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Income inequality-labor productivity 
relationship: CS-ARDL approach*

Abstract

With the acceleration of globalization, “Reducing Inequalities”, which is the 10th of the sustainable development goals, has 
started to attract more attention in the world. Many factors lead to inequality. Therefore, inequality requires consensus and 
strength at the interdisciplinary, local, national, and international levels. The leading indicator of inequality is income inequality. 
Its measurability and widespread impact are sources of its importance and priority. Unfair income distribution might have 
unfavorable effects on employees such as being more reluctant to work and the well-being of workers. In addition, if workers 
believe they earn less than they deserve, this might negatively affect the labor productivity. Ultimately, this process may cause 
countries to reduce their production output.

This study aims to explore the link between income inequality and labor productivity among 31 countries in Europe with the 
period of 2005-2019. To do this, a cross-sectional auto-regressive distributed lag model (CS-ARDL) is employed. According to 
the results, wage inequality damages the productivity of labor. A 1% increase in the wage inequality reduces labor productivity 
by 0.16%. Moreover, the unequal income distribution has an explanatory power of approximately 33% on the decrease in 
productivity. This helps to determine the possible effects of the unequal income distribution leading towards two targets. These 
targets are to create an efficient wage structure and eliminate the destructive effects of inequality, respectively. In terms of the 
policy effectiveness, simultaneous application of tools may be more beneficial.
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1. INTRODUCTION

In Brundtland Report (1987), the definition of sustainable development (SD) is “the needs of the present 
without compromising the ability of future generations to meet their own needs.” The SD, led by the Unit-
ed Nations (UN), includes 17 objectives and many sub-objectives for achieving a sustainable future. The 
UN prioritized three SD goals from 2015 to 2030. One of the three main objectives is to “fight inequality 
& injustice.” Its inclusion in this emergency plan demonstrates the importance of the subject (The Global 
Goals 2021). 

The importance of inequality is related to its effects on various areas. In this respect, inequality negatively 
affects the well-being of individuals. It also affects the productivity level of the labor (hence, the economy). 
Moreover, inequality disrupts resource allocation. Therefore, it is a concern of sustainability because of the 
limited resources. One aspect of inequality is a waste of resources when the advantaged group has more 
resources than they need. On the other hand, disadvantaged groups have fewer resources, which they have 
to share. 

Terminologically, not being equal in status, rights and opportunities is defined as inequality. This issue has 
different manifestations (Afonso et al. 2015: 1). Income or wage inequality is the most popular inequality 
measurement in social sciences. Uneven income distribution among the population is the definition of in-
come inequality. Unequal wage distribution is a source of income inequality. On the opposite side, a fair 
wage allocation has the criteria of equal pay for equal work (Meidner and Rehn, 1957 cited in Policardo et 
al. 2018: 3). Income inequality sourced from wages occurs when work and wages are out of balance.

Usually, the formation mechanism of inequality is the focus of scientific research. However, if one would 
like to reduce income inequalities for a sustainable society, knowing about the consequences of inequal-
ities can pave the way for determining for which, how much and how the necessary tools are applicable. 
In addition, income is one of the basic human needs for individuals and households. A sufficient and fair 
income level is a requirement to sustain the well-being. Moreover, equitable and effective wage level is 
also significant for the firms, industries, and economy. Unequal income distribution can cause employees 
to lose their enthusiasm and thus, to lower productivity and output per employee. Therefore, a sustainable 
economy might be exposed to unequal distribution negatively. On the productivity side, it is a rate between 
input and output. In addition, this ratio calculates the efficiency level of inputs such as capital and labor. 
Countries should measure and raise their productivity levels if they are enthusiastic about the high growth 
rates and competitiveness. Additionally, productivity data is beneficial to evaluate the performance of labor 
and product markets (Krugman 1994: 1). Labor productivity in the labor market has influences on the effi-
cient wage level. More productive workers get higher wages than fewer ones. Ultimately, all workers get 
the wages they deserved.

Income inequality increases when income is distributed unjustly and disproportionately among workers. 
Rising inequality rates are mainly due to the financial liberalization and trade globalization (Stiglitz 2013: 
59). Unequal income distribution is especially true for the manufacturing sector. Technological progress 
in this sector causes an increase in productivity and reduces the need for employment. At the same time, 
changes in the employment structure are favor more skilled workers and against unskilled workers. In 
addition, differences in skills generally lead to differences in wages (Stiglitz 2013: 61). Wages, which are 
especially optimal wages, differ based on industry, sector, and firm (Stiglitz 1982: 78). 

Moreover, productivity and wage level have a bidirectional relationship. Productive workers may receive 
higher wages, or higher wage levels increase their productivity by leading workers to exert more effort. The 
structure is also significant for perceived fairness in wages. If workers believe that the wage structure is not 
equitable, belief in inequality is on hand. Akerlof (1984) and Akerlof & Yellen (1986) argue that employees 
put in less effort if they believe they are underpaid (cited in Liu 2002: 454). If workers believe that the wage 
structure is unjust, their belief would reinforce the reality of income inequality.

There is a wealth of literature related to inequality and productivity measurement focusing on the effect of 
productivity on wage or vice versa. There are only a few papers directly mentioning the link between wage 
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inequality and productivity level. Moreover, inequality indicators generally use the Gini coefficient and firm or 
sector data but not country-level. Related studies do not examine the variables for the long-run relationship. In the 
light of this information, our contribution to the literature is in three aspects. The first contribution is using the in-
come quintile share ratio as an inequality indicator. The latter is to use the country-level panel data and the last con-
tribution is the estimation of long-run coefficients by employing the cross-sectional panel cointegration technique. 

In this regard, the second section covers a literature review. The third section gives information about the data and 
the methodology. The last section reveals the empirical results.

2. LITERATURE

Factor productivity has been a topic of much thought and discussion within the field, especially for economics. 
There is a large and diverse literature on productivity. Some of them examine the determinants of productivity 
such as Isaksson (2007), Choudhry (2009), Islam (2008), Isaksson and Ng (2006), Khan et al. (2011), Loko and 
Diouf (2009), Kose et al. (2009), Aghion et al. (2009). Some papers also investigate regional or spatial differences 
in productivity or unequal productivity distribution (i.e. He et al. 2017; Ezcurra et al. 2007).

Another group argues the historical process of macroeconomic variables with inequality and productivity. Paul 
(2020) focuses on the historical process of inequality and productivity. He finds that rising inequality and low 
productivity are predictors of crises for 17 countries’ different crisis dates. Meager and Speckesser (2011) also 
find that the growth of productivity and wages depicts simultaneous movement for 25 countries during 1995-2009.

Additionally, the related literature investigates the connection between productivity and income inequality. How-
ever, the direction of the effect is from productivity to inequality as in technical changes based on skill biases. The 
skill-biased shifts suggest that innovations in production technology are against the low-skilled labor but not the 
skilled ones. As a result, there might be a wage gap between more and low-skilled laborers. More skilled laborers 
benefit from a rise in total factor productivity, but inequality worsens. Some of the other studies in the literature 
could be listed as Gries and Naudé (2018), Hornbeck and Moretti (2018), Maoz and Sarid (2021), Fuentes et al. 
(2014), Kampelmann and Rycx (2012), Caroli and Van Reenen (2001) and Leung (2001).

Some papers investigate the wage effects on productivity level or wage efficiency theory arguing that an increase in 
(real) wages stimulates productivity in labor. Furthermore, we account literature such as Basril et al. (2018), Stans-
bury and Summers (2018), Trpeski, et al. (2016), Cohn et al. (2015), Feldstein (2008), Zhang and Liu (2013), Her-
man (2020), Levine (1992), Akerlof and Yellen (1990), Spitz (1989), Levine (1989), Rebitzer (1987), Katz (1986).

The last group of literature and the focus of this study are related to the income inequality effects on labor produc-
tivity. However, scholars rarely investigate the unequal determination of the wages’s effects on productivity level 
(Policardo et al. 2018: 2-3; Espoir and Ngepah 2020: 2612). Thus, papers studying on the connection between 
inequality and productivity are limited. Here, some examples of the most relevant studies and their findings are 
provided.

Freeman and Medoff (1984) are pioneering works analyzing the connection between inequality and productivity. 
They focus on union and nonunion workers for selected sectors in the United States. They reveal that wages are 
more homogeneous in unionized firms. Hence, inequality is low in these firms and this reduction might exist be-
cause of union workers’ preferences and ideas about fairness. They also state that workers in the unionized com-
panies are more productive. Productivity growth might be due to “industrial relations climate” and “more rational, 
professional management” (cited in Liu 2002: 455).

Liu (2002) examines the manufacturing industries following wage inequality and industrial productivity. Liu in-
vestigates the effects of wage inequality in the context of relative deprivation and efficient wage. Sen’s index is 
a measurement for determining the relative deprivation and efficient wage levels. Sample countries are Taiwan 
(1979-1996) and South Korea (1993-1996). In the regression analysis of this study, the hourly output of labor is a 
dependent variable, and the Sen index for aggregated relative deprivation is one of the explanatory variables. The 
Gini index is inside the Sen’s index, which is a tool for measuring the extent of economic deprivation in society as 
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aggregate or relative deprivation.  Regression results revealed that workers are reluctant when payments are less 
than they deserve. The coefficients of relative deprivation are highly negative for the two countries. However, this 
result is not consistent with the literature in which efficient wage affects industrial productivity. He also found that 
relative deprivation and efficient wages are more important than wage inequality.

Kim and Sakamoto (2008) examine the American manufacturing industry ranging from 1979 to 1996. They use 
productivity data for 72 manufacturing industries and the Gini index. Other variables are real capital stock, ma-
terial cost spent, and the number of workers. Their results are not proof of the skill-biased technological-change 
argument and they find that wage inequality negatively affects productivity. The Gini coefficient is – 0.15 and 
statistically valid for the second model.  1% increase in inequality causes 0.15 % decrease in productivity on av-
erage. The general interpretation of the coefficients is that the relationship between inequality and productivity is 
significantly negative if the model has fixed effects for industry and year.

Mahy et al. (2009) evaluate the effect of inequality on productivity level with wage dispersion for Belgium. Wage 
dispersion is a measure for wage differentials between similar workers. They calculate conditional wage inequality 
using Winter-Ebmer and Zweimüller (1999) methodology. They also use age, education, sex, gross income, work-
ing hours, and occupation and sector employers, number of employees, wage bargaining. The results of ordinary 
least squares demonstrate that there is a relationship between wage dispersion and productivity. Namely, a small 
wage dispersion might be detrimental to productivity. Moderate wage increases are beneficial to firm performance. 
Hibbs and Locking (2000) also analyze wage dispersion for Sweden from 1960 through 1980. Model’s variables 
are hourly wage distribution and value-added per worker. They reveal that a reduction in interindustry wage differ-
ences might lead to a productivity improvement.

DiPietro (2014) uses productivity growth as a dependent variable, an average annual Gini coefficient from 2000 
to 2010. Six control variables are included in the model such as the level of economic development, the amount 
of human capital, the size of the private sector, wage flexibility, and government waste. He employs regression 
analysis to examine the cross-country data. Unfortunately, he does not mention which countries are included in 
his work. He reports that the coefficient of Gini is approximately -0.78 if there is only one explanatory variable. If 
control variables are included to the models one by one, this value becomes – 0.99.

Policardo et al. (2018) investigate that wage inequality and labor productivity for 34 Organisation for Economic 
Co-operation and Development (OECD) countries. They use generalized methods of moments for the period of 
1995-2007. Labor productivity per hour worked is used as the dependent variable; the Gini index is employed as 
the independent variable. Control variables are Gross Domestic Product per capita, fertility, life expectancy, annual 
hours per worker, and total employed population rate. They find that wage inequality harms labor productivity. The 
coefficient of this effect is about -0.06 in which a one-dollar increase in the inequality index causes 6 cent decrease 
in labor productivity.

Britton and Propper (2016) investigate the impact of teacher pay on school productivity in England. They collect 
cross-sectional data from more than  3000 schools and around 200.000 teachers .  Variables used in the analysis are 
school performance and the wage gap. Moreover, the school efficiency is the added value of the school measures 
by national tests. They depict that the teachers respond to the low payments. An unforeseen 10% change in the 
wage gap worsens school performance by 2%. A larger wage gap between formal payments and non-labor market 
wage levels reduces the school productivity.

Espoir and Ngepah (2020) examine the effects of income inequality on total factor productivity based on location 
and distance for South Africa. For this purpose, they apply the spatial econometric technique and use municipal 
panel data from 1995 to 2015. Their findings conclude that there are positive spatial interactions in the effects of 
income inequality on total factor productivity. It means that there is a neighboring effect among the municipalities. 
They further reveal that the impact of income inequality on productivity is negative for the direct effect and it is 
positive for the indirect effect. Municipalities (with high inequality) transfer jobs, investments, and skilled labor to 
municipalities (with medium income inequality and high-income opportunities).

Da Silveira and Lima (2021) investigate the endogenous macroeconomic fluctuations with the effects of wage 
inequality.  They employ the frequency distribution at the micro-dynamic base. Their results demonstrate that the 
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labor productivity is changeable across workers depending on different levels of wages. They also provide empir-
ical evidence for the endogeneity of labor productivity and the persistency of wage inequality.

3. DATA AND METHODOLOGY 

This chapter gives information about the the data and the methodology

3.1. Data

Finding sufficient and powerful data is usually difficult if one would like to examine unequal income distribution. 
This is because some indicators could be available for restricted periods and countries. Missing observations might 
be notable. Collecting two variables (labor productivity and income inequality) from the same source contributes 
to the availability and robustness of the data. In this vein, Statistics of the European Commission (Eurostat) has 
various and qualified data related to income inequality and labor productivity. Inequality of income is the mea-
surement of the S80/S20 income quintile share ratio. This ratio is the household income ratio obtained by dividing 
the top 20% by the bottom 20%. The second variable is labor productivity calculated per person employed and 
hour worked (EU27_2020=100). The logarithmic transformations of variables as log_inc and log_pro representing 
income inequality and labor productivity are employed for the analysis, respectively. 

The sample period ranges from 2005 to 2019 for 31 countries in Europe. These countries are Austria, Belgium, 
Bulgaria, Croatia, Cyprus, Czechia, Denmark, Estonia, Finland, France, Germany, Greece, Hungary, Iceland, Ire-
land, Italy, Latvia, Lithuania, Luxembourg, Malta, Netherlands, Norway, Poland, Portugal, Romania, Slovakia, 
Slovenia, Spain, Sweden, Switzerland, and United Kingdom.

3.2. Methodology

This section provides information concerning the co-integration approach used to estimate the long-run coeffi-
cients in the study. The cross-sectional dependence and the stationary tests are necessary before the estimation of 
the long-run coefficients. The methodology of Frees (1995) to test the existence of the cross-sectional dependence 
is explained below: 

          (1)

where  represents the Spearman rank correlation coefficient between the ith and jth units. The cross-section depen-
dence tests of Pesaran (2004), Frees (1995), and Friedman (1937) are initially used in this study.  However, test 
statistics come up with some contradictory results. Pesaran and Friedman tests confirm the null hypothesis sug-
gesting that there exists no cross sectional dependence across units in the panel but Frees test does not. Therefore, 
we conclude that there is cross-sectional dependence across units according to DeHoyos and Sarafidis (2006: 494). 

Having found that there is a cross-sectional dependence among units, we should use the unit root test allowing 
cross-sectional dependence Because of the unbalanced panel data, we can apply Pesaran’s (2007) methodology. 
Pesaran developed the cross-sectionally augmented Dickey-Fuller (CADF) statistics. In the process, he calculated 
a general panel unit root statistics by using unit root statistics of each cross-section in a panel data (Koçbulut and 
Altıntaş 2016: 16). CIPS is a general test statistic for unit root (Pesaran 2007: 276):

         (2)

where 
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can apply Pesaran's (2007) methodology. Pesaran developed the cross-sectionally augmented 
Dickey-Fuller (CADF) statistics. In the process, he calculated a general panel unit root statistics 
by using unit root statistics of each cross-section in a panel data (Koçbulut and Altıntaş 2016: 
16). CIPS is a general test statistic for unit root (Pesaran 2007: 276): 

𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶(𝑁𝑁𝑁𝑁,𝑇𝑇𝑇𝑇) = 𝑁𝑁𝑁𝑁−1 ∑ 𝑡𝑡𝑡𝑡𝑖𝑖𝑖𝑖(𝑁𝑁𝑁𝑁,𝑇𝑇𝑇𝑇)𝑁𝑁𝑁𝑁
𝑖𝑖𝑖𝑖=1         (2) 

where 𝑡𝑡𝑡𝑡𝑖𝑖𝑖𝑖(𝑁𝑁𝑁𝑁,𝑇𝑇𝑇𝑇) is the CADF statistic for the i. cross-section unit based on CADF 
regression (∆𝑦𝑦𝑦𝑦𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖 = 𝛼𝛼𝛼𝛼𝑖𝑖𝑖𝑖 +  𝑏𝑏𝑏𝑏𝑖𝑖𝑖𝑖𝑦𝑦𝑦𝑦𝑖𝑖𝑖𝑖,𝑖𝑖𝑖𝑖−1 +  𝑐𝑐𝑐𝑐𝑖𝑖𝑖𝑖𝑦𝑦𝑦𝑦�𝑖𝑖𝑖𝑖−1 + 𝑑𝑑𝑑𝑑𝑖𝑖𝑖𝑖∆𝑦𝑦𝑦𝑦�𝑖𝑖𝑖𝑖  +  𝑒𝑒𝑒𝑒𝑖𝑖𝑖𝑖,𝑖𝑖𝑖𝑖)  (Pesaran 2007: 269). The null 
hypothesis has the statement of non-stationary series (𝐻𝐻𝐻𝐻0: 𝑏𝑏𝑏𝑏𝑖𝑖𝑖𝑖 = 0 for all i) (Pesaran 2007: 268-
69).  

Because of the connected units, the existence of a small sample (micro panel), and 
having different integration levels for series, the panel auto-regressive distributed lag (ARDL) 
model is the most suitable for the long-run coefficient estimation. Deviations from long-run 
equilibrium are significant than short-run equilibrium. Therefore, the long-run relationship 
between variables and unbiasedness are favorable in the estimation process (Granger 1986: 
213). We run the ARDL approach under the integration level of I(1)  for dependent variable and 
I(0) for  explanatory variable (Pesaran et al. 2001: 315). The fundamental model of ARDL (px, 
py) with respect of dependent and independent variables (Ditzen 2018: 6):  

𝑦𝑦𝑦𝑦𝑖𝑖𝑖𝑖,𝑖𝑖𝑖𝑖 = ∑ 𝜆𝜆𝜆𝜆𝐼𝐼𝐼𝐼,𝑖𝑖𝑖𝑖
𝑝𝑝𝑝𝑝𝑦𝑦𝑦𝑦
𝐼𝐼𝐼𝐼=1 𝑦𝑦𝑦𝑦𝑖𝑖𝑖𝑖,𝑖𝑖𝑖𝑖−𝐼𝐼𝐼𝐼 +  ∑ 𝛽𝛽𝛽𝛽𝐼𝐼𝐼𝐼,𝑖𝑖𝑖𝑖

𝑝𝑝𝑝𝑝𝑥𝑥𝑥𝑥
𝐼𝐼𝐼𝐼=0 𝑥𝑥𝑥𝑥𝑖𝑖𝑖𝑖,𝑖𝑖𝑖𝑖−𝐼𝐼𝐼𝐼  +  𝑒𝑒𝑒𝑒𝑖𝑖𝑖𝑖,𝑖𝑖𝑖𝑖      (3) 

where  the lag length of y and x are 𝑝𝑝𝑝𝑝𝑥𝑥𝑥𝑥,𝑝𝑝𝑝𝑝𝑦𝑦𝑦𝑦, respectively. If we calculate the coefficients 
of long-run β and average group (Ditzen 2018: 6): 

 𝜃𝜃𝜃𝜃𝑖𝑖𝑖𝑖 =
∑ 𝛽𝛽𝛽𝛽𝐼𝐼𝐼𝐼,𝑖𝑖𝑖𝑖
𝑝𝑝𝑝𝑝𝑥𝑥𝑥𝑥
𝐼𝐼𝐼𝐼=0

1−∑ 𝜆𝜆𝜆𝜆𝐼𝐼𝐼𝐼,𝑖𝑖𝑖𝑖
𝑝𝑝𝑝𝑝𝑦𝑦𝑦𝑦
𝐼𝐼𝐼𝐼=1

,    �̅�𝜃𝜃𝜃𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀 = ∑ 𝜃𝜃𝜃𝜃𝑖𝑖𝑖𝑖𝑁𝑁𝑁𝑁
𝑖𝑖𝑖𝑖=1     (4)

  

In calculating 𝜃𝜃𝜃𝜃𝑖𝑖𝑖𝑖 and �̅�𝜃𝜃𝜃𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀 values, Chudik et al. (2016) suggest the cross-sectionally 
augmented ARDL (CS-ARDL) and the cross-sectionally augmented distributed lag (CS-DL) 
estimators. CS-ARDL technique calculates the long-run coefficients from short-run coefficients 
and includes cross-sectional average. Extended version of equation 3 is explained below 
(Ditzen 2018: 9): 
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𝑝𝑝𝑝𝑝𝑥𝑥𝑥𝑥
𝐼𝐼𝐼𝐼=0 𝑥𝑥𝑥𝑥𝑖𝑖𝑖𝑖,𝑖𝑖𝑖𝑖−𝐼𝐼𝐼𝐼  +  ∑ 𝛾𝛾𝛾𝛾′𝐼𝐼𝐼𝐼,𝑖𝑖𝑖𝑖

𝑝𝑝𝑝𝑝𝑇𝑇𝑇𝑇
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where 𝑧𝑧𝑧𝑧�̅�𝑖𝑖𝑖−𝐼𝐼𝐼𝐼 consists of 𝑦𝑦𝑦𝑦�𝑖𝑖𝑖𝑖,𝑖𝑖𝑖𝑖−𝐼𝐼𝐼𝐼 and �̅�𝑥𝑥𝑥𝑖𝑖𝑖𝑖,𝑖𝑖𝑖𝑖−𝐼𝐼𝐼𝐼. 𝑒𝑒𝑒𝑒𝑖𝑖𝑖𝑖,𝑖𝑖𝑖𝑖 is serially uncorrelated process across for all 
i. Adding the cross-sectional mean to the formula can remove cross-sectional dependence in 
the errors. Thus, the estimation fulfills the validity criteria (Erülgen et al. 2020: 9). 

4. Analysis 
At the beginning of the analysis, a related cross-sectional dependence test is necessary 

to check the possible correlations among units. The null hypothesis consists of a cross-sectional 
independence argument (DeHoyos and Sarafidis 2006: 492). The test statistics of Frees is 5.589 
and critical values are 0.2828 (0.10), 0.3826 (0.05), and 0.5811 (0.01). Because Frees' statistics 
are bigger than critical values, we reject the null hypothesis suggesting the cross-sectional 
independence. After that, we implement cross-sectional augmented Dickey Fuller method. The 
results are reported in Table 1.  
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Having found that there is a cross-sectional dependence among units, we should use the 
unit root test allowing cross-sectional dependence Because of the unbalanced panel data, we 
can apply Pesaran's (2007) methodology. Pesaran developed the cross-sectionally augmented 
Dickey-Fuller (CADF) statistics. In the process, he calculated a general panel unit root statistics 
by using unit root statistics of each cross-section in a panel data (Koçbulut and Altıntaş 2016: 
16). CIPS is a general test statistic for unit root (Pesaran 2007: 276): 
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Because of the connected units, the existence of a small sample (micro panel), and 
having different integration levels for series, the panel auto-regressive distributed lag (ARDL) 
model is the most suitable for the long-run coefficient estimation. Deviations from long-run 
equilibrium are significant than short-run equilibrium. Therefore, the long-run relationship 
between variables and unbiasedness are favorable in the estimation process (Granger 1986: 
213). We run the ARDL approach under the integration level of I(1)  for dependent variable and 
I(0) for  explanatory variable (Pesaran et al. 2001: 315). The fundamental model of ARDL (px, 
py) with respect of dependent and independent variables (Ditzen 2018: 6):  
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In calculating 𝜃𝜃𝜃𝜃𝑖𝑖𝑖𝑖 and �̅�𝜃𝜃𝜃𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀 values, Chudik et al. (2016) suggest the cross-sectionally 
augmented ARDL (CS-ARDL) and the cross-sectionally augmented distributed lag (CS-DL) 
estimators. CS-ARDL technique calculates the long-run coefficients from short-run coefficients 
and includes cross-sectional average. Extended version of equation 3 is explained below 
(Ditzen 2018: 9): 
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i. Adding the cross-sectional mean to the formula can remove cross-sectional dependence in 
the errors. Thus, the estimation fulfills the validity criteria (Erülgen et al. 2020: 9). 

4. Analysis 
At the beginning of the analysis, a related cross-sectional dependence test is necessary 

to check the possible correlations among units. The null hypothesis consists of a cross-sectional 
independence argument (DeHoyos and Sarafidis 2006: 492). The test statistics of Frees is 5.589 
and critical values are 0.2828 (0.10), 0.3826 (0.05), and 0.5811 (0.01). Because Frees' statistics 
are bigger than critical values, we reject the null hypothesis suggesting the cross-sectional 
independence. After that, we implement cross-sectional augmented Dickey Fuller method. The 
results are reported in Table 1.  
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𝑝𝑝𝑝𝑝𝑥𝑥𝑥𝑥
𝐼𝐼𝐼𝐼=0 𝑥𝑥𝑥𝑥𝑖𝑖𝑖𝑖,𝑖𝑖𝑖𝑖−𝐼𝐼𝐼𝐼  +  𝑒𝑒𝑒𝑒𝑖𝑖𝑖𝑖,𝑖𝑖𝑖𝑖      (3) 

where  the lag length of y and x are 𝑝𝑝𝑝𝑝𝑥𝑥𝑥𝑥,𝑝𝑝𝑝𝑝𝑦𝑦𝑦𝑦, respectively. If we calculate the coefficients 
of long-run β and average group (Ditzen 2018: 6): 

 𝜃𝜃𝜃𝜃𝑖𝑖𝑖𝑖 =
∑ 𝛽𝛽𝛽𝛽𝐼𝐼𝐼𝐼,𝑖𝑖𝑖𝑖
𝑝𝑝𝑝𝑝𝑥𝑥𝑥𝑥
𝐼𝐼𝐼𝐼=0

1−∑ 𝜆𝜆𝜆𝜆𝐼𝐼𝐼𝐼,𝑖𝑖𝑖𝑖
𝑝𝑝𝑝𝑝𝑦𝑦𝑦𝑦
𝐼𝐼𝐼𝐼=1

,    �̅�𝜃𝜃𝜃𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀 = ∑ 𝜃𝜃𝜃𝜃𝑖𝑖𝑖𝑖𝑁𝑁𝑁𝑁
𝑖𝑖𝑖𝑖=1     (4)

  

In calculating 𝜃𝜃𝜃𝜃𝑖𝑖𝑖𝑖 and �̅�𝜃𝜃𝜃𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀 values, Chudik et al. (2016) suggest the cross-sectionally 
augmented ARDL (CS-ARDL) and the cross-sectionally augmented distributed lag (CS-DL) 
estimators. CS-ARDL technique calculates the long-run coefficients from short-run coefficients 
and includes cross-sectional average. Extended version of equation 3 is explained below 
(Ditzen 2018: 9): 

𝑦𝑦𝑦𝑦𝑖𝑖𝑖𝑖,𝑖𝑖𝑖𝑖 = ∑ 𝜆𝜆𝜆𝜆𝐼𝐼𝐼𝐼,𝑖𝑖𝑖𝑖
𝑝𝑝𝑝𝑝𝑦𝑦𝑦𝑦
𝐼𝐼𝐼𝐼=1 𝑦𝑦𝑦𝑦𝑖𝑖𝑖𝑖,𝑖𝑖𝑖𝑖−𝐼𝐼𝐼𝐼 +  ∑ 𝛽𝛽𝛽𝛽𝐼𝐼𝐼𝐼,𝑖𝑖𝑖𝑖

𝑝𝑝𝑝𝑝𝑥𝑥𝑥𝑥
𝐼𝐼𝐼𝐼=0 𝑥𝑥𝑥𝑥𝑖𝑖𝑖𝑖,𝑖𝑖𝑖𝑖−𝐼𝐼𝐼𝐼  +  ∑ 𝛾𝛾𝛾𝛾′𝐼𝐼𝐼𝐼,𝑖𝑖𝑖𝑖

𝑝𝑝𝑝𝑝𝑇𝑇𝑇𝑇
𝐼𝐼𝐼𝐼=0 𝑧𝑧𝑧𝑧�̅�𝑖𝑖𝑖,𝑖𝑖𝑖𝑖−𝐼𝐼𝐼𝐼  + 𝑒𝑒𝑒𝑒𝑖𝑖𝑖𝑖,𝑖𝑖𝑖𝑖    (5) 

where 𝑧𝑧𝑧𝑧�̅�𝑖𝑖𝑖−𝐼𝐼𝐼𝐼 consists of 𝑦𝑦𝑦𝑦�𝑖𝑖𝑖𝑖,𝑖𝑖𝑖𝑖−𝐼𝐼𝐼𝐼 and �̅�𝑥𝑥𝑥𝑖𝑖𝑖𝑖,𝑖𝑖𝑖𝑖−𝐼𝐼𝐼𝐼. 𝑒𝑒𝑒𝑒𝑖𝑖𝑖𝑖,𝑖𝑖𝑖𝑖 is serially uncorrelated process across for all 
i. Adding the cross-sectional mean to the formula can remove cross-sectional dependence in 
the errors. Thus, the estimation fulfills the validity criteria (Erülgen et al. 2020: 9). 

4. Analysis 
At the beginning of the analysis, a related cross-sectional dependence test is necessary 

to check the possible correlations among units. The null hypothesis consists of a cross-sectional 
independence argument (DeHoyos and Sarafidis 2006: 492). The test statistics of Frees is 5.589 
and critical values are 0.2828 (0.10), 0.3826 (0.05), and 0.5811 (0.01). Because Frees' statistics 
are bigger than critical values, we reject the null hypothesis suggesting the cross-sectional 
independence. After that, we implement cross-sectional augmented Dickey Fuller method. The 
results are reported in Table 1.  
 

further reveal that the impact of income inequality on productivity is negative for the direct 
effect and it is positive for the indirect effect. Municipalities (with high inequality) transfer jobs, 
investments, and skilled labor to municipalities (with medium income inequality and high-
income opportunities). 

Da Silveira and Lima (2021) investigate the endogenous macroeconomic fluctuations 
with the effects of wage inequality.  They employ the frequency distribution at the micro-
dynamic base. Their results demonstrate that the labor productivity is changeable across 
workers depending on different levels of wages. They also provide empirical evidence for the 
endogeneity of labor productivity and the persistency of wage inequality. 

3. Data and Methodology  

            This chapter gives information about the the data and the methodology 

3.1. Data 
Finding sufficient and powerful data is usually difficult if one would like to examine 

unequal income distribution. This is because some indicators could be available for restricted 
periods and countries. Missing observations might be notable. Collecting two variables (labor 
productivity and income inequality) from the same source contributes to the availability and 
robustness of the data. In this vein, Statistics of the European Commission (Eurostat) has 
various and qualified data related to income inequality and labor productivity. Inequality of 
income is the measurement of the S80/S20 income quintile share ratio. This ratio is the 
household income ratio obtained by dividing the top 20% by the bottom 20%. The second 
variable is labor productivity calculated per person employed and hour worked 
(EU27_2020=100). The logarithmic transformations of variables as log_inc and log_pro 
representing income inequality and labor productivity are employed for the analysis, 
respectively.  

The sample period ranges from 2005 to 2019 for 31 countries in Europe. These countries 
are Austria, Belgium, Bulgaria, Croatia, Cyprus, Czechia, Denmark, Estonia, Finland, France, 
Germany, Greece, Hungary, Iceland, Ireland, Italy, Latvia, Lithuania, Luxembourg, Malta, 
Netherlands, Norway, Poland, Portugal, Romania, Slovakia, Slovenia, Spain, Sweden, 
Switzerland, and United Kingdom. 

3.2. Methodology 
This section provides information concerning the co-integration approach used to 

estimate the long-run coefficients in the study. The cross-sectional dependence and the 
stationary tests are necessary before the estimation of the long-run coefficients. The 
methodology of Frees (1995) to test the existence of the cross-sectional dependence is explained 
below:  

𝑅𝑅𝑅𝑅𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴 = �𝑛𝑛𝑛𝑛2�
−1 ∑ 𝑟𝑟𝑟𝑟𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖<𝑖𝑖𝑖𝑖          (1) 

where 𝑟𝑟𝑟𝑟𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖 represents the Spearman rank correlation coefficient between the ith and jth 
units. The cross-section dependence tests of Pesaran (2004), Frees (1995), and Friedman (1937) 
are initially used in this study.  However, test statistics come up with some contradictory results. 
Pesaran and Friedman tests confirm the null hypothesis suggesting that there exists no cross 
sectional dependence across units in the panel but Frees test does not. Therefore, we conclude 
that there is cross-sectional dependence across units according to DeHoyos and Sarafidis (2006: 
494).  
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levels for series, the panel auto-regressive distributed lag (ARDL) model is the most suitable for the long-run coef-
ficient estimation. Deviations from long-run equilibrium are significant than short-run equilibrium. Therefore, the 
long-run relationship between variables and unbiasedness are favorable in the estimation process (Granger 1986: 
213). We run the ARDL approach under the integration level of I(1)  for dependent variable and I(0) for  explan-
atory variable (Pesaran et al. 2001: 315). The fundamental model of ARDL (px, py) with respect of dependent and 
independent variables (Ditzen 2018: 6): 

       (3)

where the lag length of y and x are px,py, respectively. If we calculate the coefficients of long-run β and average 
group (Ditzen 2018: 6):

         (4)

In calculating 

 

Having found that there is a cross-sectional dependence among units, we should use the 
unit root test allowing cross-sectional dependence Because of the unbalanced panel data, we 
can apply Pesaran's (2007) methodology. Pesaran developed the cross-sectionally augmented 
Dickey-Fuller (CADF) statistics. In the process, he calculated a general panel unit root statistics 
by using unit root statistics of each cross-section in a panel data (Koçbulut and Altıntaş 2016: 
16). CIPS is a general test statistic for unit root (Pesaran 2007: 276): 

𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶(𝑁𝑁𝑁𝑁,𝑇𝑇𝑇𝑇) = 𝑁𝑁𝑁𝑁−1 ∑ 𝑡𝑡𝑡𝑡𝑖𝑖𝑖𝑖(𝑁𝑁𝑁𝑁,𝑇𝑇𝑇𝑇)𝑁𝑁𝑁𝑁
𝑖𝑖𝑖𝑖=1         (2) 

where 𝑡𝑡𝑡𝑡𝑖𝑖𝑖𝑖(𝑁𝑁𝑁𝑁,𝑇𝑇𝑇𝑇) is the CADF statistic for the i. cross-section unit based on CADF 
regression (∆𝑦𝑦𝑦𝑦𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖 = 𝛼𝛼𝛼𝛼𝑖𝑖𝑖𝑖 +  𝑏𝑏𝑏𝑏𝑖𝑖𝑖𝑖𝑦𝑦𝑦𝑦𝑖𝑖𝑖𝑖,𝑖𝑖𝑖𝑖−1 +  𝑐𝑐𝑐𝑐𝑖𝑖𝑖𝑖𝑦𝑦𝑦𝑦�𝑖𝑖𝑖𝑖−1 + 𝑑𝑑𝑑𝑑𝑖𝑖𝑖𝑖∆𝑦𝑦𝑦𝑦�𝑖𝑖𝑖𝑖  +  𝑒𝑒𝑒𝑒𝑖𝑖𝑖𝑖,𝑖𝑖𝑖𝑖)  (Pesaran 2007: 269). The null 
hypothesis has the statement of non-stationary series (𝐻𝐻𝐻𝐻0: 𝑏𝑏𝑏𝑏𝑖𝑖𝑖𝑖 = 0 for all i) (Pesaran 2007: 268-
69).  

Because of the connected units, the existence of a small sample (micro panel), and 
having different integration levels for series, the panel auto-regressive distributed lag (ARDL) 
model is the most suitable for the long-run coefficient estimation. Deviations from long-run 
equilibrium are significant than short-run equilibrium. Therefore, the long-run relationship 
between variables and unbiasedness are favorable in the estimation process (Granger 1986: 
213). We run the ARDL approach under the integration level of I(1)  for dependent variable and 
I(0) for  explanatory variable (Pesaran et al. 2001: 315). The fundamental model of ARDL (px, 
py) with respect of dependent and independent variables (Ditzen 2018: 6):  

𝑦𝑦𝑦𝑦𝑖𝑖𝑖𝑖,𝑖𝑖𝑖𝑖 = ∑ 𝜆𝜆𝜆𝜆𝐼𝐼𝐼𝐼,𝑖𝑖𝑖𝑖
𝑝𝑝𝑝𝑝𝑦𝑦𝑦𝑦
𝐼𝐼𝐼𝐼=1 𝑦𝑦𝑦𝑦𝑖𝑖𝑖𝑖,𝑖𝑖𝑖𝑖−𝐼𝐼𝐼𝐼 +  ∑ 𝛽𝛽𝛽𝛽𝐼𝐼𝐼𝐼,𝑖𝑖𝑖𝑖

𝑝𝑝𝑝𝑝𝑥𝑥𝑥𝑥
𝐼𝐼𝐼𝐼=0 𝑥𝑥𝑥𝑥𝑖𝑖𝑖𝑖,𝑖𝑖𝑖𝑖−𝐼𝐼𝐼𝐼  +  𝑒𝑒𝑒𝑒𝑖𝑖𝑖𝑖,𝑖𝑖𝑖𝑖      (3) 

where  the lag length of y and x are 𝑝𝑝𝑝𝑝𝑥𝑥𝑥𝑥,𝑝𝑝𝑝𝑝𝑦𝑦𝑦𝑦, respectively. If we calculate the coefficients 
of long-run β and average group (Ditzen 2018: 6): 

 𝜃𝜃𝜃𝜃𝑖𝑖𝑖𝑖 =
∑ 𝛽𝛽𝛽𝛽𝐼𝐼𝐼𝐼,𝑖𝑖𝑖𝑖
𝑝𝑝𝑝𝑝𝑥𝑥𝑥𝑥
𝐼𝐼𝐼𝐼=0

1−∑ 𝜆𝜆𝜆𝜆𝐼𝐼𝐼𝐼,𝑖𝑖𝑖𝑖
𝑝𝑝𝑝𝑝𝑦𝑦𝑦𝑦
𝐼𝐼𝐼𝐼=1

,    �̅�𝜃𝜃𝜃𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀 = ∑ 𝜃𝜃𝜃𝜃𝑖𝑖𝑖𝑖𝑁𝑁𝑁𝑁
𝑖𝑖𝑖𝑖=1     (4)

  

In calculating 𝜃𝜃𝜃𝜃𝑖𝑖𝑖𝑖 and �̅�𝜃𝜃𝜃𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀 values, Chudik et al. (2016) suggest the cross-sectionally 
augmented ARDL (CS-ARDL) and the cross-sectionally augmented distributed lag (CS-DL) 
estimators. CS-ARDL technique calculates the long-run coefficients from short-run coefficients 
and includes cross-sectional average. Extended version of equation 3 is explained below 
(Ditzen 2018: 9): 

𝑦𝑦𝑦𝑦𝑖𝑖𝑖𝑖,𝑖𝑖𝑖𝑖 = ∑ 𝜆𝜆𝜆𝜆𝐼𝐼𝐼𝐼,𝑖𝑖𝑖𝑖
𝑝𝑝𝑝𝑝𝑦𝑦𝑦𝑦
𝐼𝐼𝐼𝐼=1 𝑦𝑦𝑦𝑦𝑖𝑖𝑖𝑖,𝑖𝑖𝑖𝑖−𝐼𝐼𝐼𝐼 +  ∑ 𝛽𝛽𝛽𝛽𝐼𝐼𝐼𝐼,𝑖𝑖𝑖𝑖

𝑝𝑝𝑝𝑝𝑥𝑥𝑥𝑥
𝐼𝐼𝐼𝐼=0 𝑥𝑥𝑥𝑥𝑖𝑖𝑖𝑖,𝑖𝑖𝑖𝑖−𝐼𝐼𝐼𝐼  +  ∑ 𝛾𝛾𝛾𝛾′𝐼𝐼𝐼𝐼,𝑖𝑖𝑖𝑖

𝑝𝑝𝑝𝑝𝑇𝑇𝑇𝑇
𝐼𝐼𝐼𝐼=0 𝑧𝑧𝑧𝑧�̅�𝑖𝑖𝑖,𝑖𝑖𝑖𝑖−𝐼𝐼𝐼𝐼  + 𝑒𝑒𝑒𝑒𝑖𝑖𝑖𝑖,𝑖𝑖𝑖𝑖    (5) 

where 𝑧𝑧𝑧𝑧�̅�𝑖𝑖𝑖−𝐼𝐼𝐼𝐼 consists of 𝑦𝑦𝑦𝑦�𝑖𝑖𝑖𝑖,𝑖𝑖𝑖𝑖−𝐼𝐼𝐼𝐼 and �̅�𝑥𝑥𝑥𝑖𝑖𝑖𝑖,𝑖𝑖𝑖𝑖−𝐼𝐼𝐼𝐼. 𝑒𝑒𝑒𝑒𝑖𝑖𝑖𝑖,𝑖𝑖𝑖𝑖 is serially uncorrelated process across for all 
i. Adding the cross-sectional mean to the formula can remove cross-sectional dependence in 
the errors. Thus, the estimation fulfills the validity criteria (Erülgen et al. 2020: 9). 

4. Analysis 
At the beginning of the analysis, a related cross-sectional dependence test is necessary 

to check the possible correlations among units. The null hypothesis consists of a cross-sectional 
independence argument (DeHoyos and Sarafidis 2006: 492). The test statistics of Frees is 5.589 
and critical values are 0.2828 (0.10), 0.3826 (0.05), and 0.5811 (0.01). Because Frees' statistics 
are bigger than critical values, we reject the null hypothesis suggesting the cross-sectional 
independence. After that, we implement cross-sectional augmented Dickey Fuller method. The 
results are reported in Table 1.  
 

 and 

 

Having found that there is a cross-sectional dependence among units, we should use the 
unit root test allowing cross-sectional dependence Because of the unbalanced panel data, we 
can apply Pesaran's (2007) methodology. Pesaran developed the cross-sectionally augmented 
Dickey-Fuller (CADF) statistics. In the process, he calculated a general panel unit root statistics 
by using unit root statistics of each cross-section in a panel data (Koçbulut and Altıntaş 2016: 
16). CIPS is a general test statistic for unit root (Pesaran 2007: 276): 

𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶(𝑁𝑁𝑁𝑁,𝑇𝑇𝑇𝑇) = 𝑁𝑁𝑁𝑁−1 ∑ 𝑡𝑡𝑡𝑡𝑖𝑖𝑖𝑖(𝑁𝑁𝑁𝑁,𝑇𝑇𝑇𝑇)𝑁𝑁𝑁𝑁
𝑖𝑖𝑖𝑖=1         (2) 

where 𝑡𝑡𝑡𝑡𝑖𝑖𝑖𝑖(𝑁𝑁𝑁𝑁,𝑇𝑇𝑇𝑇) is the CADF statistic for the i. cross-section unit based on CADF 
regression (∆𝑦𝑦𝑦𝑦𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖 = 𝛼𝛼𝛼𝛼𝑖𝑖𝑖𝑖 +  𝑏𝑏𝑏𝑏𝑖𝑖𝑖𝑖𝑦𝑦𝑦𝑦𝑖𝑖𝑖𝑖,𝑖𝑖𝑖𝑖−1 +  𝑐𝑐𝑐𝑐𝑖𝑖𝑖𝑖𝑦𝑦𝑦𝑦�𝑖𝑖𝑖𝑖−1 + 𝑑𝑑𝑑𝑑𝑖𝑖𝑖𝑖∆𝑦𝑦𝑦𝑦�𝑖𝑖𝑖𝑖  +  𝑒𝑒𝑒𝑒𝑖𝑖𝑖𝑖,𝑖𝑖𝑖𝑖)  (Pesaran 2007: 269). The null 
hypothesis has the statement of non-stationary series (𝐻𝐻𝐻𝐻0: 𝑏𝑏𝑏𝑏𝑖𝑖𝑖𝑖 = 0 for all i) (Pesaran 2007: 268-
69).  

Because of the connected units, the existence of a small sample (micro panel), and 
having different integration levels for series, the panel auto-regressive distributed lag (ARDL) 
model is the most suitable for the long-run coefficient estimation. Deviations from long-run 
equilibrium are significant than short-run equilibrium. Therefore, the long-run relationship 
between variables and unbiasedness are favorable in the estimation process (Granger 1986: 
213). We run the ARDL approach under the integration level of I(1)  for dependent variable and 
I(0) for  explanatory variable (Pesaran et al. 2001: 315). The fundamental model of ARDL (px, 
py) with respect of dependent and independent variables (Ditzen 2018: 6):  

𝑦𝑦𝑦𝑦𝑖𝑖𝑖𝑖,𝑖𝑖𝑖𝑖 = ∑ 𝜆𝜆𝜆𝜆𝐼𝐼𝐼𝐼,𝑖𝑖𝑖𝑖
𝑝𝑝𝑝𝑝𝑦𝑦𝑦𝑦
𝐼𝐼𝐼𝐼=1 𝑦𝑦𝑦𝑦𝑖𝑖𝑖𝑖,𝑖𝑖𝑖𝑖−𝐼𝐼𝐼𝐼 +  ∑ 𝛽𝛽𝛽𝛽𝐼𝐼𝐼𝐼,𝑖𝑖𝑖𝑖

𝑝𝑝𝑝𝑝𝑥𝑥𝑥𝑥
𝐼𝐼𝐼𝐼=0 𝑥𝑥𝑥𝑥𝑖𝑖𝑖𝑖,𝑖𝑖𝑖𝑖−𝐼𝐼𝐼𝐼  +  𝑒𝑒𝑒𝑒𝑖𝑖𝑖𝑖,𝑖𝑖𝑖𝑖      (3) 

where  the lag length of y and x are 𝑝𝑝𝑝𝑝𝑥𝑥𝑥𝑥,𝑝𝑝𝑝𝑝𝑦𝑦𝑦𝑦, respectively. If we calculate the coefficients 
of long-run β and average group (Ditzen 2018: 6): 

 𝜃𝜃𝜃𝜃𝑖𝑖𝑖𝑖 =
∑ 𝛽𝛽𝛽𝛽𝐼𝐼𝐼𝐼,𝑖𝑖𝑖𝑖
𝑝𝑝𝑝𝑝𝑥𝑥𝑥𝑥
𝐼𝐼𝐼𝐼=0

1−∑ 𝜆𝜆𝜆𝜆𝐼𝐼𝐼𝐼,𝑖𝑖𝑖𝑖
𝑝𝑝𝑝𝑝𝑦𝑦𝑦𝑦
𝐼𝐼𝐼𝐼=1

,    �̅�𝜃𝜃𝜃𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀 = ∑ 𝜃𝜃𝜃𝜃𝑖𝑖𝑖𝑖𝑁𝑁𝑁𝑁
𝑖𝑖𝑖𝑖=1     (4)

  

In calculating 𝜃𝜃𝜃𝜃𝑖𝑖𝑖𝑖 and �̅�𝜃𝜃𝜃𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀 values, Chudik et al. (2016) suggest the cross-sectionally 
augmented ARDL (CS-ARDL) and the cross-sectionally augmented distributed lag (CS-DL) 
estimators. CS-ARDL technique calculates the long-run coefficients from short-run coefficients 
and includes cross-sectional average. Extended version of equation 3 is explained below 
(Ditzen 2018: 9): 

𝑦𝑦𝑦𝑦𝑖𝑖𝑖𝑖,𝑖𝑖𝑖𝑖 = ∑ 𝜆𝜆𝜆𝜆𝐼𝐼𝐼𝐼,𝑖𝑖𝑖𝑖
𝑝𝑝𝑝𝑝𝑦𝑦𝑦𝑦
𝐼𝐼𝐼𝐼=1 𝑦𝑦𝑦𝑦𝑖𝑖𝑖𝑖,𝑖𝑖𝑖𝑖−𝐼𝐼𝐼𝐼 +  ∑ 𝛽𝛽𝛽𝛽𝐼𝐼𝐼𝐼,𝑖𝑖𝑖𝑖

𝑝𝑝𝑝𝑝𝑥𝑥𝑥𝑥
𝐼𝐼𝐼𝐼=0 𝑥𝑥𝑥𝑥𝑖𝑖𝑖𝑖,𝑖𝑖𝑖𝑖−𝐼𝐼𝐼𝐼  +  ∑ 𝛾𝛾𝛾𝛾′𝐼𝐼𝐼𝐼,𝑖𝑖𝑖𝑖

𝑝𝑝𝑝𝑝𝑇𝑇𝑇𝑇
𝐼𝐼𝐼𝐼=0 𝑧𝑧𝑧𝑧�̅�𝑖𝑖𝑖,𝑖𝑖𝑖𝑖−𝐼𝐼𝐼𝐼  + 𝑒𝑒𝑒𝑒𝑖𝑖𝑖𝑖,𝑖𝑖𝑖𝑖    (5) 

where 𝑧𝑧𝑧𝑧�̅�𝑖𝑖𝑖−𝐼𝐼𝐼𝐼 consists of 𝑦𝑦𝑦𝑦�𝑖𝑖𝑖𝑖,𝑖𝑖𝑖𝑖−𝐼𝐼𝐼𝐼 and �̅�𝑥𝑥𝑥𝑖𝑖𝑖𝑖,𝑖𝑖𝑖𝑖−𝐼𝐼𝐼𝐼. 𝑒𝑒𝑒𝑒𝑖𝑖𝑖𝑖,𝑖𝑖𝑖𝑖 is serially uncorrelated process across for all 
i. Adding the cross-sectional mean to the formula can remove cross-sectional dependence in 
the errors. Thus, the estimation fulfills the validity criteria (Erülgen et al. 2020: 9). 

4. Analysis 
At the beginning of the analysis, a related cross-sectional dependence test is necessary 

to check the possible correlations among units. The null hypothesis consists of a cross-sectional 
independence argument (DeHoyos and Sarafidis 2006: 492). The test statistics of Frees is 5.589 
and critical values are 0.2828 (0.10), 0.3826 (0.05), and 0.5811 (0.01). Because Frees' statistics 
are bigger than critical values, we reject the null hypothesis suggesting the cross-sectional 
independence. After that, we implement cross-sectional augmented Dickey Fuller method. The 
results are reported in Table 1.  
 

 values, Chudik et al. (2016) suggest the cross-sectionally augmented ARDL (CS-AR-
DL) and the cross-sectionally augmented distributed lag (CS-DL) estimators. CS-ARDL technique calculates the 
long-run coefficients from short-run coefficients and includes cross-sectional average. Extended version of equa-
tion 3 is explained below (Ditzen 2018: 9):

     (5)

where 

 

Having found that there is a cross-sectional dependence among units, we should use the 
unit root test allowing cross-sectional dependence Because of the unbalanced panel data, we 
can apply Pesaran's (2007) methodology. Pesaran developed the cross-sectionally augmented 
Dickey-Fuller (CADF) statistics. In the process, he calculated a general panel unit root statistics 
by using unit root statistics of each cross-section in a panel data (Koçbulut and Altıntaş 2016: 
16). CIPS is a general test statistic for unit root (Pesaran 2007: 276): 

𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶(𝑁𝑁𝑁𝑁,𝑇𝑇𝑇𝑇) = 𝑁𝑁𝑁𝑁−1 ∑ 𝑡𝑡𝑡𝑡𝑖𝑖𝑖𝑖(𝑁𝑁𝑁𝑁,𝑇𝑇𝑇𝑇)𝑁𝑁𝑁𝑁
𝑖𝑖𝑖𝑖=1         (2) 

where 𝑡𝑡𝑡𝑡𝑖𝑖𝑖𝑖(𝑁𝑁𝑁𝑁,𝑇𝑇𝑇𝑇) is the CADF statistic for the i. cross-section unit based on CADF 
regression (∆𝑦𝑦𝑦𝑦𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖 = 𝛼𝛼𝛼𝛼𝑖𝑖𝑖𝑖 +  𝑏𝑏𝑏𝑏𝑖𝑖𝑖𝑖𝑦𝑦𝑦𝑦𝑖𝑖𝑖𝑖,𝑖𝑖𝑖𝑖−1 +  𝑐𝑐𝑐𝑐𝑖𝑖𝑖𝑖𝑦𝑦𝑦𝑦�𝑖𝑖𝑖𝑖−1 + 𝑑𝑑𝑑𝑑𝑖𝑖𝑖𝑖∆𝑦𝑦𝑦𝑦�𝑖𝑖𝑖𝑖  +  𝑒𝑒𝑒𝑒𝑖𝑖𝑖𝑖,𝑖𝑖𝑖𝑖)  (Pesaran 2007: 269). The null 
hypothesis has the statement of non-stationary series (𝐻𝐻𝐻𝐻0: 𝑏𝑏𝑏𝑏𝑖𝑖𝑖𝑖 = 0 for all i) (Pesaran 2007: 268-
69).  

Because of the connected units, the existence of a small sample (micro panel), and 
having different integration levels for series, the panel auto-regressive distributed lag (ARDL) 
model is the most suitable for the long-run coefficient estimation. Deviations from long-run 
equilibrium are significant than short-run equilibrium. Therefore, the long-run relationship 
between variables and unbiasedness are favorable in the estimation process (Granger 1986: 
213). We run the ARDL approach under the integration level of I(1)  for dependent variable and 
I(0) for  explanatory variable (Pesaran et al. 2001: 315). The fundamental model of ARDL (px, 
py) with respect of dependent and independent variables (Ditzen 2018: 6):  

𝑦𝑦𝑦𝑦𝑖𝑖𝑖𝑖,𝑖𝑖𝑖𝑖 = ∑ 𝜆𝜆𝜆𝜆𝐼𝐼𝐼𝐼,𝑖𝑖𝑖𝑖
𝑝𝑝𝑝𝑝𝑦𝑦𝑦𝑦
𝐼𝐼𝐼𝐼=1 𝑦𝑦𝑦𝑦𝑖𝑖𝑖𝑖,𝑖𝑖𝑖𝑖−𝐼𝐼𝐼𝐼 +  ∑ 𝛽𝛽𝛽𝛽𝐼𝐼𝐼𝐼,𝑖𝑖𝑖𝑖

𝑝𝑝𝑝𝑝𝑥𝑥𝑥𝑥
𝐼𝐼𝐼𝐼=0 𝑥𝑥𝑥𝑥𝑖𝑖𝑖𝑖,𝑖𝑖𝑖𝑖−𝐼𝐼𝐼𝐼  +  𝑒𝑒𝑒𝑒𝑖𝑖𝑖𝑖,𝑖𝑖𝑖𝑖      (3) 

where  the lag length of y and x are 𝑝𝑝𝑝𝑝𝑥𝑥𝑥𝑥,𝑝𝑝𝑝𝑝𝑦𝑦𝑦𝑦, respectively. If we calculate the coefficients 
of long-run β and average group (Ditzen 2018: 6): 

 𝜃𝜃𝜃𝜃𝑖𝑖𝑖𝑖 =
∑ 𝛽𝛽𝛽𝛽𝐼𝐼𝐼𝐼,𝑖𝑖𝑖𝑖
𝑝𝑝𝑝𝑝𝑥𝑥𝑥𝑥
𝐼𝐼𝐼𝐼=0

1−∑ 𝜆𝜆𝜆𝜆𝐼𝐼𝐼𝐼,𝑖𝑖𝑖𝑖
𝑝𝑝𝑝𝑝𝑦𝑦𝑦𝑦
𝐼𝐼𝐼𝐼=1

,    �̅�𝜃𝜃𝜃𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀 = ∑ 𝜃𝜃𝜃𝜃𝑖𝑖𝑖𝑖𝑁𝑁𝑁𝑁
𝑖𝑖𝑖𝑖=1     (4)

  

In calculating 𝜃𝜃𝜃𝜃𝑖𝑖𝑖𝑖 and �̅�𝜃𝜃𝜃𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀 values, Chudik et al. (2016) suggest the cross-sectionally 
augmented ARDL (CS-ARDL) and the cross-sectionally augmented distributed lag (CS-DL) 
estimators. CS-ARDL technique calculates the long-run coefficients from short-run coefficients 
and includes cross-sectional average. Extended version of equation 3 is explained below 
(Ditzen 2018: 9): 

𝑦𝑦𝑦𝑦𝑖𝑖𝑖𝑖,𝑖𝑖𝑖𝑖 = ∑ 𝜆𝜆𝜆𝜆𝐼𝐼𝐼𝐼,𝑖𝑖𝑖𝑖
𝑝𝑝𝑝𝑝𝑦𝑦𝑦𝑦
𝐼𝐼𝐼𝐼=1 𝑦𝑦𝑦𝑦𝑖𝑖𝑖𝑖,𝑖𝑖𝑖𝑖−𝐼𝐼𝐼𝐼 +  ∑ 𝛽𝛽𝛽𝛽𝐼𝐼𝐼𝐼,𝑖𝑖𝑖𝑖

𝑝𝑝𝑝𝑝𝑥𝑥𝑥𝑥
𝐼𝐼𝐼𝐼=0 𝑥𝑥𝑥𝑥𝑖𝑖𝑖𝑖,𝑖𝑖𝑖𝑖−𝐼𝐼𝐼𝐼  +  ∑ 𝛾𝛾𝛾𝛾′𝐼𝐼𝐼𝐼,𝑖𝑖𝑖𝑖

𝑝𝑝𝑝𝑝𝑇𝑇𝑇𝑇
𝐼𝐼𝐼𝐼=0 𝑧𝑧𝑧𝑧�̅�𝑖𝑖𝑖,𝑖𝑖𝑖𝑖−𝐼𝐼𝐼𝐼  + 𝑒𝑒𝑒𝑒𝑖𝑖𝑖𝑖,𝑖𝑖𝑖𝑖    (5) 

where 𝑧𝑧𝑧𝑧�̅�𝑖𝑖𝑖−𝐼𝐼𝐼𝐼 consists of 𝑦𝑦𝑦𝑦�𝑖𝑖𝑖𝑖,𝑖𝑖𝑖𝑖−𝐼𝐼𝐼𝐼 and �̅�𝑥𝑥𝑥𝑖𝑖𝑖𝑖,𝑖𝑖𝑖𝑖−𝐼𝐼𝐼𝐼. 𝑒𝑒𝑒𝑒𝑖𝑖𝑖𝑖,𝑖𝑖𝑖𝑖 is serially uncorrelated process across for all 
i. Adding the cross-sectional mean to the formula can remove cross-sectional dependence in 
the errors. Thus, the estimation fulfills the validity criteria (Erülgen et al. 2020: 9). 

4. Analysis 
At the beginning of the analysis, a related cross-sectional dependence test is necessary 

to check the possible correlations among units. The null hypothesis consists of a cross-sectional 
independence argument (DeHoyos and Sarafidis 2006: 492). The test statistics of Frees is 5.589 
and critical values are 0.2828 (0.10), 0.3826 (0.05), and 0.5811 (0.01). Because Frees' statistics 
are bigger than critical values, we reject the null hypothesis suggesting the cross-sectional 
independence. After that, we implement cross-sectional augmented Dickey Fuller method. The 
results are reported in Table 1.  
 

 consists of 

 

Having found that there is a cross-sectional dependence among units, we should use the 
unit root test allowing cross-sectional dependence Because of the unbalanced panel data, we 
can apply Pesaran's (2007) methodology. Pesaran developed the cross-sectionally augmented 
Dickey-Fuller (CADF) statistics. In the process, he calculated a general panel unit root statistics 
by using unit root statistics of each cross-section in a panel data (Koçbulut and Altıntaş 2016: 
16). CIPS is a general test statistic for unit root (Pesaran 2007: 276): 

𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶(𝑁𝑁𝑁𝑁,𝑇𝑇𝑇𝑇) = 𝑁𝑁𝑁𝑁−1 ∑ 𝑡𝑡𝑡𝑡𝑖𝑖𝑖𝑖(𝑁𝑁𝑁𝑁,𝑇𝑇𝑇𝑇)𝑁𝑁𝑁𝑁
𝑖𝑖𝑖𝑖=1         (2) 

where 𝑡𝑡𝑡𝑡𝑖𝑖𝑖𝑖(𝑁𝑁𝑁𝑁,𝑇𝑇𝑇𝑇) is the CADF statistic for the i. cross-section unit based on CADF 
regression (∆𝑦𝑦𝑦𝑦𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖 = 𝛼𝛼𝛼𝛼𝑖𝑖𝑖𝑖 +  𝑏𝑏𝑏𝑏𝑖𝑖𝑖𝑖𝑦𝑦𝑦𝑦𝑖𝑖𝑖𝑖,𝑖𝑖𝑖𝑖−1 +  𝑐𝑐𝑐𝑐𝑖𝑖𝑖𝑖𝑦𝑦𝑦𝑦�𝑖𝑖𝑖𝑖−1 + 𝑑𝑑𝑑𝑑𝑖𝑖𝑖𝑖∆𝑦𝑦𝑦𝑦�𝑖𝑖𝑖𝑖  +  𝑒𝑒𝑒𝑒𝑖𝑖𝑖𝑖,𝑖𝑖𝑖𝑖)  (Pesaran 2007: 269). The null 
hypothesis has the statement of non-stationary series (𝐻𝐻𝐻𝐻0: 𝑏𝑏𝑏𝑏𝑖𝑖𝑖𝑖 = 0 for all i) (Pesaran 2007: 268-
69).  

Because of the connected units, the existence of a small sample (micro panel), and 
having different integration levels for series, the panel auto-regressive distributed lag (ARDL) 
model is the most suitable for the long-run coefficient estimation. Deviations from long-run 
equilibrium are significant than short-run equilibrium. Therefore, the long-run relationship 
between variables and unbiasedness are favorable in the estimation process (Granger 1986: 
213). We run the ARDL approach under the integration level of I(1)  for dependent variable and 
I(0) for  explanatory variable (Pesaran et al. 2001: 315). The fundamental model of ARDL (px, 
py) with respect of dependent and independent variables (Ditzen 2018: 6):  

𝑦𝑦𝑦𝑦𝑖𝑖𝑖𝑖,𝑖𝑖𝑖𝑖 = ∑ 𝜆𝜆𝜆𝜆𝐼𝐼𝐼𝐼,𝑖𝑖𝑖𝑖
𝑝𝑝𝑝𝑝𝑦𝑦𝑦𝑦
𝐼𝐼𝐼𝐼=1 𝑦𝑦𝑦𝑦𝑖𝑖𝑖𝑖,𝑖𝑖𝑖𝑖−𝐼𝐼𝐼𝐼 +  ∑ 𝛽𝛽𝛽𝛽𝐼𝐼𝐼𝐼,𝑖𝑖𝑖𝑖

𝑝𝑝𝑝𝑝𝑥𝑥𝑥𝑥
𝐼𝐼𝐼𝐼=0 𝑥𝑥𝑥𝑥𝑖𝑖𝑖𝑖,𝑖𝑖𝑖𝑖−𝐼𝐼𝐼𝐼  +  𝑒𝑒𝑒𝑒𝑖𝑖𝑖𝑖,𝑖𝑖𝑖𝑖      (3) 

where  the lag length of y and x are 𝑝𝑝𝑝𝑝𝑥𝑥𝑥𝑥,𝑝𝑝𝑝𝑝𝑦𝑦𝑦𝑦, respectively. If we calculate the coefficients 
of long-run β and average group (Ditzen 2018: 6): 

 𝜃𝜃𝜃𝜃𝑖𝑖𝑖𝑖 =
∑ 𝛽𝛽𝛽𝛽𝐼𝐼𝐼𝐼,𝑖𝑖𝑖𝑖
𝑝𝑝𝑝𝑝𝑥𝑥𝑥𝑥
𝐼𝐼𝐼𝐼=0

1−∑ 𝜆𝜆𝜆𝜆𝐼𝐼𝐼𝐼,𝑖𝑖𝑖𝑖
𝑝𝑝𝑝𝑝𝑦𝑦𝑦𝑦
𝐼𝐼𝐼𝐼=1

,    �̅�𝜃𝜃𝜃𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀 = ∑ 𝜃𝜃𝜃𝜃𝑖𝑖𝑖𝑖𝑁𝑁𝑁𝑁
𝑖𝑖𝑖𝑖=1     (4)

  

In calculating 𝜃𝜃𝜃𝜃𝑖𝑖𝑖𝑖 and �̅�𝜃𝜃𝜃𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀 values, Chudik et al. (2016) suggest the cross-sectionally 
augmented ARDL (CS-ARDL) and the cross-sectionally augmented distributed lag (CS-DL) 
estimators. CS-ARDL technique calculates the long-run coefficients from short-run coefficients 
and includes cross-sectional average. Extended version of equation 3 is explained below 
(Ditzen 2018: 9): 

𝑦𝑦𝑦𝑦𝑖𝑖𝑖𝑖,𝑖𝑖𝑖𝑖 = ∑ 𝜆𝜆𝜆𝜆𝐼𝐼𝐼𝐼,𝑖𝑖𝑖𝑖
𝑝𝑝𝑝𝑝𝑦𝑦𝑦𝑦
𝐼𝐼𝐼𝐼=1 𝑦𝑦𝑦𝑦𝑖𝑖𝑖𝑖,𝑖𝑖𝑖𝑖−𝐼𝐼𝐼𝐼 +  ∑ 𝛽𝛽𝛽𝛽𝐼𝐼𝐼𝐼,𝑖𝑖𝑖𝑖

𝑝𝑝𝑝𝑝𝑥𝑥𝑥𝑥
𝐼𝐼𝐼𝐼=0 𝑥𝑥𝑥𝑥𝑖𝑖𝑖𝑖,𝑖𝑖𝑖𝑖−𝐼𝐼𝐼𝐼  +  ∑ 𝛾𝛾𝛾𝛾′𝐼𝐼𝐼𝐼,𝑖𝑖𝑖𝑖

𝑝𝑝𝑝𝑝𝑇𝑇𝑇𝑇
𝐼𝐼𝐼𝐼=0 𝑧𝑧𝑧𝑧�̅�𝑖𝑖𝑖,𝑖𝑖𝑖𝑖−𝐼𝐼𝐼𝐼  + 𝑒𝑒𝑒𝑒𝑖𝑖𝑖𝑖,𝑖𝑖𝑖𝑖    (5) 
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independence argument (DeHoyos and Sarafidis 2006: 492). The test statistics of Frees is 5.589 
and critical values are 0.2828 (0.10), 0.3826 (0.05), and 0.5811 (0.01). Because Frees' statistics 
are bigger than critical values, we reject the null hypothesis suggesting the cross-sectional 
independence. After that, we implement cross-sectional augmented Dickey Fuller method. The 
results are reported in Table 1.  
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i. Adding the cross-sectional mean to the formula can remove cross-sectional dependence in 
the errors. Thus, the estimation fulfills the validity criteria (Erülgen et al. 2020: 9). 

4. Analysis 
At the beginning of the analysis, a related cross-sectional dependence test is necessary 

to check the possible correlations among units. The null hypothesis consists of a cross-sectional 
independence argument (DeHoyos and Sarafidis 2006: 492). The test statistics of Frees is 5.589 
and critical values are 0.2828 (0.10), 0.3826 (0.05), and 0.5811 (0.01). Because Frees' statistics 
are bigger than critical values, we reject the null hypothesis suggesting the cross-sectional 
independence. After that, we implement cross-sectional augmented Dickey Fuller method. The 
results are reported in Table 1.  
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When we examine the stationary levels of the variables, log_pro and log_inc are integrated I(1) and I(0), respec-
tively. Furthermore, cross-sectional dependent variables necessitate the CS-ARDL approach. Table 2 reports the 
analysis results with different lag lengths.

 
 
 

Table 1. Stationary Test Results 

cons. cons. & trend lag cons. cons. & trend lag 
log_pro log_inc 

0.873 0.837 0 -2.828 ** -2.135 ** 0 
- 0.300 - 0.449 1 -1.690 ** 1.394 1 

∆log_pro  ∆log_inc 
-7.310 *** -4.674*** 0 -12.002 *** -10.302 *** 0 
-4.243 *** -1.067 1 -3.510 *** -0.594 1 

Note: ***, **, and * represent % 1, % 5 and % 10 respectively. 

When we examine the stationary levels of the variables, log_pro and log_inc are integrated I(1) 
and I(0), respectively. Furthermore, cross-sectional dependent variables necessitate the CS-
ARDL approach. Table 2 reports the analysis results with different lag lengths. 

Table 2: Long-Run Coefficients 

Coef. z stat. Lag(s) F stat. R-sqr. CD-stat. (p) 

-0.1302 (0.0616) -2.12**  0 1.53*** 0.21 0.32 (0.750) 
-0.1609 (0.0764) -2.11**  1 1.58*** 0.33 -0.63 (0.532) 
-0.1475 (0.052) -1.73 *  2 1.68*** 0.46 -0.67 (0.503) 

-0.1258 (0.0895) 1.40 3 1.55*** 0.57 -0.15 (0.884) 
Note: ***, **, and * represent % 1, % 5 and % 10 respectively. Standard errors in parentheses. 

All models are statistically valid according to the F statistics. The most suitable model 
is ARDL (1,1). One lagged values of variables have a long-run relationship. There is a negative 
relationship between wage inequality and labor productivity. 1 % increase in wage inequality 
results in a 0.16 % decrease in labor productivity. Wage inequality explains 33% of productivity 
declines. This percentage is high if we consider only one explanatory variable.  Moreover, the 
CD test is a post-estimation test for validity and shows that errors are cross-sectionally 
independent.  

In the analysis, the income quintile share ratio is used as an inequality indicator while 
other studies employ the Gini index. Furthermore, this study estimates the long-run coefficients, 
other studies make general estimations without any differentiation. Considering the results, the 
coefficient is close to the 0.15 value of Kim and Sakamoto (2008), smaller than 0.78 and 0.99 
of DiPietro (2014). In addition, it is bigger than the 0.06 and 0.02 of Policardo et al. (2018) in 
absolute values. Our findings are consistent with the theory and the empirical studies except for 
DiPietro. Briefly, we should pay attention to the dynamics between wage and productivity for 
a stable improvement in labor productivity in the long run. In addition, control variables can 
clarify the impact of wage inequality on the productivity level. 

5. Conclusion 

Improving productivity and diminishing inequal income/wage distribution require long-
term policy and strategies. Therefore, this paper investigates the long-term parameters. An 
inequal income ratio negatively affects labor productivity. Unfair wage determination is one of 
the sources of income inequality. Various factors such as gender discrimination, subjective 
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the errors. Thus, the estimation fulfills the validity criteria (Erülgen et al. 2020: 9). 

4. Analysis 
At the beginning of the analysis, a related cross-sectional dependence test is necessary 

to check the possible correlations among units. The null hypothesis consists of a cross-sectional 
independence argument (DeHoyos and Sarafidis 2006: 492). The test statistics of Frees is 5.589 
and critical values are 0.2828 (0.10), 0.3826 (0.05), and 0.5811 (0.01). Because Frees' statistics 
are bigger than critical values, we reject the null hypothesis suggesting the cross-sectional 
independence. After that, we implement cross-sectional augmented Dickey Fuller method. The 
results are reported in Table 1.  
 

 

Having found that there is a cross-sectional dependence among units, we should use the 
unit root test allowing cross-sectional dependence Because of the unbalanced panel data, we 
can apply Pesaran's (2007) methodology. Pesaran developed the cross-sectionally augmented 
Dickey-Fuller (CADF) statistics. In the process, he calculated a general panel unit root statistics 
by using unit root statistics of each cross-section in a panel data (Koçbulut and Altıntaş 2016: 
16). CIPS is a general test statistic for unit root (Pesaran 2007: 276): 
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where 𝑡𝑡𝑡𝑡𝑖𝑖𝑖𝑖(𝑁𝑁𝑁𝑁,𝑇𝑇𝑇𝑇) is the CADF statistic for the i. cross-section unit based on CADF 
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hypothesis has the statement of non-stationary series (𝐻𝐻𝐻𝐻0: 𝑏𝑏𝑏𝑏𝑖𝑖𝑖𝑖 = 0 for all i) (Pesaran 2007: 268-
69).  

Because of the connected units, the existence of a small sample (micro panel), and 
having different integration levels for series, the panel auto-regressive distributed lag (ARDL) 
model is the most suitable for the long-run coefficient estimation. Deviations from long-run 
equilibrium are significant than short-run equilibrium. Therefore, the long-run relationship 
between variables and unbiasedness are favorable in the estimation process (Granger 1986: 
213). We run the ARDL approach under the integration level of I(1)  for dependent variable and 
I(0) for  explanatory variable (Pesaran et al. 2001: 315). The fundamental model of ARDL (px, 
py) with respect of dependent and independent variables (Ditzen 2018: 6):  
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where  the lag length of y and x are 𝑝𝑝𝑝𝑝𝑥𝑥𝑥𝑥,𝑝𝑝𝑝𝑝𝑦𝑦𝑦𝑦, respectively. If we calculate the coefficients 
of long-run β and average group (Ditzen 2018: 6): 
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,    �̅�𝜃𝜃𝜃𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀 = ∑ 𝜃𝜃𝜃𝜃𝑖𝑖𝑖𝑖𝑁𝑁𝑁𝑁
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In calculating 𝜃𝜃𝜃𝜃𝑖𝑖𝑖𝑖 and �̅�𝜃𝜃𝜃𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀 values, Chudik et al. (2016) suggest the cross-sectionally 
augmented ARDL (CS-ARDL) and the cross-sectionally augmented distributed lag (CS-DL) 
estimators. CS-ARDL technique calculates the long-run coefficients from short-run coefficients 
and includes cross-sectional average. Extended version of equation 3 is explained below 
(Ditzen 2018: 9): 
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i. Adding the cross-sectional mean to the formula can remove cross-sectional dependence in 
the errors. Thus, the estimation fulfills the validity criteria (Erülgen et al. 2020: 9). 

4. Analysis 
At the beginning of the analysis, a related cross-sectional dependence test is necessary 

to check the possible correlations among units. The null hypothesis consists of a cross-sectional 
independence argument (DeHoyos and Sarafidis 2006: 492). The test statistics of Frees is 5.589 
and critical values are 0.2828 (0.10), 0.3826 (0.05), and 0.5811 (0.01). Because Frees' statistics 
are bigger than critical values, we reject the null hypothesis suggesting the cross-sectional 
independence. After that, we implement cross-sectional augmented Dickey Fuller method. The 
results are reported in Table 1.  
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i. Adding the cross-sectional mean to the formula can remove cross-sectional dependence in 
the errors. Thus, the estimation fulfills the validity criteria (Erülgen et al. 2020: 9). 

4. Analysis 
At the beginning of the analysis, a related cross-sectional dependence test is necessary 

to check the possible correlations among units. The null hypothesis consists of a cross-sectional 
independence argument (DeHoyos and Sarafidis 2006: 492). The test statistics of Frees is 5.589 
and critical values are 0.2828 (0.10), 0.3826 (0.05), and 0.5811 (0.01). Because Frees' statistics 
are bigger than critical values, we reject the null hypothesis suggesting the cross-sectional 
independence. After that, we implement cross-sectional augmented Dickey Fuller method. The 
results are reported in Table 1.  
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Table 2. Long-Run Coefficients

Note: ***, **, and * represent % 1, % 5 and % 10 respectively. Standard errors in parentheses.

All models are statistically valid according to the F statistics. The most suitable model is ARDL (1,1). One lagged 
values of variables have a long-run relationship. There is a negative relationship between wage inequality and la-
bor productivity. 1 % increase in wage inequality results in a 0.16 % decrease in labor productivity. Wage inequal-
ity explains 33% of productivity declines. This percentage is high if we consider only one explanatory variable.  
Moreover, the CD test is a post-estimation test for validity and shows that errors are cross-sectionally independent. 

In the analysis, the income quintile share ratio is used as an inequality indicator while other studies employ the 
Gini index. Furthermore, this study estimates the long-run coefficients, other studies make general estimations 
without any differentiation. Considering the results, the coefficient is close to the 0.15 value of Kim and Sakamoto 
(2008), smaller than 0.78 and 0.99 of DiPietro (2014). In addition, it is bigger than the 0.06 and 0.02 of Policardo 
et al. (2018) in absolute values. Our findings are consistent with the theory and the empirical studies except for 
DiPietro. Briefly, we should pay attention to the dynamics between wage and productivity for a stable improve-
ment in labor productivity in the long run. In addition, control variables can clarify the impact of wage inequality 
on the productivity level.

5. CONCLUSION

Improving productivity and diminishing inequal income/wage distribution require long-term policy and strategies. 
Therefore, this paper investigates the long-term parameters. An inequal income ratio negatively affects labor pro-
ductivity. Unfair wage determination is one of the sources of income inequality. Various factors such as gender 
discrimination, subjective assessment, and regional differences might be other sources. Therefore, penetrating or 
reducing the inequalities probably depict long-run rather than short-run solutions. 

In this respect, sustainable development goals determine reductions in inequalities as one of the three urgent goals. 
Three goals are “fight inequality & injustice,” “end extreme poverty,” and “fix climate change” from 2015 to 
2030. Alternative policies at local, regional, territorial, and global levels might be more beneficial and powerful 
for this purpose. Furthermore, policy recommendations may include some measures on how to reduce inequality. 
Remuneration determination criteria based on skills, abilities, education, and the perception of the right wage level 
can help to prevent wage inequality. In addition, the government can detect and control whether the companies 
determine fair wages.

Cross-sectional dependency and data size restrict possible analysis techniques. A larger and more comprehensive 
data set will allow for more appropriate analysis. Further research can analyze time series data with different meth-
ods considering structural breaks and nonlinear dynamics. Researchers might extent and develop cross-sectional 
or panel models with spatial effects.
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Table 1. Stationary Test Results 

cons. cons. & trend lag cons. cons. & trend lag 
log_pro log_inc 

0.873 0.837 0 -2.828 ** -2.135 ** 0 
- 0.300 - 0.449 1 -1.690 ** 1.394 1 

∆log_pro  ∆log_inc 
-7.310 *** -4.674*** 0 -12.002 *** -10.302 *** 0 
-4.243 *** -1.067 1 -3.510 *** -0.594 1 

Note: ***, **, and * represent % 1, % 5 and % 10 respectively. 

When we examine the stationary levels of the variables, log_pro and log_inc are integrated I(1) 
and I(0), respectively. Furthermore, cross-sectional dependent variables necessitate the CS-
ARDL approach. Table 2 reports the analysis results with different lag lengths. 

Table 2: Long-Run Coefficients 

Coef. z stat. Lag(s) F stat. R-sqr. CD-stat. (p) 

-0.1302 (0.0616) -2.12**  0 1.53*** 0.21 0.32 (0.750) 
-0.1609 (0.0764) -2.11**  1 1.58*** 0.33 -0.63 (0.532) 
-0.1475 (0.052) -1.73 *  2 1.68*** 0.46 -0.67 (0.503) 

-0.1258 (0.0895) 1.40 3 1.55*** 0.57 -0.15 (0.884) 
Note: ***, **, and * represent % 1, % 5 and % 10 respectively. Standard errors in parentheses. 

All models are statistically valid according to the F statistics. The most suitable model 
is ARDL (1,1). One lagged values of variables have a long-run relationship. There is a negative 
relationship between wage inequality and labor productivity. 1 % increase in wage inequality 
results in a 0.16 % decrease in labor productivity. Wage inequality explains 33% of productivity 
declines. This percentage is high if we consider only one explanatory variable.  Moreover, the 
CD test is a post-estimation test for validity and shows that errors are cross-sectionally 
independent.  

In the analysis, the income quintile share ratio is used as an inequality indicator while 
other studies employ the Gini index. Furthermore, this study estimates the long-run coefficients, 
other studies make general estimations without any differentiation. Considering the results, the 
coefficient is close to the 0.15 value of Kim and Sakamoto (2008), smaller than 0.78 and 0.99 
of DiPietro (2014). In addition, it is bigger than the 0.06 and 0.02 of Policardo et al. (2018) in 
absolute values. Our findings are consistent with the theory and the empirical studies except for 
DiPietro. Briefly, we should pay attention to the dynamics between wage and productivity for 
a stable improvement in labor productivity in the long run. In addition, control variables can 
clarify the impact of wage inequality on the productivity level. 

5. Conclusion 

Improving productivity and diminishing inequal income/wage distribution require long-
term policy and strategies. Therefore, this paper investigates the long-term parameters. An 
inequal income ratio negatively affects labor productivity. Unfair wage determination is one of 
the sources of income inequality. Various factors such as gender discrimination, subjective 
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