐼𝐼𝑡𝑡𝑡𝑡𝑡1 ∑ 𝛽𝛽𝛽𝛽𝑗𝑗𝑗𝑗𝜎𝜎𝜎𝜎𝑡𝑡𝑡𝑡𝑡𝑗𝑗𝑗𝑗       

 2𝑝𝑝𝑝𝑝
𝑖𝑖𝑖𝑖𝑖1                                                                      (3) 

The 𝐼𝐼𝐼𝐼𝑡𝑡𝑡𝑡𝑡1 parameter in Equation 3 refers to unexpected news; 

𝐼𝐼𝐼𝐼𝑡𝑡𝑡𝑡𝑡1 =    �1  if  𝜀𝜀𝜀𝜀𝑡𝑡𝑡𝑡𝑡1 < 0, bad news 
0 if 𝜀𝜀𝜀𝜀𝑡𝑡𝑡𝑡𝑡1  ≥ 0, good news  , 

is expressed. 

 (Engel 1982).

The GARCH model is developed by Bolleslev (1986) and Taylor (1986). The GARCH model estimates the condi-
tional variance of the process variable based on its own delayed values. The error squares calculated in the mean 
equation gives information about volatility in past periods. When the literature is examined, it is seen that the 
GARCH model makes a more effective prediction than the ARCH model. The GARCH (1,1) model is the simplest 
but most powerful model of volatility (Engle 2001).

The GARCH model formula is showed in Equation 2:

3. METHODS OF RESEARCH  

Modeling and predicting volatility is very important in the financial markets. The high volatility 
states that the financial asset is risky. The correct estimate of the financial return volatility is 
crucial to assess investment risk. 
Linear and nonlinear methods are used in time series. Linear models could be listed as ARIMA 
and GARCH. Support Vector Regressions and Artificial Neural Networks can be exemplified 
to nonlinear models. In this study, the hybrid GARCH model combined with SVR with the 
GARCH, GJR-GARCH, E-GARCH models will be estimated and the model with small error 
statistics will be determined. 
The ARCH model is an autoregressive model developed by Engle (1982). ARCH is one of the 
most widely used models to model volatility in the market. It assumes that the variance value 
of the error terms is related to the previous period error values. It is possible to predict the 
variance of the series within a given time. 
The ARCH model does not allow the conditional variance to change over time as a function of 
past errors which leaves the unconditional variance constant (Bolleslev 1986). 
The ARCH model formulas are showed in Equation 1: 

𝑦𝑦𝑦𝑦𝑡𝑡𝑡𝑡 = 𝜃𝜃𝜃𝜃0 + 𝜃𝜃𝜃𝜃1𝑦𝑦𝑦𝑦𝑡𝑡𝑡𝑡𝑡1 + ⋯+ 𝜃𝜃𝜃𝜃𝑛𝑛𝑛𝑛𝑦𝑦𝑦𝑦𝑛𝑛𝑛𝑛𝑡1 + 𝜀𝜀𝜀𝜀𝑡𝑡𝑡𝑡                                 𝜀𝜀𝜀𝜀|𝐼𝐼𝐼𝐼𝑡𝑡𝑡𝑡𝑡1𝑁𝑁𝑁𝑁(0,𝜎𝜎𝜎𝜎𝑡𝑡𝑡𝑡2)      

𝜎𝜎𝜎𝜎𝑡𝑡𝑡𝑡2 =  𝛼𝛼𝛼𝛼0 + 𝛼𝛼𝛼𝛼1𝜀𝜀𝜀𝜀𝑡𝑡𝑡𝑡𝑡12 + 𝛼𝛼𝛼𝛼2𝜀𝜀𝜀𝜀𝑡𝑡𝑡𝑡𝑡22 + ⋯+ 𝛼𝛼𝛼𝛼𝑝𝑝𝑝𝑝𝜀𝜀𝜀𝜀𝑡𝑡𝑡𝑡𝑡𝑝𝑝𝑝𝑝2 =  𝛼𝛼𝛼𝛼0 + ∑ 𝛼𝛼𝛼𝛼𝑖𝑖𝑖𝑖𝜀𝜀𝜀𝜀𝑡𝑡𝑡𝑡𝑡𝑖𝑖𝑖𝑖2𝑝𝑝𝑝𝑝
𝑖𝑖𝑖𝑖𝑖1                                             (1)    

 𝜀𝜀𝜀𝜀𝑡𝑡𝑡𝑡 = 𝑦𝑦𝑦𝑦𝑡𝑡𝑡𝑡 −  𝑥𝑥𝑥𝑥𝑡𝑡𝑡𝑡𝑏𝑏𝑏𝑏                                               

ARCH model constraints exist; ℎ𝑡𝑡𝑡𝑡 and 𝜀𝜀𝜀𝜀𝑡𝑡𝑡𝑡 must be positive. In other words, 𝛼𝛼𝛼𝛼0 > 0 other 
parameters 𝛼𝛼𝛼𝛼𝑖𝑖𝑖𝑖 ≥ 0. The other constraint should be 0 ≤ 𝛼𝛼𝛼𝛼𝑖𝑖𝑖𝑖 ≤ 1 (Engel 1982). 
The GARCH model is developed by Bolleslev (1986) and Taylor (1986). The GARCH model 
estimates the conditional variance of the process variable based on its own delayed values. The 
error squares calculated in the mean equation gives information about volatility in past periods. 
When the literature is examined, it is seen that the GARCH model makes a more effective 
prediction than the ARCH model. The GARCH (1,1) model is the simplest but most powerful 
model of volatility (Engle 2001). 
The GARCH model formula is showed in Equation 2: 

𝜎𝜎𝜎𝜎𝑡𝑡𝑡𝑡2 = 𝛼𝛼𝛼𝛼0 + ∑ 𝛼𝛼𝛼𝛼𝑖𝑖𝑖𝑖𝜀𝜀𝜀𝜀𝑡𝑡𝑡𝑡𝑡𝑖𝑖𝑖𝑖2𝑞𝑞𝑞𝑞
𝑖𝑖𝑖𝑖𝑖1 +  ∑ 𝛽𝛽𝛽𝛽𝑖𝑖𝑖𝑖𝜎𝜎𝜎𝜎𝑡𝑡𝑡𝑡𝑡𝑖𝑖𝑖𝑖        2𝑝𝑝𝑝𝑝

𝑖𝑖𝑖𝑖𝑖1                                                                                  (2) 

As a GARCH model constraint is, 𝛼𝛼𝛼𝛼0 > 0, 𝛼𝛼𝛼𝛼𝑖𝑖𝑖𝑖 ≥ 0 , 𝛽𝛽𝛽𝛽𝑖𝑖𝑖𝑖 ≥ 0 and ∑ 𝛼𝛼𝛼𝛼𝑖𝑖𝑖𝑖
𝑝𝑝𝑝𝑝
𝑖𝑖𝑖𝑖𝑖1 +  ∑ 𝛽𝛽𝛽𝛽𝑖𝑖𝑖𝑖

𝑝𝑝𝑝𝑝
𝑖𝑖𝑖𝑖𝑖1 < 1  

(Bolleslev 1986). 
The GJR-GARCH model is developed in 1993 by the Glosten, Jaganthan and Runkle. This 
model reacts to past negative and positive changes of the conditional variance. This model is 
recommended to determine the leverage effect in time series. 
The GJR-GARCH model formula is showed in Equation 3: 

𝜎𝜎𝜎𝜎𝑡𝑡𝑡𝑡2 = 𝛼𝛼𝛼𝛼0 + ∑ 𝛼𝛼𝛼𝛼𝑖𝑖𝑖𝑖𝜀𝜀𝜀𝜀𝑡𝑡𝑡𝑡𝑡𝑖𝑖𝑖𝑖2𝑝𝑝𝑝𝑝
𝑖𝑖𝑖𝑖𝑖1 +  𝛾𝛾𝛾𝛾𝑖𝑖𝑖𝑖𝜀𝜀𝜀𝜀𝑡𝑡𝑡𝑡𝑡𝑖𝑖𝑖𝑖2 𝐼𝐼𝐼𝐼𝑡𝑡𝑡𝑡𝑡1 ∑ 𝛽𝛽𝛽𝛽𝑗𝑗𝑗𝑗𝜎𝜎𝜎𝜎𝑡𝑡𝑡𝑡𝑡𝑗𝑗𝑗𝑗       

 2𝑝𝑝𝑝𝑝
𝑖𝑖𝑖𝑖𝑖1                                                                      (3) 

The 𝐼𝐼𝐼𝐼𝑡𝑡𝑡𝑡𝑡1 parameter in Equation 3 refers to unexpected news; 

𝐼𝐼𝐼𝐼𝑡𝑡𝑡𝑡𝑡1 =    �1  if  𝜀𝜀𝜀𝜀𝑡𝑡𝑡𝑡𝑡1 < 0, bad news 
0 if 𝜀𝜀𝜀𝜀𝑡𝑡𝑡𝑡𝑡1  ≥ 0, good news  , 

is expressed. 

    (2)

As a GARCH model constraint is, 

3. METHODS OF RESEARCH  

Modeling and predicting volatility is very important in the financial markets. The high volatility 
states that the financial asset is risky. The correct estimate of the financial return volatility is 
crucial to assess investment risk. 
Linear and nonlinear methods are used in time series. Linear models could be listed as ARIMA 
and GARCH. Support Vector Regressions and Artificial Neural Networks can be exemplified 
to nonlinear models. In this study, the hybrid GARCH model combined with SVR with the 
GARCH, GJR-GARCH, E-GARCH models will be estimated and the model with small error 
statistics will be determined. 
The ARCH model is an autoregressive model developed by Engle (1982). ARCH is one of the 
most widely used models to model volatility in the market. It assumes that the variance value 
of the error terms is related to the previous period error values. It is possible to predict the 
variance of the series within a given time. 
The ARCH model does not allow the conditional variance to change over time as a function of 
past errors which leaves the unconditional variance constant (Bolleslev 1986). 
The ARCH model formulas are showed in Equation 1: 

𝑦𝑦𝑦𝑦𝑡𝑡𝑡𝑡 = 𝜃𝜃𝜃𝜃0 + 𝜃𝜃𝜃𝜃1𝑦𝑦𝑦𝑦𝑡𝑡𝑡𝑡𝑡1 + ⋯+ 𝜃𝜃𝜃𝜃𝑛𝑛𝑛𝑛𝑦𝑦𝑦𝑦𝑛𝑛𝑛𝑛𝑡1 + 𝜀𝜀𝜀𝜀𝑡𝑡𝑡𝑡                                 𝜀𝜀𝜀𝜀|𝐼𝐼𝐼𝐼𝑡𝑡𝑡𝑡𝑡1𝑁𝑁𝑁𝑁(0,𝜎𝜎𝜎𝜎𝑡𝑡𝑡𝑡2)      

𝜎𝜎𝜎𝜎𝑡𝑡𝑡𝑡2 =  𝛼𝛼𝛼𝛼0 + 𝛼𝛼𝛼𝛼1𝜀𝜀𝜀𝜀𝑡𝑡𝑡𝑡𝑡12 + 𝛼𝛼𝛼𝛼2𝜀𝜀𝜀𝜀𝑡𝑡𝑡𝑡𝑡22 + ⋯+ 𝛼𝛼𝛼𝛼𝑝𝑝𝑝𝑝𝜀𝜀𝜀𝜀𝑡𝑡𝑡𝑡𝑡𝑝𝑝𝑝𝑝2 =  𝛼𝛼𝛼𝛼0 + ∑ 𝛼𝛼𝛼𝛼𝑖𝑖𝑖𝑖𝜀𝜀𝜀𝜀𝑡𝑡𝑡𝑡𝑡𝑖𝑖𝑖𝑖2𝑝𝑝𝑝𝑝
𝑖𝑖𝑖𝑖𝑖1                                             (1)    

 𝜀𝜀𝜀𝜀𝑡𝑡𝑡𝑡 = 𝑦𝑦𝑦𝑦𝑡𝑡𝑡𝑡 −  𝑥𝑥𝑥𝑥𝑡𝑡𝑡𝑡𝑏𝑏𝑏𝑏                                               

ARCH model constraints exist; ℎ𝑡𝑡𝑡𝑡 and 𝜀𝜀𝜀𝜀𝑡𝑡𝑡𝑡 must be positive. In other words, 𝛼𝛼𝛼𝛼0 > 0 other 
parameters 𝛼𝛼𝛼𝛼𝑖𝑖𝑖𝑖 ≥ 0. The other constraint should be 0 ≤ 𝛼𝛼𝛼𝛼𝑖𝑖𝑖𝑖 ≤ 1 (Engel 1982). 
The GARCH model is developed by Bolleslev (1986) and Taylor (1986). The GARCH model 
estimates the conditional variance of the process variable based on its own delayed values. The 
error squares calculated in the mean equation gives information about volatility in past periods. 
When the literature is examined, it is seen that the GARCH model makes a more effective 
prediction than the ARCH model. The GARCH (1,1) model is the simplest but most powerful 
model of volatility (Engle 2001). 
The GARCH model formula is showed in Equation 2: 

𝜎𝜎𝜎𝜎𝑡𝑡𝑡𝑡2 = 𝛼𝛼𝛼𝛼0 + ∑ 𝛼𝛼𝛼𝛼𝑖𝑖𝑖𝑖𝜀𝜀𝜀𝜀𝑡𝑡𝑡𝑡𝑡𝑖𝑖𝑖𝑖2𝑞𝑞𝑞𝑞
𝑖𝑖𝑖𝑖𝑖1 +  ∑ 𝛽𝛽𝛽𝛽𝑖𝑖𝑖𝑖𝜎𝜎𝜎𝜎𝑡𝑡𝑡𝑡𝑡𝑖𝑖𝑖𝑖        2𝑝𝑝𝑝𝑝

𝑖𝑖𝑖𝑖𝑖1                                                                                  (2) 

As a GARCH model constraint is, 𝛼𝛼𝛼𝛼0 > 0, 𝛼𝛼𝛼𝛼𝑖𝑖𝑖𝑖 ≥ 0 , 𝛽𝛽𝛽𝛽𝑖𝑖𝑖𝑖 ≥ 0 and ∑ 𝛼𝛼𝛼𝛼𝑖𝑖𝑖𝑖
𝑝𝑝𝑝𝑝
𝑖𝑖𝑖𝑖𝑖1 +  ∑ 𝛽𝛽𝛽𝛽𝑖𝑖𝑖𝑖

𝑝𝑝𝑝𝑝
𝑖𝑖𝑖𝑖𝑖1 < 1  

(Bolleslev 1986). 
The GJR-GARCH model is developed in 1993 by the Glosten, Jaganthan and Runkle. This 
model reacts to past negative and positive changes of the conditional variance. This model is 
recommended to determine the leverage effect in time series. 
The GJR-GARCH model formula is showed in Equation 3: 

𝜎𝜎𝜎𝜎𝑡𝑡𝑡𝑡2 = 𝛼𝛼𝛼𝛼0 + ∑ 𝛼𝛼𝛼𝛼𝑖𝑖𝑖𝑖𝜀𝜀𝜀𝜀𝑡𝑡𝑡𝑡𝑡𝑖𝑖𝑖𝑖2𝑝𝑝𝑝𝑝
𝑖𝑖𝑖𝑖𝑖1 +  𝛾𝛾𝛾𝛾𝑖𝑖𝑖𝑖𝜀𝜀𝜀𝜀𝑡𝑡𝑡𝑡𝑡𝑖𝑖𝑖𝑖2 𝐼𝐼𝐼𝐼𝑡𝑡𝑡𝑡𝑡1 ∑ 𝛽𝛽𝛽𝛽𝑗𝑗𝑗𝑗𝜎𝜎𝜎𝜎𝑡𝑡𝑡𝑡𝑡𝑗𝑗𝑗𝑗       

 2𝑝𝑝𝑝𝑝
𝑖𝑖𝑖𝑖𝑖1                                                                      (3) 

The 𝐼𝐼𝐼𝐼𝑡𝑡𝑡𝑡𝑡1 parameter in Equation 3 refers to unexpected news; 

𝐼𝐼𝐼𝐼𝑡𝑡𝑡𝑡𝑡1 =    �1  if  𝜀𝜀𝜀𝜀𝑡𝑡𝑡𝑡𝑡1 < 0, bad news 
0 if 𝜀𝜀𝜀𝜀𝑡𝑡𝑡𝑡𝑡1  ≥ 0, good news  , 

is expressed. 

 and 

3. METHODS OF RESEARCH  

Modeling and predicting volatility is very important in the financial markets. The high volatility 
states that the financial asset is risky. The correct estimate of the financial return volatility is 
crucial to assess investment risk. 
Linear and nonlinear methods are used in time series. Linear models could be listed as ARIMA 
and GARCH. Support Vector Regressions and Artificial Neural Networks can be exemplified 
to nonlinear models. In this study, the hybrid GARCH model combined with SVR with the 
GARCH, GJR-GARCH, E-GARCH models will be estimated and the model with small error 
statistics will be determined. 
The ARCH model is an autoregressive model developed by Engle (1982). ARCH is one of the 
most widely used models to model volatility in the market. It assumes that the variance value 
of the error terms is related to the previous period error values. It is possible to predict the 
variance of the series within a given time. 
The ARCH model does not allow the conditional variance to change over time as a function of 
past errors which leaves the unconditional variance constant (Bolleslev 1986). 
The ARCH model formulas are showed in Equation 1: 

𝑦𝑦𝑦𝑦𝑡𝑡𝑡𝑡 = 𝜃𝜃𝜃𝜃0 + 𝜃𝜃𝜃𝜃1𝑦𝑦𝑦𝑦𝑡𝑡𝑡𝑡𝑡1 + ⋯+ 𝜃𝜃𝜃𝜃𝑛𝑛𝑛𝑛𝑦𝑦𝑦𝑦𝑛𝑛𝑛𝑛𝑡1 + 𝜀𝜀𝜀𝜀𝑡𝑡𝑡𝑡                                 𝜀𝜀𝜀𝜀|𝐼𝐼𝐼𝐼𝑡𝑡𝑡𝑡𝑡1𝑁𝑁𝑁𝑁(0,𝜎𝜎𝜎𝜎𝑡𝑡𝑡𝑡2)      

𝜎𝜎𝜎𝜎𝑡𝑡𝑡𝑡2 =  𝛼𝛼𝛼𝛼0 + 𝛼𝛼𝛼𝛼1𝜀𝜀𝜀𝜀𝑡𝑡𝑡𝑡𝑡12 + 𝛼𝛼𝛼𝛼2𝜀𝜀𝜀𝜀𝑡𝑡𝑡𝑡𝑡22 + ⋯+ 𝛼𝛼𝛼𝛼𝑝𝑝𝑝𝑝𝜀𝜀𝜀𝜀𝑡𝑡𝑡𝑡𝑡𝑝𝑝𝑝𝑝2 =  𝛼𝛼𝛼𝛼0 + ∑ 𝛼𝛼𝛼𝛼𝑖𝑖𝑖𝑖𝜀𝜀𝜀𝜀𝑡𝑡𝑡𝑡𝑡𝑖𝑖𝑖𝑖2𝑝𝑝𝑝𝑝
𝑖𝑖𝑖𝑖𝑖1                                             (1)    

 𝜀𝜀𝜀𝜀𝑡𝑡𝑡𝑡 = 𝑦𝑦𝑦𝑦𝑡𝑡𝑡𝑡 −  𝑥𝑥𝑥𝑥𝑡𝑡𝑡𝑡𝑏𝑏𝑏𝑏                                               

ARCH model constraints exist; ℎ𝑡𝑡𝑡𝑡 and 𝜀𝜀𝜀𝜀𝑡𝑡𝑡𝑡 must be positive. In other words, 𝛼𝛼𝛼𝛼0 > 0 other 
parameters 𝛼𝛼𝛼𝛼𝑖𝑖𝑖𝑖 ≥ 0. The other constraint should be 0 ≤ 𝛼𝛼𝛼𝛼𝑖𝑖𝑖𝑖 ≤ 1 (Engel 1982). 
The GARCH model is developed by Bolleslev (1986) and Taylor (1986). The GARCH model 
estimates the conditional variance of the process variable based on its own delayed values. The 
error squares calculated in the mean equation gives information about volatility in past periods. 
When the literature is examined, it is seen that the GARCH model makes a more effective 
prediction than the ARCH model. The GARCH (1,1) model is the simplest but most powerful 
model of volatility (Engle 2001). 
The GARCH model formula is showed in Equation 2: 

𝜎𝜎𝜎𝜎𝑡𝑡𝑡𝑡2 = 𝛼𝛼𝛼𝛼0 + ∑ 𝛼𝛼𝛼𝛼𝑖𝑖𝑖𝑖𝜀𝜀𝜀𝜀𝑡𝑡𝑡𝑡𝑡𝑖𝑖𝑖𝑖2𝑞𝑞𝑞𝑞
𝑖𝑖𝑖𝑖𝑖1 +  ∑ 𝛽𝛽𝛽𝛽𝑖𝑖𝑖𝑖𝜎𝜎𝜎𝜎𝑡𝑡𝑡𝑡𝑡𝑖𝑖𝑖𝑖        2𝑝𝑝𝑝𝑝

𝑖𝑖𝑖𝑖𝑖1                                                                                  (2) 

As a GARCH model constraint is, 𝛼𝛼𝛼𝛼0 > 0, 𝛼𝛼𝛼𝛼𝑖𝑖𝑖𝑖 ≥ 0 , 𝛽𝛽𝛽𝛽𝑖𝑖𝑖𝑖 ≥ 0 and ∑ 𝛼𝛼𝛼𝛼𝑖𝑖𝑖𝑖
𝑝𝑝𝑝𝑝
𝑖𝑖𝑖𝑖𝑖1 +  ∑ 𝛽𝛽𝛽𝛽𝑖𝑖𝑖𝑖

𝑝𝑝𝑝𝑝
𝑖𝑖𝑖𝑖𝑖1 < 1  

(Bolleslev 1986). 
The GJR-GARCH model is developed in 1993 by the Glosten, Jaganthan and Runkle. This 
model reacts to past negative and positive changes of the conditional variance. This model is 
recommended to determine the leverage effect in time series. 
The GJR-GARCH model formula is showed in Equation 3: 

𝜎𝜎𝜎𝜎𝑡𝑡𝑡𝑡2 = 𝛼𝛼𝛼𝛼0 + ∑ 𝛼𝛼𝛼𝛼𝑖𝑖𝑖𝑖𝜀𝜀𝜀𝜀𝑡𝑡𝑡𝑡𝑡𝑖𝑖𝑖𝑖2𝑝𝑝𝑝𝑝
𝑖𝑖𝑖𝑖𝑖1 +  𝛾𝛾𝛾𝛾𝑖𝑖𝑖𝑖𝜀𝜀𝜀𝜀𝑡𝑡𝑡𝑡𝑡𝑖𝑖𝑖𝑖2 𝐼𝐼𝐼𝐼𝑡𝑡𝑡𝑡𝑡1 ∑ 𝛽𝛽𝛽𝛽𝑗𝑗𝑗𝑗𝜎𝜎𝜎𝜎𝑡𝑡𝑡𝑡𝑡𝑗𝑗𝑗𝑗       

 2𝑝𝑝𝑝𝑝
𝑖𝑖𝑖𝑖𝑖1                                                                      (3) 

The 𝐼𝐼𝐼𝐼𝑡𝑡𝑡𝑡𝑡1 parameter in Equation 3 refers to unexpected news; 

𝐼𝐼𝐼𝐼𝑡𝑡𝑡𝑡𝑡1 =    �1  if  𝜀𝜀𝜀𝜀𝑡𝑡𝑡𝑡𝑡1 < 0, bad news 
0 if 𝜀𝜀𝜀𝜀𝑡𝑡𝑡𝑡𝑡1  ≥ 0, good news  , 

is expressed. 

 (Bolleslev 1986).

The GJR-GARCH model is developed in 1993 by the Glosten, Jaganthan and Runkle. This model reacts to past 
negative and positive changes of the conditional variance. This model is recommended to determine the leverage 
effect in time series.

The GJR-GARCH model formula is showed in Equation 3:

3. METHODS OF RESEARCH  

Modeling and predicting volatility is very important in the financial markets. The high volatility 
states that the financial asset is risky. The correct estimate of the financial return volatility is 
crucial to assess investment risk. 
Linear and nonlinear methods are used in time series. Linear models could be listed as ARIMA 
and GARCH. Support Vector Regressions and Artificial Neural Networks can be exemplified 
to nonlinear models. In this study, the hybrid GARCH model combined with SVR with the 
GARCH, GJR-GARCH, E-GARCH models will be estimated and the model with small error 
statistics will be determined. 
The ARCH model is an autoregressive model developed by Engle (1982). ARCH is one of the 
most widely used models to model volatility in the market. It assumes that the variance value 
of the error terms is related to the previous period error values. It is possible to predict the 
variance of the series within a given time. 
The ARCH model does not allow the conditional variance to change over time as a function of 
past errors which leaves the unconditional variance constant (Bolleslev 1986). 
The ARCH model formulas are showed in Equation 1: 

𝑦𝑦𝑦𝑦𝑡𝑡𝑡𝑡 = 𝜃𝜃𝜃𝜃0 + 𝜃𝜃𝜃𝜃1𝑦𝑦𝑦𝑦𝑡𝑡𝑡𝑡𝑡1 + ⋯+ 𝜃𝜃𝜃𝜃𝑛𝑛𝑛𝑛𝑦𝑦𝑦𝑦𝑛𝑛𝑛𝑛𝑡1 + 𝜀𝜀𝜀𝜀𝑡𝑡𝑡𝑡                                 𝜀𝜀𝜀𝜀|𝐼𝐼𝐼𝐼𝑡𝑡𝑡𝑡𝑡1𝑁𝑁𝑁𝑁(0,𝜎𝜎𝜎𝜎𝑡𝑡𝑡𝑡2)      

𝜎𝜎𝜎𝜎𝑡𝑡𝑡𝑡2 =  𝛼𝛼𝛼𝛼0 + 𝛼𝛼𝛼𝛼1𝜀𝜀𝜀𝜀𝑡𝑡𝑡𝑡𝑡12 + 𝛼𝛼𝛼𝛼2𝜀𝜀𝜀𝜀𝑡𝑡𝑡𝑡𝑡22 + ⋯+ 𝛼𝛼𝛼𝛼𝑝𝑝𝑝𝑝𝜀𝜀𝜀𝜀𝑡𝑡𝑡𝑡𝑡𝑝𝑝𝑝𝑝2 =  𝛼𝛼𝛼𝛼0 + ∑ 𝛼𝛼𝛼𝛼𝑖𝑖𝑖𝑖𝜀𝜀𝜀𝜀𝑡𝑡𝑡𝑡𝑡𝑖𝑖𝑖𝑖2𝑝𝑝𝑝𝑝
𝑖𝑖𝑖𝑖𝑖1                                             (1)    

 𝜀𝜀𝜀𝜀𝑡𝑡𝑡𝑡 = 𝑦𝑦𝑦𝑦𝑡𝑡𝑡𝑡 −  𝑥𝑥𝑥𝑥𝑡𝑡𝑡𝑡𝑏𝑏𝑏𝑏                                               

ARCH model constraints exist; ℎ𝑡𝑡𝑡𝑡 and 𝜀𝜀𝜀𝜀𝑡𝑡𝑡𝑡 must be positive. In other words, 𝛼𝛼𝛼𝛼0 > 0 other 
parameters 𝛼𝛼𝛼𝛼𝑖𝑖𝑖𝑖 ≥ 0. The other constraint should be 0 ≤ 𝛼𝛼𝛼𝛼𝑖𝑖𝑖𝑖 ≤ 1 (Engel 1982). 
The GARCH model is developed by Bolleslev (1986) and Taylor (1986). The GARCH model 
estimates the conditional variance of the process variable based on its own delayed values. The 
error squares calculated in the mean equation gives information about volatility in past periods. 
When the literature is examined, it is seen that the GARCH model makes a more effective 
prediction than the ARCH model. The GARCH (1,1) model is the simplest but most powerful 
model of volatility (Engle 2001). 
The GARCH model formula is showed in Equation 2: 

𝜎𝜎𝜎𝜎𝑡𝑡𝑡𝑡2 = 𝛼𝛼𝛼𝛼0 + ∑ 𝛼𝛼𝛼𝛼𝑖𝑖𝑖𝑖𝜀𝜀𝜀𝜀𝑡𝑡𝑡𝑡𝑡𝑖𝑖𝑖𝑖2𝑞𝑞𝑞𝑞
𝑖𝑖𝑖𝑖𝑖1 +  ∑ 𝛽𝛽𝛽𝛽𝑖𝑖𝑖𝑖𝜎𝜎𝜎𝜎𝑡𝑡𝑡𝑡𝑡𝑖𝑖𝑖𝑖        2𝑝𝑝𝑝𝑝

𝑖𝑖𝑖𝑖𝑖1                                                                                  (2) 

As a GARCH model constraint is, 𝛼𝛼𝛼𝛼0 > 0, 𝛼𝛼𝛼𝛼𝑖𝑖𝑖𝑖 ≥ 0 , 𝛽𝛽𝛽𝛽𝑖𝑖𝑖𝑖 ≥ 0 and ∑ 𝛼𝛼𝛼𝛼𝑖𝑖𝑖𝑖
𝑝𝑝𝑝𝑝
𝑖𝑖𝑖𝑖𝑖1 +  ∑ 𝛽𝛽𝛽𝛽𝑖𝑖𝑖𝑖

𝑝𝑝𝑝𝑝
𝑖𝑖𝑖𝑖𝑖1 < 1  

(Bolleslev 1986). 
The GJR-GARCH model is developed in 1993 by the Glosten, Jaganthan and Runkle. This 
model reacts to past negative and positive changes of the conditional variance. This model is 
recommended to determine the leverage effect in time series. 
The GJR-GARCH model formula is showed in Equation 3: 

𝜎𝜎𝜎𝜎𝑡𝑡𝑡𝑡2 = 𝛼𝛼𝛼𝛼0 + ∑ 𝛼𝛼𝛼𝛼𝑖𝑖𝑖𝑖𝜀𝜀𝜀𝜀𝑡𝑡𝑡𝑡𝑡𝑖𝑖𝑖𝑖2𝑝𝑝𝑝𝑝
𝑖𝑖𝑖𝑖𝑖1 +  𝛾𝛾𝛾𝛾𝑖𝑖𝑖𝑖𝜀𝜀𝜀𝜀𝑡𝑡𝑡𝑡𝑡𝑖𝑖𝑖𝑖2 𝐼𝐼𝐼𝐼𝑡𝑡𝑡𝑡𝑡1 ∑ 𝛽𝛽𝛽𝛽𝑗𝑗𝑗𝑗𝜎𝜎𝜎𝜎𝑡𝑡𝑡𝑡𝑡𝑗𝑗𝑗𝑗       

 2𝑝𝑝𝑝𝑝
𝑖𝑖𝑖𝑖𝑖1                                                                      (3) 

The 𝐼𝐼𝐼𝐼𝑡𝑡𝑡𝑡𝑡1 parameter in Equation 3 refers to unexpected news; 

𝐼𝐼𝐼𝐼𝑡𝑡𝑡𝑡𝑡1 =    �1  if  𝜀𝜀𝜀𝜀𝑡𝑡𝑡𝑡𝑡1 < 0, bad news 
0 if 𝜀𝜀𝜀𝜀𝑡𝑡𝑡𝑡𝑡1  ≥ 0, good news  , 

is expressed. 

                                      (3)

The  

3. METHODS OF RESEARCH  

Modeling and predicting volatility is very important in the financial markets. The high volatility 
states that the financial asset is risky. The correct estimate of the financial return volatility is 
crucial to assess investment risk. 
Linear and nonlinear methods are used in time series. Linear models could be listed as ARIMA 
and GARCH. Support Vector Regressions and Artificial Neural Networks can be exemplified 
to nonlinear models. In this study, the hybrid GARCH model combined with SVR with the 
GARCH, GJR-GARCH, E-GARCH models will be estimated and the model with small error 
statistics will be determined. 
The ARCH model is an autoregressive model developed by Engle (1982). ARCH is one of the 
most widely used models to model volatility in the market. It assumes that the variance value 
of the error terms is related to the previous period error values. It is possible to predict the 
variance of the series within a given time. 
The ARCH model does not allow the conditional variance to change over time as a function of 
past errors which leaves the unconditional variance constant (Bolleslev 1986). 
The ARCH model formulas are showed in Equation 1: 

𝑦𝑦𝑦𝑦𝑡𝑡𝑡𝑡 = 𝜃𝜃𝜃𝜃0 + 𝜃𝜃𝜃𝜃1𝑦𝑦𝑦𝑦𝑡𝑡𝑡𝑡𝑡1 + ⋯+ 𝜃𝜃𝜃𝜃𝑛𝑛𝑛𝑛𝑦𝑦𝑦𝑦𝑛𝑛𝑛𝑛𝑡1 + 𝜀𝜀𝜀𝜀𝑡𝑡𝑡𝑡                                 𝜀𝜀𝜀𝜀|𝐼𝐼𝐼𝐼𝑡𝑡𝑡𝑡𝑡1𝑁𝑁𝑁𝑁(0,𝜎𝜎𝜎𝜎𝑡𝑡𝑡𝑡2)      

𝜎𝜎𝜎𝜎𝑡𝑡𝑡𝑡2 =  𝛼𝛼𝛼𝛼0 + 𝛼𝛼𝛼𝛼1𝜀𝜀𝜀𝜀𝑡𝑡𝑡𝑡𝑡12 + 𝛼𝛼𝛼𝛼2𝜀𝜀𝜀𝜀𝑡𝑡𝑡𝑡𝑡22 + ⋯+ 𝛼𝛼𝛼𝛼𝑝𝑝𝑝𝑝𝜀𝜀𝜀𝜀𝑡𝑡𝑡𝑡𝑡𝑝𝑝𝑝𝑝2 =  𝛼𝛼𝛼𝛼0 + ∑ 𝛼𝛼𝛼𝛼𝑖𝑖𝑖𝑖𝜀𝜀𝜀𝜀𝑡𝑡𝑡𝑡𝑡𝑖𝑖𝑖𝑖2𝑝𝑝𝑝𝑝
𝑖𝑖𝑖𝑖𝑖1                                             (1)    

 𝜀𝜀𝜀𝜀𝑡𝑡𝑡𝑡 = 𝑦𝑦𝑦𝑦𝑡𝑡𝑡𝑡 −  𝑥𝑥𝑥𝑥𝑡𝑡𝑡𝑡𝑏𝑏𝑏𝑏                                               

ARCH model constraints exist; ℎ𝑡𝑡𝑡𝑡 and 𝜀𝜀𝜀𝜀𝑡𝑡𝑡𝑡 must be positive. In other words, 𝛼𝛼𝛼𝛼0 > 0 other 
parameters 𝛼𝛼𝛼𝛼𝑖𝑖𝑖𝑖 ≥ 0. The other constraint should be 0 ≤ 𝛼𝛼𝛼𝛼𝑖𝑖𝑖𝑖 ≤ 1 (Engel 1982). 
The GARCH model is developed by Bolleslev (1986) and Taylor (1986). The GARCH model 
estimates the conditional variance of the process variable based on its own delayed values. The 
error squares calculated in the mean equation gives information about volatility in past periods. 
When the literature is examined, it is seen that the GARCH model makes a more effective 
prediction than the ARCH model. The GARCH (1,1) model is the simplest but most powerful 
model of volatility (Engle 2001). 
The GARCH model formula is showed in Equation 2: 

𝜎𝜎𝜎𝜎𝑡𝑡𝑡𝑡2 = 𝛼𝛼𝛼𝛼0 + ∑ 𝛼𝛼𝛼𝛼𝑖𝑖𝑖𝑖𝜀𝜀𝜀𝜀𝑡𝑡𝑡𝑡𝑡𝑖𝑖𝑖𝑖2𝑞𝑞𝑞𝑞
𝑖𝑖𝑖𝑖𝑖1 +  ∑ 𝛽𝛽𝛽𝛽𝑖𝑖𝑖𝑖𝜎𝜎𝜎𝜎𝑡𝑡𝑡𝑡𝑡𝑖𝑖𝑖𝑖        2𝑝𝑝𝑝𝑝

𝑖𝑖𝑖𝑖𝑖1                                                                                  (2) 

As a GARCH model constraint is, 𝛼𝛼𝛼𝛼0 > 0, 𝛼𝛼𝛼𝛼𝑖𝑖𝑖𝑖 ≥ 0 , 𝛽𝛽𝛽𝛽𝑖𝑖𝑖𝑖 ≥ 0 and ∑ 𝛼𝛼𝛼𝛼𝑖𝑖𝑖𝑖
𝑝𝑝𝑝𝑝
𝑖𝑖𝑖𝑖𝑖1 +  ∑ 𝛽𝛽𝛽𝛽𝑖𝑖𝑖𝑖

𝑝𝑝𝑝𝑝
𝑖𝑖𝑖𝑖𝑖1 < 1  

(Bolleslev 1986). 
The GJR-GARCH model is developed in 1993 by the Glosten, Jaganthan and Runkle. This 
model reacts to past negative and positive changes of the conditional variance. This model is 
recommended to determine the leverage effect in time series. 
The GJR-GARCH model formula is showed in Equation 3: 

𝜎𝜎𝜎𝜎𝑡𝑡𝑡𝑡2 = 𝛼𝛼𝛼𝛼0 + ∑ 𝛼𝛼𝛼𝛼𝑖𝑖𝑖𝑖𝜀𝜀𝜀𝜀𝑡𝑡𝑡𝑡𝑡𝑖𝑖𝑖𝑖2𝑝𝑝𝑝𝑝
𝑖𝑖𝑖𝑖𝑖1 +  𝛾𝛾𝛾𝛾𝑖𝑖𝑖𝑖𝜀𝜀𝜀𝜀𝑡𝑡𝑡𝑡𝑡𝑖𝑖𝑖𝑖2 𝐼𝐼𝐼𝐼𝑡𝑡𝑡𝑡𝑡1 ∑ 𝛽𝛽𝛽𝛽𝑗𝑗𝑗𝑗𝜎𝜎𝜎𝜎𝑡𝑡𝑡𝑡𝑡𝑗𝑗𝑗𝑗       

 2𝑝𝑝𝑝𝑝
𝑖𝑖𝑖𝑖𝑖1                                                                      (3) 

The 𝐼𝐼𝐼𝐼𝑡𝑡𝑡𝑡𝑡1 parameter in Equation 3 refers to unexpected news; 

𝐼𝐼𝐼𝐼𝑡𝑡𝑡𝑡𝑡1 =    �1  if  𝜀𝜀𝜀𝜀𝑡𝑡𝑡𝑡𝑡1 < 0, bad news 
0 if 𝜀𝜀𝜀𝜀𝑡𝑡𝑡𝑡𝑡1  ≥ 0, good news  , 

is expressed. 

 parameter in Equation 3 refers to unexpected news;

3. METHODS OF RESEARCH  

Modeling and predicting volatility is very important in the financial markets. The high volatility 
states that the financial asset is risky. The correct estimate of the financial return volatility is 
crucial to assess investment risk. 
Linear and nonlinear methods are used in time series. Linear models could be listed as ARIMA 
and GARCH. Support Vector Regressions and Artificial Neural Networks can be exemplified 
to nonlinear models. In this study, the hybrid GARCH model combined with SVR with the 
GARCH, GJR-GARCH, E-GARCH models will be estimated and the model with small error 
statistics will be determined. 
The ARCH model is an autoregressive model developed by Engle (1982). ARCH is one of the 
most widely used models to model volatility in the market. It assumes that the variance value 
of the error terms is related to the previous period error values. It is possible to predict the 
variance of the series within a given time. 
The ARCH model does not allow the conditional variance to change over time as a function of 
past errors which leaves the unconditional variance constant (Bolleslev 1986). 
The ARCH model formulas are showed in Equation 1: 

𝑦𝑦𝑦𝑦𝑡𝑡𝑡𝑡 = 𝜃𝜃𝜃𝜃0 + 𝜃𝜃𝜃𝜃1𝑦𝑦𝑦𝑦𝑡𝑡𝑡𝑡𝑡1 + ⋯+ 𝜃𝜃𝜃𝜃𝑛𝑛𝑛𝑛𝑦𝑦𝑦𝑦𝑛𝑛𝑛𝑛𝑡1 + 𝜀𝜀𝜀𝜀𝑡𝑡𝑡𝑡                                 𝜀𝜀𝜀𝜀|𝐼𝐼𝐼𝐼𝑡𝑡𝑡𝑡𝑡1𝑁𝑁𝑁𝑁(0,𝜎𝜎𝜎𝜎𝑡𝑡𝑡𝑡2)      

𝜎𝜎𝜎𝜎𝑡𝑡𝑡𝑡2 =  𝛼𝛼𝛼𝛼0 + 𝛼𝛼𝛼𝛼1𝜀𝜀𝜀𝜀𝑡𝑡𝑡𝑡𝑡12 + 𝛼𝛼𝛼𝛼2𝜀𝜀𝜀𝜀𝑡𝑡𝑡𝑡𝑡22 + ⋯+ 𝛼𝛼𝛼𝛼𝑝𝑝𝑝𝑝𝜀𝜀𝜀𝜀𝑡𝑡𝑡𝑡𝑡𝑝𝑝𝑝𝑝2 =  𝛼𝛼𝛼𝛼0 + ∑ 𝛼𝛼𝛼𝛼𝑖𝑖𝑖𝑖𝜀𝜀𝜀𝜀𝑡𝑡𝑡𝑡𝑡𝑖𝑖𝑖𝑖2𝑝𝑝𝑝𝑝
𝑖𝑖𝑖𝑖𝑖1                                             (1)    

 𝜀𝜀𝜀𝜀𝑡𝑡𝑡𝑡 = 𝑦𝑦𝑦𝑦𝑡𝑡𝑡𝑡 −  𝑥𝑥𝑥𝑥𝑡𝑡𝑡𝑡𝑏𝑏𝑏𝑏                                               

ARCH model constraints exist; ℎ𝑡𝑡𝑡𝑡 and 𝜀𝜀𝜀𝜀𝑡𝑡𝑡𝑡 must be positive. In other words, 𝛼𝛼𝛼𝛼0 > 0 other 
parameters 𝛼𝛼𝛼𝛼𝑖𝑖𝑖𝑖 ≥ 0. The other constraint should be 0 ≤ 𝛼𝛼𝛼𝛼𝑖𝑖𝑖𝑖 ≤ 1 (Engel 1982). 
The GARCH model is developed by Bolleslev (1986) and Taylor (1986). The GARCH model 
estimates the conditional variance of the process variable based on its own delayed values. The 
error squares calculated in the mean equation gives information about volatility in past periods. 
When the literature is examined, it is seen that the GARCH model makes a more effective 
prediction than the ARCH model. The GARCH (1,1) model is the simplest but most powerful 
model of volatility (Engle 2001). 
The GARCH model formula is showed in Equation 2: 

𝜎𝜎𝜎𝜎𝑡𝑡𝑡𝑡2 = 𝛼𝛼𝛼𝛼0 + ∑ 𝛼𝛼𝛼𝛼𝑖𝑖𝑖𝑖𝜀𝜀𝜀𝜀𝑡𝑡𝑡𝑡𝑡𝑖𝑖𝑖𝑖2𝑞𝑞𝑞𝑞
𝑖𝑖𝑖𝑖𝑖1 +  ∑ 𝛽𝛽𝛽𝛽𝑖𝑖𝑖𝑖𝜎𝜎𝜎𝜎𝑡𝑡𝑡𝑡𝑡𝑖𝑖𝑖𝑖        2𝑝𝑝𝑝𝑝

𝑖𝑖𝑖𝑖𝑖1                                                                                  (2) 

As a GARCH model constraint is, 𝛼𝛼𝛼𝛼0 > 0, 𝛼𝛼𝛼𝛼𝑖𝑖𝑖𝑖 ≥ 0 , 𝛽𝛽𝛽𝛽𝑖𝑖𝑖𝑖 ≥ 0 and ∑ 𝛼𝛼𝛼𝛼𝑖𝑖𝑖𝑖
𝑝𝑝𝑝𝑝
𝑖𝑖𝑖𝑖𝑖1 +  ∑ 𝛽𝛽𝛽𝛽𝑖𝑖𝑖𝑖

𝑝𝑝𝑝𝑝
𝑖𝑖𝑖𝑖𝑖1 < 1  

(Bolleslev 1986). 
The GJR-GARCH model is developed in 1993 by the Glosten, Jaganthan and Runkle. This 
model reacts to past negative and positive changes of the conditional variance. This model is 
recommended to determine the leverage effect in time series. 
The GJR-GARCH model formula is showed in Equation 3: 

𝜎𝜎𝜎𝜎𝑡𝑡𝑡𝑡2 = 𝛼𝛼𝛼𝛼0 + ∑ 𝛼𝛼𝛼𝛼𝑖𝑖𝑖𝑖𝜀𝜀𝜀𝜀𝑡𝑡𝑡𝑡𝑡𝑖𝑖𝑖𝑖2𝑝𝑝𝑝𝑝
𝑖𝑖𝑖𝑖𝑖1 +  𝛾𝛾𝛾𝛾𝑖𝑖𝑖𝑖𝜀𝜀𝜀𝜀𝑡𝑡𝑡𝑡𝑡𝑖𝑖𝑖𝑖2 𝐼𝐼𝐼𝐼𝑡𝑡𝑡𝑡𝑡1 ∑ 𝛽𝛽𝛽𝛽𝑗𝑗𝑗𝑗𝜎𝜎𝜎𝜎𝑡𝑡𝑡𝑡𝑡𝑗𝑗𝑗𝑗       

 2𝑝𝑝𝑝𝑝
𝑖𝑖𝑖𝑖𝑖1                                                                      (3) 

The 𝐼𝐼𝐼𝐼𝑡𝑡𝑡𝑡𝑡1 parameter in Equation 3 refers to unexpected news; 

𝐼𝐼𝐼𝐼𝑡𝑡𝑡𝑡𝑡1 =    �1  if  𝜀𝜀𝜀𝜀𝑡𝑡𝑡𝑡𝑡1 < 0, bad news 
0 if 𝜀𝜀𝜀𝜀𝑡𝑡𝑡𝑡𝑡1  ≥ 0, good news  , 

is expressed. is expressed.

γ ≠ 0 states that it has an asymmetric effect. The case where γ > 0 indicates that the leverage effect is present. 
Leverage means bad news is more effective than good news (Engle & Sokalska 2012).

The constraints of the GJR-GARCH model are 

 
γ ≠ 0 states that it has an asymmetric effect. The case where γ > 0 indicates that the leverage 
effect is present. Leverage means bad news is more effective than good news (Engle & Sokalska 
2012). 

The constraints of the GJR-GARCH model are 𝛼𝛼𝛼𝛼0 > 0,  𝛼𝛼𝛼𝛼𝑖𝑖𝑖𝑖 > 0,𝛽𝛽𝛽𝛽 𝛽 0, 𝛾𝛾𝛾𝛾𝑖𝑖𝑖𝑖 < 0 and 𝛼𝛼𝛼𝛼𝑖𝑖𝑖𝑖 + 𝛾𝛾𝛾𝛾𝑖𝑖𝑖𝑖 𝛽
0 (Wang and Wu 2012). 

The E-GARCH model is proposed by Nelson (1991), who added the leverage effect to the 
model to enable the asymmetric effect to be seen. The E-GARCH formula is showed in 
Equation 4: 

𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙(𝜎𝜎𝜎𝜎𝑡𝑡𝑡𝑡2) = 𝛼𝛼𝛼𝛼0 + ∑ 𝛽𝛽𝛽𝛽𝑗𝑗𝑗𝑗 𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙�𝜎𝜎𝜎𝜎𝑡𝑡𝑡𝑡𝑡𝑗𝑗𝑗𝑗2 �𝑞𝑞𝑞𝑞
𝑗𝑗𝑗𝑗𝑗𝑗 +  ∑ 𝛼𝛼𝛼𝛼𝑖𝑖𝑖𝑖

𝑝𝑝𝑝𝑝
𝑖𝑖𝑖𝑖𝑗𝑗 �𝜀𝜀𝜀𝜀𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡

𝜎𝜎𝜎𝜎𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡
� + ∑ 𝛾𝛾𝛾𝛾𝑘𝑘𝑘𝑘 

𝑟𝑟𝑟𝑟
𝑘𝑘𝑘𝑘𝑗𝑗

𝜀𝜀𝜀𝜀𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡
𝜎𝜎𝜎𝜎𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡

                                          (4) 

The E-GARCH model responds asymmetrically to shock. Conditional variance is never 
negative due to logarithmic transformation in the model, it is always positive. The presence of 
𝛾𝛾𝛾𝛾𝑘𝑘𝑘𝑘 < 0 in the model shows that the leverage effect exists (Çağlayan & Dayioğlu 2009). The 
advantage of the E-GARCH model allows unrestricted estimation of variance (Thomas & 
Mitchell 2005: 16). 
SVR-GARCH is a powerful predictive method for predicting volatility and model risk. This is 
because the ℎ𝑡𝑡𝑡𝑡 output from the GARCH model is used as input in the SVR. The kernel 
determined in SVR provides effectiveness according to the structure of the data. 

Instead of replacing the maximum likelihood method with SVR to predict GARCH parameters, 
it is recommended to combine the SVR and GARCH models to predict volatility. First, the 
GARCH model is used to obtain ℎ𝑡𝑡𝑡𝑡. Then, 𝑍𝑍𝑍𝑍𝑡𝑡𝑡𝑡 = 𝑓𝑓𝑓𝑓(𝑍𝑍𝑍𝑍𝑡𝑡𝑡𝑡𝑡𝑗,ℎ𝑡𝑡𝑡𝑡𝑡𝑗′ , 𝑦𝑦𝑦𝑦𝑡𝑡𝑡𝑡𝑡𝑗2 , ℎ𝑡𝑡𝑡𝑡𝑡𝑗), the nonlinear 
estimation is performed using the considering SVR model. In the equation is 𝑍𝑍𝑍𝑍𝑡𝑡𝑡𝑡 = ℎ𝑡𝑡𝑡𝑡′ − ℎ𝑡𝑡𝑡𝑡. The 
linear GARCH model and the non-linear SVR model are combined to obtain estimates (Sun & 
Yu 2020). 

In the SVR-GARCH model used to estimate volatility, the input vector is 𝑥𝑥𝑥𝑥𝑡𝑡𝑡𝑡 = [𝑎𝑎𝑎𝑎2, ht−1], and 
the output variable is ht. The SVR-GARCH structure is located below: 

𝑟𝑟𝑟𝑟𝑡𝑡𝑡𝑡 = f (𝑟𝑟𝑟𝑟𝑡𝑡𝑡𝑡−1) + 𝑎𝑎𝑎𝑎𝑡𝑡𝑡𝑡                                                                                                                          (5) 

Where 𝑓𝑓𝑓𝑓 is the decision function predicted by SVR for the mean equation. After the squared 
residues from the conditional mean estimate of SVR-GARCH, estimate the conditional 
variance equation given below: 

ℎ𝑡𝑡𝑡𝑡� = 𝑙𝑙𝑙𝑙(ℎ�𝑡𝑡𝑡𝑡𝑡𝑗, 𝑎𝑎𝑎𝑎𝑡𝑡𝑡𝑡𝑡𝑗2 )                                                                                                                                (6) 

In Equation 6, 𝑙𝑙𝑙𝑙 is the decision function predicted by SVR. 𝑎𝑎𝑎𝑎𝑡𝑡𝑡𝑡2 refers to residual square and ℎ� 
is the volatility. (Bezerra & Albuquerque 2017). 

In the mean equation, we will use 3 different kernels. The kernel functions are included in Table 
1. 

 

 and  (Wang 
and Wu 2012).

The E-GARCH model is proposed by Nelson (1991), who added the leverage effect to the model to enable the 
asymmetric effect to be seen. The E-GARCH formula is showed in Equation 4:

 
γ ≠ 0 states that it has an asymmetric effect. The case where γ > 0 indicates that the leverage 
effect is present. Leverage means bad news is more effective than good news (Engle & Sokalska 
2012). 

The constraints of the GJR-GARCH model are 𝛼𝛼𝛼𝛼0 > 0,  𝛼𝛼𝛼𝛼𝑖𝑖𝑖𝑖 > 0,𝛽𝛽𝛽𝛽 𝛽 0, 𝛾𝛾𝛾𝛾𝑖𝑖𝑖𝑖 < 0 and 𝛼𝛼𝛼𝛼𝑖𝑖𝑖𝑖 + 𝛾𝛾𝛾𝛾𝑖𝑖𝑖𝑖 𝛽
0 (Wang and Wu 2012). 

The E-GARCH model is proposed by Nelson (1991), who added the leverage effect to the 
model to enable the asymmetric effect to be seen. The E-GARCH formula is showed in 
Equation 4: 

𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙(𝜎𝜎𝜎𝜎𝑡𝑡𝑡𝑡2) = 𝛼𝛼𝛼𝛼0 + ∑ 𝛽𝛽𝛽𝛽𝑗𝑗𝑗𝑗 𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙�𝜎𝜎𝜎𝜎𝑡𝑡𝑡𝑡𝑡𝑗𝑗𝑗𝑗2 �𝑞𝑞𝑞𝑞
𝑗𝑗𝑗𝑗𝑗𝑗 +  ∑ 𝛼𝛼𝛼𝛼𝑖𝑖𝑖𝑖

𝑝𝑝𝑝𝑝
𝑖𝑖𝑖𝑖𝑗𝑗 �𝜀𝜀𝜀𝜀𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡
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� + ∑ 𝛾𝛾𝛾𝛾𝑘𝑘𝑘𝑘 

𝑟𝑟𝑟𝑟
𝑘𝑘𝑘𝑘𝑗𝑗

𝜀𝜀𝜀𝜀𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡
𝜎𝜎𝜎𝜎𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡

                                          (4) 

The E-GARCH model responds asymmetrically to shock. Conditional variance is never 
negative due to logarithmic transformation in the model, it is always positive. The presence of 
𝛾𝛾𝛾𝛾𝑘𝑘𝑘𝑘 < 0 in the model shows that the leverage effect exists (Çağlayan & Dayioğlu 2009). The 
advantage of the E-GARCH model allows unrestricted estimation of variance (Thomas & 
Mitchell 2005: 16). 
SVR-GARCH is a powerful predictive method for predicting volatility and model risk. This is 
because the ℎ𝑡𝑡𝑡𝑡 output from the GARCH model is used as input in the SVR. The kernel 
determined in SVR provides effectiveness according to the structure of the data. 

Instead of replacing the maximum likelihood method with SVR to predict GARCH parameters, 
it is recommended to combine the SVR and GARCH models to predict volatility. First, the 
GARCH model is used to obtain ℎ𝑡𝑡𝑡𝑡. Then, 𝑍𝑍𝑍𝑍𝑡𝑡𝑡𝑡 = 𝑓𝑓𝑓𝑓(𝑍𝑍𝑍𝑍𝑡𝑡𝑡𝑡𝑡𝑗,ℎ𝑡𝑡𝑡𝑡𝑡𝑗′ , 𝑦𝑦𝑦𝑦𝑡𝑡𝑡𝑡𝑡𝑗2 , ℎ𝑡𝑡𝑡𝑡𝑡𝑗), the nonlinear 
estimation is performed using the considering SVR model. In the equation is 𝑍𝑍𝑍𝑍𝑡𝑡𝑡𝑡 = ℎ𝑡𝑡𝑡𝑡′ − ℎ𝑡𝑡𝑡𝑡. The 
linear GARCH model and the non-linear SVR model are combined to obtain estimates (Sun & 
Yu 2020). 

In the SVR-GARCH model used to estimate volatility, the input vector is 𝑥𝑥𝑥𝑥𝑡𝑡𝑡𝑡 = [𝑎𝑎𝑎𝑎2, ht−1], and 
the output variable is ht. The SVR-GARCH structure is located below: 

𝑟𝑟𝑟𝑟𝑡𝑡𝑡𝑡 = f (𝑟𝑟𝑟𝑟𝑡𝑡𝑡𝑡−1) + 𝑎𝑎𝑎𝑎𝑡𝑡𝑡𝑡                                                                                                                          (5) 

Where 𝑓𝑓𝑓𝑓 is the decision function predicted by SVR for the mean equation. After the squared 
residues from the conditional mean estimate of SVR-GARCH, estimate the conditional 
variance equation given below: 

ℎ𝑡𝑡𝑡𝑡� = 𝑙𝑙𝑙𝑙(ℎ�𝑡𝑡𝑡𝑡𝑡𝑗, 𝑎𝑎𝑎𝑎𝑡𝑡𝑡𝑡𝑡𝑗2 )                                                                                                                                (6) 

In Equation 6, 𝑙𝑙𝑙𝑙 is the decision function predicted by SVR. 𝑎𝑎𝑎𝑎𝑡𝑡𝑡𝑡2 refers to residual square and ℎ� 
is the volatility. (Bezerra & Albuquerque 2017). 

In the mean equation, we will use 3 different kernels. The kernel functions are included in Table 
1. 

 

       (4)
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negative due to logarithmic transformation in the model, it is always positive. The presence of 
𝛾𝛾𝛾𝛾𝑘𝑘𝑘𝑘 < 0 in the model shows that the leverage effect exists (Çağlayan & Dayioğlu 2009). The 
advantage of the E-GARCH model allows unrestricted estimation of variance (Thomas & 
Mitchell 2005: 16). 
SVR-GARCH is a powerful predictive method for predicting volatility and model risk. This is 
because the ℎ𝑡𝑡𝑡𝑡 output from the GARCH model is used as input in the SVR. The kernel 
determined in SVR provides effectiveness according to the structure of the data. 

Instead of replacing the maximum likelihood method with SVR to predict GARCH parameters, 
it is recommended to combine the SVR and GARCH models to predict volatility. First, the 
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linear GARCH model and the non-linear SVR model are combined to obtain estimates (Sun & 
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residues from the conditional mean estimate of SVR-GARCH, estimate the conditional 
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Yu 2020). 
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The training set for determining the models and the test set are also used to evaluate the 
predictive performance of the models (Tay & Cao 2001). RMSE is used to evaluate predictive 
performance. 

The RMSE value used to evaluate the effectiveness of the models and provides information 
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are examined and ARMA (3,3) is determined before moving on to the GARCH models. The 
ARMA (3,3) prediction model is tested with ARCH-LM and rejected the basic hypothesis that 
the ARCH effect did not exist. As a result, it is concluded that it is appropriate to examine the 
GARCH models for the return series and the coefficient constraints of the models are examined. 

The change in the gold price series variable over time is included in Figure 1. 
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 Price Return 
Number of observations 3424 3423 
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Std. Dev. 255.1708 1.0113 

ADF -1.4602 
(0.553) 
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Skewness 0.4265 -0.5942 
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Jarque-Bera 312.9352 
(0.000)* 

5821.326 
(0.000)* 

Note: * indicates the rejection of the null hypothesis that the series is unit root according to 5% for the ADF test.  
Indicate the rejection of the null hypothesis that the distribution is normal according to 5% for the Jarque-Bera 
test.  
 
The study is carried out with 3423 observations taking the return of the gold price, which is 
3424 observations used in the study. ADF unit root test is applied to the gold price data and 
return data. While the price series has unit root, it is seen that the return series becomes 
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When Figure 2 is examined, it is seen that the series fluctuates around zero and has volatility clusters. Large shocks 
follow large shocks, while small shocks follow small shocks. Descriptive statistics for the gold price and return 
series are included in Table 2.

Table 2. Descriptive Statistics for the Gold Price and Return Series

When Figure 1 is examined, it is seen that the series has a trend. Due to the fact that the series 
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Note: * indicates the rejection of the null hypothesis that the series is unit root according to 5% for the ADF test.  Indicate the rejection of the 
null hypothesis that the distribution is normal according to 5% for the Jarque-Bera test. 

The study is carried out with 3423 observations taking the return of the gold price, which is 3424 observations 
used in the study. ADF unit root test is applied to the gold price data and return data. While the price series has 
unit root, it is seen that the return series becomes stationary when the difference is taken. The Jarque-Bera test does 
not appear to have normal distribution for both the price series and the return series. 252 observations of 3423 
observations are determined as test data, while the remaining observations are determined as data set training. As 
a model performance criterion, the RMSE error statistical criterion is taken into account.

Figure 3 shows the graphical output for ARCH model estimate.

Figure 3. Comparison of the ARCH Model Volatility Estimate with the Actual Values

Figure 3 reveals that the ARCH model estimate does not exactly match the actual value. The forecast shows higher 
volatility than actual values.   
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Figure 4 shows the graphical output for the GARCH model estimate.

Figure 4. Comparison of the GARCH Model Volatility Estimate with the Actual Values

According to Figure 4, it is seen that the GARCH estimate does not overlap with the actual values and the estimate 
is insufficient. 

Figure 5 shows the graphic output of the GJR-GARCH model estimate.

Figure 5. Comparison of the GJR-GARCH Model Volatility Estimate with the Actual Values

Once Figure 5 is taken into consideration, it could be seen that the actual volatility values and the GJR-GARCH 
model estimate do not overlap. This estimate appears to be insufficient to capture endpoints in volatility

Figure 6 shows the graphic output of the E-GARCH model.

Figure 6. Comparison of E-GARCH Model Volatility Estimate with the Actual Values

Figure 6 suggests that E-GARCH cannot capture the actual volatility values with the estimate. This estimate meth-
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od appears to have failed to catch endpoints. 

 Figure 7 shows the estimate graph for the linear SVR-GARCH model.

Figure 7. Comparison of Linear SVR-GARCH Model Volatility Prediction with the Actual Values

When Figure 7 is examined, it is seen that the linear SVR-GARCH model estimate shows very close estimate to 
actual values.

Figure 8 shows the estimate output of the RBF SVR-GARCH model.

Figure 8. Comparison of RBF SVR-GARCH Model Volatility Estimate with the Actual Values

When Figure 8 is examined, it is seen that the RBF SVR-GARCH estimate overlaps with real value and is good at 
capturing endpoints.  The forecast appears to have performed successfully in capturing the endpoints. 

 Figure 9 shows the graphic output for the Polynomial SVR-GARCH model estimate

Figure 9. Comparison of Polynomial SVR-GARCH Model Volatility Prediction with the Actual Values
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When Figure 9 is examined, it is seen that the Polynomial SVR-GARCH estimate not good at capturing real values 
and makes insufficient estimate.

The graphs of the prediction models can be interpreted, but the results we can rely on in the study are the model 
performance criteria. In this study, RMSE will be considered as the model performance criterion. Table 3 contains 
RMSE values as a model performance measure.

Table 3. Model RMSE ValuesTable 3: Model RMSE Values 

Prediction Method RMSE Model Performance Rank 
ARCH 0.0913 7 

GARCH 0.0879 4 
GJR-GARCH 0.0880 5 

E-GARCH 0.0904 6 
Linear SVR-GARCH 0.0008 2 
RBF SVR-GARCH 0.0007 1 

Polinomial SVR-GARCH 0.0018 3 

The RMSE values in Table 3 show that the models with the small statistics are hybrid models. 
The RMSE value of ARCH and GARCH models is 0.0913 and 0.0879, respectively. These 
models ignore the asymmetrical effect. GJR-GARCH has been proposed to solve the 
asymmetry problem in the financial series, and the RMSE value is 0.0880. GARCH and E-
GARCH models feature short memory.  This feature does not comply with long-term estimates. 
For this reason, the training set is kept smaller than the test set and the RMSE value is 0.0904. 
The SVR-GARCH model shows that the predictive performance is better, with less error 
statistics than GARCH models. SVR-GARCH models appear to give the RBF kernel with the 
smallest error statistics value 0.0007 due to the compatibility of the kernel to the data set. 

5. CONCLUSION 

Gold is the precious metal that people have used for centuries as a means of exchange and 
investment. Investors are curious about the future movements of gold prices because of being 
is a valuable mine. Investors want to know the volatility in order not to suffer losses and to 
make a maximum profit in their investments. Even countries try to understand the volatility in 
financial prices when making a decision to invest in each other. For this reason, it is important 
to determine the appropriate time series model for researchers. 

In this study, the gold price series is obtained through yahoofinance.com and daily closing 
values are used. Traditional estimation methods of GARCH and hybrid SVR-GARCH Linear, 
RBF, Polinom kernels are used to take into account the nonlinear structure with time-varying 
volatility. When the graphs in the estimates are examined, the prediction effectiveness of 
GARCH models appears to be low. SVR-GARCH models, it seems more effective in 
predictions and closer to catching volatility. Considering the RMSE values determined as the 
model performance metric, it appears that the graphics are accurately related to the output and 
hybrid models have less error statistics. As a result of the study, it appears that the minimum 
error statistics value is belong to the hybrid model RBF kernel SVR-GARCH. 

According to this study, considering the extreme volatility of the financial time series and its 
non-linear structure, it is concluded that hybrid models will be more accurate to prefer than 
traditional methods. In the study, ARCH, GARCH, GJR-GARCH, E-GARCH and SVR-
GARCH models are predicted and compared. The SVR-GARCH hybrid model is created in 
three different prediction models as Linear, RBF and Polynomial kernels. When RMSE 
statistics and graphics are examined, it is seen that SVR-GARCH models have the best 
performance which is estimated by three different kernels. It is obvious that SVR-GARCH 
captures the volatility clusters in the graphics better.  Therefore, it is suggested that SVR-
GARCH hybrid models can be used in financial time series estimates.   

The RMSE values in Table 3 show that the models with the small statistics are hybrid models. The RMSE value 
of ARCH and GARCH models is 0.0913 and 0.0879, respectively. These models ignore the asymmetrical effect. 
GJR-GARCH has been proposed to solve the asymmetry problem in the financial series, and the RMSE value 
is 0.0880. GARCH and E-GARCH models feature short memory.  This feature does not comply with long-term 
estimates. For this reason, the training set is kept smaller than the test set and the RMSE value is 0.0904. The 
SVR-GARCH model shows that the predictive performance is better, with less error statistics than GARCH mod-
els. SVR-GARCH models appear to give the RBF kernel with the smallest error statistics value 0.0007 due to the 
compatibility of the kernel to the data set.

5. CONCLUSION

Gold is the precious metal that people have used for centuries as a means of exchange and investment. Investors 
are curious about the future movements of gold prices because of being is a valuable mine. Investors want to know 
the volatility in order not to suffer losses and to make a maximum profit in their investments. Even countries try 
to understand the volatility in financial prices when making a decision to invest in each other. For this reason, it is 
important to determine the appropriate time series model for researchers.

In this study, the gold price series is obtained through yahoofinance.com and daily closing values are used. Tra-
ditional estimation methods of GARCH and hybrid SVR-GARCH Linear, RBF, Polinom kernels are used to take 
into account the nonlinear structure with time-varying volatility. When the graphs in the estimates are examined, 
the prediction effectiveness of GARCH models appears to be low. SVR-GARCH models, it seems more effective 
in predictions and closer to catching volatility. Considering the RMSE values determined as the model perfor-
mance metric, it appears that the graphics are accurately related to the output and hybrid models have less error 
statistics. As a result of the study, it appears that the minimum error statistics value is belong to the hybrid model 
RBF kernel SVR-GARCH.

According to this study, considering the extreme volatility of the financial time series and its non-linear structure, 
it is concluded that hybrid models will be more accurate to prefer than traditional methods. In the study, ARCH, 
GARCH, GJR-GARCH, E-GARCH and SVR-GARCH models are predicted and compared. The SVR-GARCH 
hybrid model is created in three different prediction models as Linear, RBF and Polynomial kernels. When RMSE 
statistics and graphics are examined, it is seen that SVR-GARCH models have the best performance which is es-
timated by three different kernels. It is obvious that SVR-GARCH captures the volatility clusters in the graphics 
better.  Therefore, it is suggested that SVR-GARCH hybrid models can be used in financial time series estimates.  
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